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Abstract

For a real number x, let ||x|| denote the distance from x to the
nearest integer. Suppose x1 < x2 < x3 are positive integers with
gcd(x1, x2, x3) = 1. This paper proves the following: if (x1, x2, x3) 6=
(1, 2, 3s) for an integer s and x3 6= x1+x2, or x3 = x1+x2 but x1 ≡ x2

(mod 3), then there is a real number t such that ||txi|| ≥ 1/3 (for
i = 1, 2, 3). If (x1, x2, x3) = (1, 2, 3s) or x3 = x1 + x2 and x1 6≡ x2

(mod 3), then no such t exists, i.e., for any t, there is an i such that
||txi|| < 1/3. This result is connected to problems of different fields of
mathematics. Firstly, it is a strengthening of the k = 3 case of Wills’
conjecture, which says that for any k positive integers x1, x2, · · · , xk,
there is a real number t such that ||txi|| ≥ 1

k+1 . Secondly, it is ap-
plied to graph theory in determining the chromatic number of certain
distance graphs, which confirms a conjecture proposed independently
by Chen, Chang and Huang [J. Graph Theory, 25(1997)287-294] and
Voigt [Ars Combinatoria, to appear]. Thirdly, it has an application to
the so called view obstruction problem in the 3 dimensional Euclidean
space. Fourthly, it has an application to the study of flows in graphs
and matroids.
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1 Introduction

For any real number x, let ||x|| denote the distance from x to the nearest
integer. For an k-tuple ~x = (x1, x2, · · · , xk) of positive integers, let

κ(~x) = supt∈Rmink
i=1||txi||.

Note that the order of the integers in the k-tuple has no effect on the value
of κ(~x). So we assume that x1 < x2 < · · · < xk. It is also easy to see that
we may assume that gcd(x1, x2, · · · , xk) = 1. It was conjectured by