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Abstract

This paper introduces a new strategy for playing the marking game on graphs.
Using this strategy, we prove that if G is a planar graph, then the game colouring
number of GG, and hence the game chromatic number of G, is at most 17.

1 Introduction

Suppose G = (V, E) is a graph. The game colouring number of G is defined through
a two-person game: the marking game. Alice and Bob, with Alice playing first, take
turns in playing the game. Each play by either player consists of marking an unmarked
vertex of G. The game ends when all vertices are marked. Together the players create
a linear order L of the vertices of G' in which x <, y if x is marked before y. The score
of the game is
_ +
5= mmax | Né, [z,

where N¢ [z] = {y € Ng[z] : y = x or y <;, «}. Alice’s goal is to minimize the score,
while Bob’s goal is to maximize it. The game colouring number coly(G) of G is the
least s such that Alice has a strategy that results in a score at most s.
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The game colouring number of a graph was first formally introduced in [19] as a
tool in the study of the game chromatic number. The game chromatic number x4(G)
of a graph G is also defined through a two person game. Let GG be a finite graph and
let X be a set of colours. Alice and Bob, with Alice moving first, take turns in playing
the game. Each play by either player consists of colouring an uncoloured vertex of GG
with a colour from the colour set X so that no two adjacent vertices receive the same
colour. Alice wins the game if all the vertices of G are coloured. Otherwise, Bob wins
the game. The game chromatic number x,(G) of G is the least number of colours in a
colour set X for which Alice has a winning strategy.

It is easy to see that for any graph G, x,(G) < coly(G). For many natural classes
of graphs, the best known upper bounds for their game chromatic number are obtained
by finding upper bounds for their game colouring number. Game colouring number of
a graph and its generalization to oriented graphs are also of independent interests, and
have been studied extensively in the literature [2, 3, 5-7, 9-11, 13-20].

Suppose H is a family of graphs. We define the game chromatic number and the
game colouring number of H as

Xe(H) = max{x4(G) : G € H},

and
colg(H) = max{coly(G) : G € H}.

We denote by F the family of forests, by Z; the family of interval graphs with clique
number £, by P the family of planar graphs, by Q the family of outer planar graphs,
by PT the family of partial k-trees. The exact value of the game colouring numbers
of F, I}, Q and PT are known. It is proved by Faigle, Kern, Kierstead and Trotter
[8] that coly(F) = 4, proved by Faigle, Kern, Kierstead and Trotter [8] and Kierstead
and Yang [15] that coly(Zy) = 3k — 2, proved by Guan and Zhu [9] and Kierstead
and Yang [15] that coly(Q) = 7, and proved by Zhu [20] and Wu and Zhu [18] that
colg(PTy) =3k + 2 for k > 2.

Although there are relatively rich results concerning the game chromatic number
and game colouring number of graphs, there are very few strategies for either Alice or
Bob to play the colouring game or marking game. It is proved in [11] that there is
a single strategy, the activation strategy, such that if Alice uses this strategy to play
the marking game then she achieves the sharp upper bounds on the game colouring
numbers of F, 7y, Q,PK; as well as the best known upper bounds for many other
classes of graphs, including P.

In this paper, we introduce a new strategy, the refined activation strategy, for play-
ing the marking game (it can also be used as a strategy for playing the colouring game).
It is quite similar to the activation strategy, however, there are two new ingredients in
the recipe. The key idea in the activation strategy is to use a special linear ordering of
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V(@) as Alice’s preference in activating and marking vertices. In the refined activation
strategy, Alice still uses orderings of the vertices as her preference in activating and
marking vertices. However, there are two features that are different from the activation
strategy. (1): The ordering is a ‘dynamic rough ordering’. The vertex set is partitioned
into small blocks. Within a block, there maybe noncomparable vertices, the order re-
lation is not transitive and moreover, the order relation between vertices may change
from time to time. (2): Each vertex has a preference of its own. If Alice moves from a
vertex v to her next target, the preference of v will affect Alice’s choice as well.

Kierstead [11] introduced a parameter, the rank r(G), of a graph. By using the
activation strategy for playing the marking game, one derives an upper bound for
colg(G) in terms of 7(G), namely coly(G) < 1+ r(G). In Section 2, we introduce a
parameter v(G) of a graph, which is a refinement of 7(G). Section 3 introduces the
refined activation strategy. We prove that if Alice uses this strategy, then the score of
the game is at most 1 + v(G). Therefore coly(G) < 1+ v(G) for any graph G.

Then we estimate y(G) for planar graphs, which yields a better upper bound for
colg(P). The game chromatic number and game colouring number of planar graphs
is a benchmark problem in the study of the colouring game and marking game. It
was conjectured by Bodlaender [1] that x,(P) < co. This conjecture is confirmed by
Kierstead and Trotter [12], who proved that x,(P) < 33. This bound is reduced to
30 by Dinski and Zhu [4]. Then by introducing the game colouring number, Zhu [19]
proved that x,(P) < coly(P) < 19, and this bound is reduced to 18 by Kierstead [11].
Recently, Wu and Zhu [18] proved that coly(P) > 11. By using the refined activation
strategy, this paper proves that coly(P) < 17.

Theorem 1 If G = (V, E) is a planar graph, then xz(G) < colg(G) < 17.

2 Refined rank of a graph

Suppose G is a graph, L is a linear ordering of V(G) and u is a vertex of G. An
u-matchable set with respect to L is a subset Z C Ng, [u] such that there is a partition
{X,Y} of Z and there exists a matching M from X C Ng, [u] to V*(u) which saturates
X and a matching N from Y C Ng, (u) to V' [u] which saturates Y. For a vertex u of
G, let m(u, L, G) be the size of a largest u-matchable set with respect to L. Let

r(u,L,G) = |Ng, ()l +m(u,L,G)
r(L,G) = max r(u,L,G).
ueV(G)

Then the rank of G, introduced by Kierstead in [11], is defined as
r(G) = min{r(L,G) : L is a linear ordering of V(G)}.
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It is proved in [11] that for any graph G, coly(G) < 14 r(G). In this section, we
introduce a parameter, v(G), of a graph G, which is a refinement of 7(G). We shall
prove that for any graph G, coly(G) < 1+ v(G).

The rank of a graph is defined through a linear ordering of V(G). The refined
rank (@) is defined through a ‘dynamic rough ordering’ of V(G) and a ‘preference
function’.

Definition 1 Suppose G = (V, E) is a graph. A dynamic rough ordering of G is a
pair (Lo, P) such that Ly is a digraph on V' without opposite arcs, and P is a partition
of V. Fach B € P is called a block. The blocks can be ordered as By, By, - -+, B, such
that for any i < j, if v € B; and y € B; then yt € Ly, i.e., T is an arc of Ly.

The digraph L is viewed as a rough ordering. In the remaining of this paper, we
write 2 <p, y if 42 is an arc of Ly. We say two vertices x,y are comparable in Ly
if and only if either © <;, y or y <z, . The digraph L is not really an ordering,
because inside a block B;, there may be noncomparable vertices, the relation <, may
not transitive, and there may be directed cycles. In particular, if x <z, y and y <z, 2,
then it is not necessary that x and z are comparable. However, if we ignore what
happens inside the blocks, it becomes a linear ordering.

In the definition, there is nothing which is really dynamic. What we have here are
simply a fixed rough ordering Ly and a partition P. However, we use the adjective
‘dynamic’ to suggest that the rough ordering used in the strategy will change from
time to time, and Ly is just the initial state of the ‘real’ dynamic rough ordering.

We write © &~ y if x and y are in the same block of P, and write x % y otherwise.

Let

= {y:y <g, 7}, Vi) = {y: 2 <y, y},

{ye V(@) zity}, Vi u@) = {yeVy(2):z#y},
{yeVi(@)omy}, Vi) = {yeV(x):a=y},
= Vi@ UV o (2), Vis(x) = {y:a £, ¥,y L1, ).

Let VLJ;[x] = VLJg(x) U {z} and Vp [z] = Vi (z) U {z}. If 2 =~ y, then
Vit w(@) = Vit (y) and Vi () = Vi o(y). We let Vi (B;) = Vi ,(z) and
Vigx(Bi) = Vi, 4(z) for some (and hence for all) z € B;.

Given a digraph @, we denote by () the graph obtained from ) by omitting the
orientation of the arcs, i.e., an arc z7 of ) becomes an edge zy of Q.

A preference function of (Lg, P) is a mapping p which assigns to each vertex y €
V(G) a subset p(y) of Ng(y) NV .(y) such that the following holds:
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[P1]: For any index i, if y € Vi (B;), then p(y) N B; contains at most one edge of

Ly.

The set p(y) N B; (which could be empty) is called the y-preferred subset of B;. If
p(y) N B; does contain an edge uv of Ly, then we call the edge uv a y-affected edge of
B;.

For any vertex z, let p~'(z) = {y : # € p(y)}. Note that p~'(z) C Na(z)NV, »(z).
Let D(z) = (Ng(z) N Vi, o(2)) \ p~' (2).

Suppose (Lg,P) is a dynamic rough ordering of G, p is a preference function of
(Lo, P), and x is a vertex of G. Assume x € B;. A subset W of p~'(z) U {x} is
called z-matchable with respect to ((Lg, P),p) if W can be partitioned into three sets
W = X UY U Z such that the following hold:

. XCplz), Y Cplx)u{z}, ZCp ).
2. There is a matching M of G from X to Vi [2] U V;: (z) which saturates X.

3. There is a matching N of G from Y to V., (x) U VS () that saturates Y.

4. 7 is either empty or Z = {z} contains a single element. If Z = {z} then
Na(2) N Vi, ~(z) # 0.

Let m(zx, (Lo, P), p, G) be the size of the largest z-matchable set W with respect to
((Lo,P), p). Assume z € B;. Let

Y@, (Lo, P),p,G) = [Ng(z) N (V(2) UBy)|+ |D(x)| + m(x, (Lo, P), p, G),
V((Lo, P),p,G) = maxy(z, (Lo, P), p, G),
v(G) = min{vy((Lo,P), p,G) : (Lo, P) is a dynamic rough ordering of G'}
and p is a preference function of (Lg,P)}.

To see that y(G) is a refinement of r(G), it suffices to note that for a linear ordering
Ly of V| let P be the trivial partition in which each block contains a single vertex.
Then (Lg, P) is a dynamic rough ordering. Let p(z) = V! (z) N Ng(z) for all 2. Then
p is a preference function of (Lg, P). It follows from the definitions that for any x € V,
r(z, Ly, G) = v(z, (Lo, P), p, G). Therefore, for any graph G, we have v(G) < r(G).



3 Refined activation strategy

This section gives a strategy for Alice to play the marking game. We need a few
notation for the description of the strategy. We need to refer to a digraph L (a rough
ordering), which is the ‘real’ dynamic rough ordering obtained from L, by possibly
reversing the orientations of some arcs. So L is a living creature, and the letter L
always stands for the current digraph L. The strategy will give reversal rules that
describe how the arcs of L be reversed. Here we just note the following properties of
L, which follow easily from the reversal rules (which will be given later):

(1): Although L and Ly may have different arcs, we shall always have L = Ly. So
two vertices x,y are comparable in L if and only if they are comparable in L.

(2): Arcs of Ly between vertices of different blocks will not be reversed at any time.
In other words, the reversal of arcs take place inside the blocks only.

The sets V;' (z), V; (), etc. will be defined similarly as V;f (z), Vi (2), etc., except
that in place of Ly we use the digraph L.

Suppose X is a subset of V. A minimal element of X with respect to L is an
element z € X such that for any y € X, y £ . As L may contain directed cycles,
for an arbitrary subset X of V', X may not have a minimal element. In case minimal
element exists, it may not be unique. The following definition of min, X combines the
rough ordering and the preference function together in finding a (more or less minimal)
element min, X of X.

Definition 2 Suppose x is a vertex of V and X is a nonempty subset of V. Then
min, X is an element of X defined as follows:

Let i be the smallest index such that B;NX # (0. If XN B;Np(v) # 0, then min, X
is an arbitrary (but fized) minimal element of X N B; N p(v) with respect to L. Note
that by our definition of the preference function, p(v) N B; contains at most one arc
of L, and hence the minimal element exists. If X N B; N p(v) = 0, then min, X is an
arbitrary (but fized) element of X N B;.

Note that if each block B; is a singleton, then L, is a linear order and min, X is
simply the minimum element of X. Indeed, in this case, the refined activation strategy
(which we will describe soon) is the same as the activation strategy in [11].

Theorem 2 For any graph G, coly(G) < 1+ ~(G).

Proof. Let (Ly, P) be a dynamic rough ordering of G and let p be a preference function
of (Lg, P) such that v(G) = v((Lg, P), p, G). We shall give a strategy for Alice to play
the game that results a score at most 1 + v(G).
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In the play of the game, Alice will maintain a subset A of active vertices. We
say a vertex v is activated to mean that v is added to A. Once a vertex is activated,
it remains active afterwards. Let U be the set of unmarked vertices. To unify the
description we consider an equivalent version of the marking game in which Bob plays
first by marking a new vertex xy, which is an isolated vertex, and xy <y, y for all
yeV.

Initialization: A := 0, U := V(@) and L := Ly. If we view the digraph L as a set
of arcs, then by reversing the arc w0 of L, we mean let L := (L \ {ud}) U {vti}.

Suppose Bob has just marked a vertex b and now it is Alice’s turn. If all the vertices
are marked, then the game is over. Otherwise, let u be an arbitrary unmarked vertex.

o if Ng(b)NV; (b)) NU # 0 then x :=b, else z := u end if;

e whilex =borx ¢ A do
A:=AU{z};
w := min, Ng[z]| NV, [z] N U;
if there is an arc ww of L incident to w such that uw is an z-affected edge, then
reverse the arc uw end if;
= w end do;

e Mark z (i.e., U:=U \ {z}) end do;

This strategy is similar to the activation strategy in [11]. Starting from the vertex b
which has just been marked by Bob (or starting from any unmarked vertex, if Ng(b) N
ViH(b) N U = ), Alice starts to activate vertices. After Alice activated a vertex z,
she ‘jumps’ to the least unmarked 'forward’ neighbour w of x, which she will either
activate if it is not active yet, or mark if it is already active. The difference between
this strategy and the original activation strategy is that the ‘least element’ refers to
a dynamic rough ordering L. Moreover, this dynamic ordering L is ‘modified’ by the
preference of x.

If there is a jump from x to w, we say x made a contribution to w, and say w
received a contribution from z. If X,Y are subsets of V', then we say Y received a
contribution from X if a vertex y € Y received a contribution from a vertex x € X.
Observe that only unmarked vertex can receive contributions. If a vertex receives
the first contribution, it becomes active. After receiving the second contribution, it
becomes marked. So each vertex can receive at most 2 contributions. At the time a
vertex x is activated, it will make a contribution to a least unmarked vertex (according
the current order with modification through p) in V;" (), unless N¢ (x) N U is empty,
in which case x will make a contribution to itself, and be marked.
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We shall show that at any time any unmarked vertex is adjacent to at most v(G)
active vertices. Since every vertex marked by Bob immediately becomes active and
any vertex marked by Alice is already active, this will prove Theorem 2.

Assume zx is an unmarked vertex. Let X be the set of active neighbours of z, i.e.,
X = AN Ng(z). We shall determine the maximum possible value of | X].

Assume x € B;. We partition the set X into three parts.

X1 = Xn (VLJB(«T) U B;),
X, = Xnp(z),
Xy = X0 (Vi) \p @) = X1 D(@)

Then |X;| < [Ng(z) N (Vii(z) U B;)| and |X3] < |D(x)|. It remains to show that
|X2| < m(xa (L07P)7p7 G)

Assume z € X5, and assume that when z is activated, it made a contribution to a
vertex w(z). By our strategy w(z) = min,Ng[2] NV} [2] N U’, where L' is the digraph
at the time when z is activated, and U’ is the set of unmarked vertices at the time z
is activated.

Case 1 No arcs of the form 7 have ever been reversed till Bob’s last move.

As zZ € Ly, we have zZ € L' (as the arc zZ is not reversed). Hence x € Ng[z] N
V[l NnU'. So w(z) is either incomparable with x or w(z) <p z, i.e., w(z) € Vi [z] U
Vi (z) € ViE[z] UV () (the last inclusion holds because no arcs of the form 7z has
been reversed). Let X be the subset of X, consisting of those vertices z such that
z is the first vertex of X, making a contribution to w(z). Let Y be the subset of
X5 consisting of those vertices z such that z is the second vertex of X; making a
contribution to w(z). As each vertex can receive at most two contributions, X UY is
a partition of Xs.

Let M = {zw(z) : z € X}, and let N = {zw(z) : z € Y}. Then M is a matching
from X to Vi [z] U Vg, and N is a matching from Y to Vi ,[z] U V. Note that
the target sets of M and N are different. The reason that for z € Y, we cannot have
w(z) € Vi () is that each vertex w € Vi (z) can receive at most one contribution
from X,. Indeed, if w € V| ,(z), then after w receives the first contribution from
X, the arc zw will be reversed, and becomes the arc w#. The arc w# need to be
reversed before the vertex w can receive the second contribution from X,. But by
our assumption, no such arcs have ever been reversed. If x has received at most one
contribution, then x is not matched to any vertex of Y, hence N is a matching from
Y to Vi 4(x) UV, Therefore X, is z-matchable with respect to ((Lo, P), p), which
implies that |X,| < m(z, (Lo, P),p,G). Assume x received two contributions from
X, (note that if this happens, then this is the moment just before Alice going to
mark z), and let z* € Y be the vertex from which x receives the second contribution.

8



When z receives the first contribution, it made a contribution to w(z) € Vi (). Let
Y= (Y \{z*})U{z}, let N = (N\{z*z})U{zw(z)}. Then M, N’ shows that X UY”
is z-matchable with respect to ((Lo,P),p). Hence |X,| = |X|+ V| = |X| + V'] <
m(zx, (Lo, P), p, G).

Case 2 Some arcs of the form 7z have been reversed before Bob’s last move.

By our strategy, an arc of the form 7z is reversed only if z has received a contri-
bution. Moreover, when x receives one contribution, at most one such arc is reversed
(this is why we require that the preference function p have property [P1]). Since z
is unmarked yet, = has received at most one contribution before Bob’s last move. So
there is a unique arc of the form 7z, say y*z, has been reversed and becomes zy*.
There are two possibilities: (1) y* € V7 (x). In this case y* may receive one contri-

—

bution from X,. Note that after y* receives one contribution from X5, the arc xy" is
reversed, and becomes y*z again. So y* cannot receive the second contribution from
X, (as x is unmarked). (2) y* € V7 (). In this case, the arc between z and y*

in Ly is xy". After y* receives one contribution from X5, the arc is reversed to yT%
Then after x receives a contribution from Xs, the arc is reversed again and becomes
xy". Now y* can receive the second contribution. In (1), let z* be the vertex of X,
which made a contribution to y*, if such a vertex exists. In (2), let 2* be the second
vertex of X, making a contribution to y*, if such a vertex exists. If the vertex z* as
above exists, then let Z = {2*}, otherwise let Z = ). Let X,Y be the partition of
Xy \ {#*} as discussed in Case 1. Then the same argument as in Case 1 shows that
| Xo| = [X|+ Y|+ [Z] < m(x, (Lo, P), p, G). i

4 Estimation of v(G)

To find a good upper bound for v(G) is nontrivial. In this section, we introduce the
concept of a bound graph for (G, Ly, P, p), which will be used to derive an upper bound
for v(G).

Suppose (Lo, P) is a dynamic rough ordering of G and p is a preference function
of (Lo, P). Let H be a graph with vertex set V. We say H is a bound graph for
(G, Ly, P, p) if the following hold:

[B1 ] G is a subgraph of H.
[B2 | If z ~ y and there is a vertex z € p~'(x) N p~'(y), then z ~p y.

[B3 ] If © € Vi, 4(y) and there is a vertex z € p~'(x) such that y ~¢g 2, then = ~y y.
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Suppose H is a bound graph for (G, Ly, P, p). Suppose x € B;. Let

Alxr) = {ye Vi o(B) UV () 1z~ y},
B(x) = {ye Vi J(x):2~gy}
Clr) = {yeVy@):z~ry}

bet 0, if B(x) = C(z) = 0
(0, if B(z)=C(z) =
m(r) = { 1, otherwise '

Recall that D(x) = Ng(x) NVy, () \ p~'(z). Let

o (r) = 3|A(z)| + 2[B(z)| + |C(2)] + |D(z)] + 7(2).

Lemma 1 Suppose (Lg, P) is a dynamic rough ordering of G, p is a preference function
of (Lo, P), and H is a bound graph for (G, Ly, P, p). Then for any vertex x € V,

v(@, (Lo, P), p, G) < u(w) + 1.

Proof. By definition, |[Ng(2)N(VZ (2)UB;)| < |A(z)|+|B(x)|+|C(z)|. So it suffices to
show that m(z, (Lo, P), p, G) < 2|A(x)| + |B(x)| 4+ 7(x) + 1. Let W be an z-matchable
subset of Ng(z) NVg, (x) with respect to ((Lo, P), p) with [W| = m(x, (Lo, P), p, G).
Let W = X UY U Z be the corresponding partition of W.

By definition, there is a matching M from X to V' [z] U V[S(z) that saturates X.
Assume that M saturates X' C V' [z]UV/S. By definition of a bound graph, we know
that X'\ {z} C Ng(z). Therefore X'\ {z} C A(z) U B(z). Hence |X| = |X'| <
|A(x)| + |B(z)| + 1.

There is a matching N from Y to Vi () UV;: (x) that saturates Y. Assume that
N saturates Y’ C Vi (x) U Vg Again, by definition of a bound graph, we know
that Y’ C Ng(z). Therefore Y' C A(z). It follows easily from the definition that
|Z| < 7(x). Therefore

W =|X|+ Y|+ |Z] <2|A(x)| + |B(z)| + 7(x) + 1.

5 Triangulations of the plane

We shall use Theorem 2 and Lemma 1 to prove Theorem 1. Thus we need to find,
for any planar graph G, a dynamic rough ordering (Lo, P), a preference function p of
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(Lo, P), and a bound H for (G, Ly, P, p), such that for each vertex x € V', ¢y (z) < 15.
For this purpose, we need a lemma about the structure of plane triangulations.

Suppose R is a plane triangulation and V(R) is partitioned into two sets C' U U,
where C' (could be an empty) is an independent set of R, and each vertex of C' has
degree 4 or 5. A candidate for (R,C,U) is a triple (B, p, @) such that B is a subset of
U, @ is a digraph with vertex set B, and p is a mapping which assigns to each vertex
y € C a subset p(y) of B. Moreover, the following hold:

[C1 ] If {vy, v9,v3} C B is a face of R, then {vy, vy, v3} contains at most one arc of Q.
[C2 ]| For any y € C, |p(y) N B| < 2.
[C3 ] If z,2" € p(y) for some y € C, then x ~p '

[C4 ] If there is a y € C such that = € p(y) and 2’ € Ng(y) N (U \ B), then z ~p 2.

Suppose (B, p, Q) is a candidate for (R,C,U) and = € B. Let
A(z) = (Nr(x) NU) \ No(x), B(r) = Ng (2),C(x) = Ng (2).

Let D(z) = (Ngr(z) N C)\ p~!(x).
Let

T(x):{o, if C(z) = B(z) =0

1, otherwise.

Let
¢(x) = 3|A(z)| + 2|B(z)| + |C(z)| + |D(2)] + 7(x).

We call the candidate (B, p, Q) a valid candidate if the following holds:
[C5] For all z € B, ¢(z) < 15.

Theorem 3 Suppose R is a plane triangulation, C U U is a partition of V(R), C is
an independent set of R and each vertex of C' has degree 4 or 5. If U # (), then R has
a valid candidate.

The definition of a valid candidate is a little bit technical. To have a rough idea
of this concept before we get to the proof, we consider the special case that C' = ().
Then we may simply choose a vertex x with dg(x) < 5 and let S = {z}. We do not
need to worry about p and @, as C' = () and ) consists of a single vertex. In this case,
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A(z) = Ng(x), B(x) = C(z) = D(z) = 0 and 7(z) = 0, hence ¢(z) = 3dgr(z) < 15.
So in some sense, Theorem 3 is a generalization of the statement that each plane
triangulation has a vertex of degree at most 5. For those readers who are familiar with
the proof in [11], the argument in [11] actually shows that, if ¢(z) < 15 is replaced by
¢(z) < 16, then the corresponding “valid candidate” (B, p, Q) exists with B being a
single element set and p(y) = 0 for all y € C' (so one does not need to introduce the
digraph @ and the preference function p). The main effort of this paper is to reduce
¢(x) < 16 to ¢(x) < 15, which then reduces the upper bound for coly(P) from 18 to
17.

The remaining of this section is devoted to the proof of Theorem 3. Assume the
lemma is not true, and (R, C,U) is a counterexample. First we derive some properties
of (R,C,U). Then we shall derive a contradiction by using the discharging method.

For each vertex z € V(R), let p(z) = |[Ngr(z)NU| and ¢(z) = |[Ng(v)NC|. Since R is
a triangulation, and C'is an independent set, it follows that for any = € U, p(z) > ¢(x);
for any vertex x € C, g(x) = 0. Let I" be the graph with vertex set C' in which z ~r y
if Ng(x) N Ng(y) contains two adjacent vertices of U. For each vertex v € U, let T, be
the subgraph of I induced by Ng(v) NC. The following lemma follows easily from the
definition.

Lemma 2 For each vertex v € U, T', is an induced subgraph of a cycle. If Ty, is a
cycle, then p(v) = q(v). Otherwise q(v) < p(v) — 1. If T, has a component consisting
of at most p(v) — 2 vertices, then q(v) < p(v) — 2.

Easy calculation shows that if u € U, and 3p(u) + q(u) < 15, then (B, p,Q) is a
valid candidate for (R, C,U), where B = {v}, @ is the trivial digraph containing only
one vertex, and p(y) = 0 for all y € C. As (R,C,U) has no valid candidate, we have
the following lemma.

Lemma 3 For every u € U', p(u) > 4. Moreover, if p(u) = 4, then q(u) = 4; if
p(u) =5, then q(u) > 1.

Definition 3 Suppose x € U and z € C and v ~r z. We say x and z are minor
neighbours of each other if p(x) =5 and q(z) = 1.

Definition 4 Suppose x € U, z € C, x ~g z and p(z) = 4. Let the other three
netghbours of z be uy, us,u3. We say x and z are major neighbours of each other if
one of the following holds:

1. p(x) > 6.
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2. p(x) =5, 3 <q(x) <5 and two of the u;’s are minor neighbours of z.

3. p(xr) =5, 4 < q(x) <5, one of the u;’s, say uy, is a minor neighbour of z and
moreover, p(us),p(us) <5 and q(us), q(uz) < q(z).

Lemma 4 Suppose z € C, p(z) = 4. If z has two minor neighbours, then z has two
major neighbours.

Proof. Assume y;,y, are two minor neighbours of 2. Let u;,us be the other two
neighbours of z. Assume to the contrary that u; is not a major neighbour of z. Then
p(u1) < 5. We shall derive a contradiction by finding a valid candidate. Depending
on whether y; and y, are adjacent or not, we have two cases as depicted in Figure 1.
In any case, it is easy to verify that dr, (2) < 1. By Lemma 2, q(u1) < p(u1) — 1.
By Lemma 3 and the definition of major neighbour, we conclude that p(u;) = 5 and
q(ur) < 2.

bl Ul Y D uq
& D & D
us y2 y2 u2
(@ (b)

Figure 1: A vertex z € C' with two minor neighbours

(In all the figures of this paper, a filled circle is a vertex of C, and an unfilled circle
is a vertex of U.)

First we consider the case that y; % ys2, as depicted in Figure 1 (a). Let B =
{u1,y1,92}, let @ be the digraph which consists of arcs 7uf, @91, and let p(z) = {y2}
and p(y) = 0 for y € C'\ {z}. The digraph @ and the mapping p are as depicted in
Figure 2 (a). Note that z is not a vertex of (). We put a dotted line from z to yo to
indicate that p(z) = {y2}. We claim that (B, p, Q) is a valid candidate.

[C1]: We need to show that no two arcs of () is contained in a facial triangle of R.
Assume jjput, ty] is contained in a facial triangle. Then Ng(ui) N U = {y1,y2}, i.e.,
p(u1) = 2, in contrary to Lemma 3.

For [C2], [C3], [C4], it suffices to consider z € C and its neighbours (as p(y) = 0
for y € C'\ {z}). The verification is straightforward (by referring to Figure 2 (a)) and
is left to the readers. The following table verifies [C5] for each vertex v of B.
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v | 3[A(v)| | 2[B(v)| | [C)] | |ID()] | T(v) | (v)
| 12 0 1 1 T | 15
ya | 12 2 0 0 1 | 15
U 9 2 1 2 1 | 15

The numbers in the table are upper bounds for the corresponding parameter. For
example, the number 1 at row u; and column |D(v)| means that |D(u)| < 1.

We verify this table for u; and y. We have |A(uy)| = p(u1) —|Ng(u1)| =5—-2 =3,
s0 3|A(u1)| = 9. As NJ(u1) = B(u1) = {31}, we have 2|B(u1)| = 2. As Ng(u1) =
C(uy) = {yo2}, we have |C'(u1)| = 1. By definition, as p='(uy) = 0, |D(uy)| = q(u;) < 2.
As C(uy) # 0 we have 7(u;) = 1. Therefore ¢(u;) < 9+2+1+2+1 = 15. Now
we consider y,. Similarly [A(y2)| = p(y2) — |Ng(y2)| = 5 — 1 = 4. From Figure 2
(a), we see that B(yz) = Ng(y2) = {u1} and C(y2) = Ng(y2) = 0. So 2|B(y2)| = 2
and |C(y2)| = 0. Since p~'(y2) = {2z} = Ngr(y2) N C, we have D(yz) = . Therefore
|D(y2)| = 0. As B(y2) # 0, we have 7(y2) = 1. Therefore ¢(ys) = 12+2+0+0+1 = 15.

@ (b)

Figure 2: Digraphs in the proof of Lemma 4

Next assume that y; and y, are not adjacent, as depicted in Figure 1 (b). Let B =
{u1,y1,92}, let @ be the digraph which consists of arcs 71uf, 7175, and let p(z) = {u;}
and p(y) = 0 for y € C'\ {z}. The digraph @ and the mapping p are as depicted in
Figure 2 (b). We claim that (B, p, @) is a valid candidate.

[C1] [C2], [C3], [C4] are easily verified as in the previous case. The following table
verifies [C5].

v | 3[A(v)| | 2[B(v)| | [C)] | |ID()] | T(v) | (v)
" 9 4 0 1 T | 15
ya | 12 0 1 1 1 | 15
u | 12 0 1 1 1 | 15

Lemma 5 Suppose z € C, p(z) = 4. If z has one minor neighbour, then z has at least
one major neighbour.

Proof. Assume z has one minor neighbour u;. Let the other neighbour of z be
Usg, U3, Uy SO that (uy, us, us, uy) is a 4-cycle in R. By definition, it suffices to show that
one of the neighbours u; of z has either p(u;) > 6 or p(u;) =5 and ¢(u;) > 4.
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Assume to the contrary that for each i € {2,3,4}, p(u;) < 5, and if p(u;) =
5 then ¢(u;)) < 3. Let B = {uy,ug,uz,us}, let @ be the digraph with arcs
ULh, Uiy, Uglh, Usty. Let p(z) = {ug,us} and p(y) = 0 for y € C \ {z}. The di-
graph () and the mapping p are as depicted in Figure 3.

Figure 3: Digraph in the proof of Lemma 5

We claim that (B, p, @) is a valid candidate. Similarly, [C1]-[C4] are easily verified
by referring to Figure 3. The following table verifyies [C5].

v | 3lAM@)] | 2[B@)| | ICW)] | [D@)] | 7(v) | ¢(v)
u | 9 4 0 1 1 | 15
uy |9 2 1 2 1 | 15
us |9 2 1 2 1 | 15
u | 9 0 2 3 1 | 15

Lemma 6 Suppose z € C and p(z) = 5. Then z has at most 3 minor neighbours.

Proof. Assume to the contrary that z has four minor neighbours. Then these four
minor neighbours form a path, say P = (uy, us, us, uy), of R. Let B = {uy, us, ug}, let
Q be the digraph with arcs wuf, uzus. Let p(y) = 0 for y € C. We claim that (B, p, Q)
is a valid candidate. Similarly, we just list a table to verify [C5].

v | 3lAM)] | 2[B@)| | IC@)] | [D@)] | 7(v) | ¢(v)
up | 12 0 1 1 1 | 15
us | 9 4 0 1 1 | 15
us | 12 0 1 1 1 | 15

Lemma 7 Ifx € U and p(z) = q(x) = 5, then x has at most 3 major neighbours.

Proof. Assume z € U and p(z) = ¢(x) = 5. Assume to the contrary that x has 4
major neighbours. Then these four major neighbours form a path of length 3 in T';,
say P = (21, 29, 23, 24). Since z; is a major neighbour of x, by definition, p(z;) = 4 and
z; has a minor neighbour. Let the neighbours of x and z;’s be as depicted in Figure 4.

As g(u;) > 2, so for i = 1,2, 3,4, w; is the minor neighbour of z;. Since ¢(w;) = 1
fori =1,2,3,4, for i = 2,3,4, z; 1 and z; have degree 1 in T',,. So {z; 1, 2;} form a
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Figure 4: A vertex x € U with four major neighbours

component of I',,. By Lemma 2, ¢(u;) < p(u;) —2 = 3 for i = 2,3,4. By Definition 4,
p(u;)) < 5fori=1,2,---,5. As q(u;) < 3 fori = 2,3,4, by Lemma 3, p(u;) = 5 for
i =234

Let B = {wp,us,ws,u3,ws,x}, let ¢ be the digraph with arcs

Up WY, Wallh, Wallh, Ush, Uk, Ust.  Let p(z1) = p(z2) = p(zs) = {«} and p(y) = 0
for y € C'\ {21, 29, 23}. The digraph @ and the mapping p are as depicted in Figure
5. We claim that (B, p, Q) is a valid candidate. Similarly, we just list a table to verify

[C5]

v | 3[A®)] | 21B@)] | [C(v)] | [D(v)] | 7(v) | (v)

wy | 12 0 1 1 1 | 15

uy | 6 4 1 3 1 | 15

wy |9 4 0 1 1 | 15 |
us | 6 4 1 3 1 | 15

wy | 12 0 1 1 1 | 15

z| 9 0 2 2 1 | 14

Lemma 8 Ifx € U, p(x) =5 and q(z) = 4, then x has at most 2 major neighbours.

Proof. Assume z € U and p(z) =5 and ¢(z) = 4. Assume to the contrary that = has
3 major neighbours. Then two of the major neighbours, say 21, 29, are adjacent in I';,
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Ul

Figure 6: A vertex x € U with major neighbours z, 2o adjacent in I,

as depicted in Figure 6. By definition, each of 21, 25 has at least one minor neighbour.
Since q(ug) > 2, S0 uy is not a minor neighbour of z; or z,.

There are three cases to be discussed.

Case 1: w; is a minor neighbour of z; and w, is a minor neighbour of z,. By Definition
4, p(u;) <5 and g(u;) < q(x) =4 fori=1,2,3.

Let B = {uj,wy,us,wo,us,x}, let @ be the digraphs with arcs
wluhw1U27m7w2U27w2U371W3>7m- Let p(zl) = {x7u1}7 p(ZQ) = {.I',Ug} and

p(y) = 0 for y € C'\ {21, 22}. The digraph @ and the mapping p are as depicted in
Figure 7 (a). We claim that (B, p, Q) is a valid candidate. [C1]-[C4] can be verified

Figure 7: Digraph in the proof of Lemma 8

—~

easily, by referring to Figure 7 (a). The following table verifies [C5].

v | 3[AQ)] | 21B)] | [C(v)] | [D(v)] | T(v) | $(v)
ui | 9 0 2 3 S
wi | 9 4 0 1 1| 15
us | 6 0 3 4 1 | 14
wy | 9 4 0 1 1| 15
us |9 0 2 3 1| 15
v | 6 6 0 2 1| 15
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Case 2: u; is a minor neighbour of z; and u3 is a minor neighbour of z,. By definition,
for i = 1,2, p(w;) <5 and q(w;) < 4, and p(ug) < 5, q(uz) < 4.

Let B = {uj,wy,us,we,us,x}, let @ be the digraphs with arcs
ULWY, UpWi, Urd, UaWh, UzWh, Usd, Uzd. Let p(z1) = {wi,us}, p(z2) = {ws,uz} and
p(y) = 0 for y € C'\ {21, 22}. The digraph @ and the mapping p are as depicted in
Figure 7 (b).

We claim that (B, p,Q) is a valid candidate. [C1]-[C4] can be verified easily, by
referring to Figure 7 (b). The following table verifies [C5].

v | 3[A@)] | 21B@)] | [C(v)] | [D(v)] | 7(v) | $(v)
ui | 9 1 0 1 1| 15
wi| 9 0 2 3 1 | 15
us | 6 6 0 2 1 | 15
wy | 9 0 2 3 1| 15
us |9 4 0 1 1| 15
v | 6 0 3 4 1 | 14

Case 3: u; is a minor neighbour of z; and ws is a minor neighbour of zy. (The case
that w; is a minor neighbour of z; and w3 is a minor neighbour of z; is symmetric.)
By Definition 4, p(uz), p(us), p(w:i) <5, q(uz), q(uz), g(wi) < 4.

Let B = {uj,wy,us,we,us,x}, let @ be the digraphs with arcs
WWT, UpWY, Unk, Wallh, Wah, TUS, Upd.  Let p(z1) = {wi,uz}, p(z2) = {us} and

p(y) = 0 for y € C'\ {21, 22}. The digraph @ and the mapping p are as depicted in
Figure 7 (c).

We claim that (B, p, Q) is a valid candidate. [C1]-[C4] can be verified easily, by
referring to Figure 7 (b). The following table verifies [C5].

v | 3[AQ)] | 21B)] | [C(v)] | [D(v)] | T(v) | 4(v)
ui | 9 1 0 1 1| 15
wi| 9 0 2 3 1 | 15
us | 6 4 1 3 1| 15 ]
wy | 9 4 0 1 1| 15
us |9 0 2 3 1| 15
x| 6 2 2 4 1| 15

Lemma 9 Ifx € U, p(x) =5 and q(z) = 3, then x has at most 1 major neighbour.

Proof. Assume to the contrary that z has two major neighbours, 2; and 25. By
definition, each z; has p(z;) = 4 and has two minor neighbours. If z; and z, are
adjacent in I';, then the configuration is as depicted in Figure 6. Then wuy, w; are minor
neighbours of z; and wy, ug are minor neighbours of zy. Let B = {wy, uq, x, u3, ws}, let
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Q be the digraphs with arcs ww?, i, wzws, iU32, and let p(y) = () for all y € C. It is
easy to verify that (B, p, @) is a valid candidate.

Assume that z; and zy are not adjacent in I',. Depending on the position of the
other neighbour z3 of x in C'; we have two cases, as depicted in Figure 8.

@ (b)

Figure 8: A vertex x € U with major neighbours 21, 25 not adjacent in T,

Case 1 This case is as depicted in Figure 8 (a). As q(ug) > 2 and g(u3) > 2, we
conclude that uq, w; are minor neighbours of z; and w,, u4 are minor neighbours of z;.
Let B = {uy, wy,wy, ug,z}, let Q be the digraph with arcs uyw], w2, uqws, usd. Let
p(y) = 0 for y € C. The digraph @ and the mapping p are as depicted in Figure 9 (a).
We claim that (B, p, @) is a valid candidate. Below is a table to verify [C5].

) )
W\/)lﬁ J
ug ug

@ (b)

Figure 9: Digraph in the proof of Lemma 9

v | 3[A()] | 21B(w)] | [C(v)] | [D(v)] | 7(v) | (v)
w | 12 0 1 1 1 |15
u | 9 4 0 1 1 | 15
wy | 12 0 1 1 1 | 15
u | 9 4 0 1 1 | 15
z| 9 0 2 3 1 | 15
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Case 2 This case is as depicted in Figure 8 (b). As ¢q(us4) > 2, we conclude that
us, wo are minor neighbours of z;. If wy is a minor neighbour of z;, then let B =
{uy,us, ws}, let @ be the digraph with arcs wsus, usws. Let p(y) = () for y € C.
Then (B, p,Q) is a valid candidate. Otherwise, wy,u; are minor neighbours of z;.
Let B = {uy, w, us, wy, 7}, let @ be the digraph with arcs uywy, uf, Uzws, ust. Let
p(y) = 0 for y € C. The digraph @ and the mapping p are as depicted in Figure 9 (b).
Then (B, p, Q) is a valid candidate. The verifications are similar as above and omitted.

Proof of Theorem 3 Charge each vertex v € V(R) with a charge ¢y(v) = dg(v). We
redistribute the charges according to the following rules:

Suppose x € U and z € C and x ~g z. If x,z are major neighbours of each other,
then move a charge of 1 from x to z. If x,z are neither magjor neighbours nor minor
neighbours of each other, then move a charge of 1/2 from x to z. If x is a minor
neighbour of z, then no charge is moved from x to z.

Denote by c¢* the new charge assignment. Since Y cy () " (7) = Ypev(r) co(T) =
6|V (R)| — 12, there is a vertex x with ¢*(x) < 6. We shall derive a contradiction by
showing that ¢*(z) > 6 for each z € V(R).

Suppose x € U. If p(z) > 6, then ¢*(x) > p(z). Assume p(z) = 5. By Lemma
3, ¢(x) > 1. If ¢(x) = 5, then ¢y(z) = 10. By Lemma 7, = has at most three major
neighbour, each of which receives a charge of 1 from z, and every other neighbour of
x in C receives a charge of 1/2 from x. So the total charge sent out from z is at most
4, and hence ¢*(z) > 6. If ¢(x) = 4, then ¢y(z) = 9. By Lemma 8, x has at most
two major neighbour, each of which receives a charge of 1 from x, and every other
neighbour of x in C' receives a charge of 1/2 from . So the total charge sent out from
x is at most 3, and hence ¢*(z) > 6. If ¢(z) = 3, then ¢y(z) = 8. By Lemma 9, =
has at most 1 major neighbour which receives a charge of 1 from z, and every other
neighbour of x in C' receives a charge of 1/2 from z. So the total charge sent out from
x is at most 2, and hence ¢*(z) > 6. If ¢(x) = 2, then by definition,  has no major
neighbour, so each neighbour of  in C' receives a charge of 1/2 from z. So ¢*(x) = 6.
If g(z) = 1, then x has only one minor neighbour in C' which receives no charge from
x. So ¢*(z) = ¢o(x) = 6.

Assume p(z) = 4. Then by Lemma 3, ¢(z) = 4 and hence ¢y(z) = 8. Each
neighbour of x in C' receives a charge of 1/2 from z. So the total charge sent out from
x is 2. Hence ¢*(z) = 6.

Suppose = € C. If p(x) = 4, then ¢y(z) = 4. By Lemmas 4 and 5, either = has
no minor neighbours, or has one minor neighbour and at least one major neighbour,
or two minor neighbour and two major neighbour. If  has no minor neighbour, then
it receives at least 1/2 from each of its neighbours in U and thus has ¢*(z) = 6. If
has 1 minor neighbour and at least 1 major neighbour, then it receives a charge of 1
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from the major neighbour and receives a charge of at least 1/2 from each of the two
other neighbours (which are neither major nor minor neighbours). Hence ¢*(z) > 6.
If x has two major neighbours, then it receives a charge of 1 from each of them and
hence has ¢*(x) > 6. If p(z) = 5, then ¢y(x) = 5. By Lemma 6, 2 has at most 3 minor
neighbours. So x has at least two neighbours which are not minor, and each of them
send 1/2 charge to x. Therefore ¢*(z) > 6.

This completes the proof of Theorem 3. i

6 Proof of Theorem 1

This Section proves Theorem 1. It suffices to prove Theorem 1 for plane triangulations.

Suppose G is a plane triangulation. We shall construct a dynamic rough ordering
(Lo, P), a preference function p of (Lg, P), and a bound graph H for (G, Ly, P, p) as
follows.

The blocks of P are constructed one by one. First we construct B,,, then B,,_1, and
so on. At the time we construct B;, we shall construct simultaneously the restriction
of the digraph Ly to B;, the intersection p(y) N B; for each y € V; ,(B;), and the edges
of H\ (B U Bp,_1 U---U B;;1) incident to vertices of B;. Initially, B,, consists of a
single vertex of degree at most 5 in G. The edges of H incident to the vertex of B,,
are exactly the edges of GG incident to it.

Suppose we have constructed By, By 1,--+, Bip1. Let " = UJL, | B;, and let
U=V\C". Now for each z € C" and y € U, y <r, . By our construction of
B,,, By, 1, -+, Bi;1, each vertex of C' is adjacent to at most 5 vertices of U. First we
delete all edges of G joining vertices of C'. If z € C" is adjacent to at most three vertices
of U, then delete z, and add edges between each pair of non-adjacent neighbours of z
in C. Let C =C"\ {2 : |Ng(2) NU| < 3}. If 2 is adjacent to 4 or 5 vertices of G, then
add edges between each pair of non-adjacent ‘consecutive’ neighbours of z in U. Here
consecutive refers to the particular plane embedding of G \ E(C"). Now the resulting
graph is a plane triangulation R. Obviously C'U U is a partition of V(R), and C is an
independent set of R.

By Theorem 3, (R,C,U) has a valid candidate (B, p',Q). Let B; = B. Let the
restriction of Ly to B; be Q. For each vertex y € C', if y € C"\ C, then let p(y) N B; =
Ne(y) N B;; if y € C, then let p(y) N B; = p'(y). Let the edges of H \ (B, U B, 1 U
-+-U Byy1) incident to vertices of B; be exactly the edges of R\ C incident to vertices
of B;. For each x € B; and y € U \ B;, let y <, . Note that by definition of valid
candidate, ¢(x) < 15 for each x € B;, which implies that x is adjacent to at most 5
vertices of U \ B;.
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We claim that this process constructs a dynamic rough ordering (Lg, P), a prefer-
ence function p of (Lgy, P), and a bound graph H for (G, Lo, P, p), such that for each
vertex © € V, ¢g(r) < 15. By Lemma 1, this implies that 7(G) < 16, and hence
colg (G) < 17.

It follows from the definition that (Lo, P) is a dynamic rough ordering of G. To
prove that p is a preference function of (Lg, P), we need to show that for any index i,
if y € Vi, »(Bi), then B; N p(y) contains at most one edge of Ly.

Let C',C,U,B and R be the sets and graph defined as above at the time B; is
constructed. Then y € C". If y € C"\ C then |p(y)| = |Ne(y) N B| < |[Nr(y) NU| <
3. If [INr(y) N U| < 2, then of course p(y) N B contains at most one arc of Ly. If
|INr(y) NU| = 3, then Ng(y) NU is a facial triangle of R. By [C1], the facial triangle
contains at most one arc of (). Hence B; N p(y) contains at most one arc of L.

Assume y € C. Then it follows from [C2] that |B;Np(y)| < 2, and B;Np(y) contains
at most one arc of Ly. So p is a preference function of (Lg, P).

Now we prove that H is a bound graph for (G, Ly, P,p). It is obvious that G
is a subgraph of H, i.e., [B1] is satisfied. Assume z,y € B; and there is a vertex
z € p~'(z) N p~'(y) such that x ~g z and y ~¢ 2. Let C',C,U, B and R be the sets
and graph defined as above at the time B; is constructed. Then z € C'. If z € C'\ C,
then by definition of R, we have = ~p y, hence x ~p y. Assume z € C. Since
z,y € p(z), By [C3], we have x ~p y and hence z ~y y, i.e., [B2] is satisfied. Assume
x € By and y € V| (B;) and there is a vertex z € p~'(z) such that y ~¢ 2. If
z € C"\ C, then by definition of R, we have x ~g y and hence x ~p y. If 2 € C, then
by [C4], we have © ~p y and hence x ~p y. Thus [B3] is satisfied, and hence H is
indeed a bound graph for (G, Ly, P, p).

It remains to show that for each z, we have ¢y (z) < 15. This follows from the
construction, because if x € B; and B; = B, where (B, Q, p) is the corresponding valid
candidate, then ¢y (z) = ¢(x) < 15. i
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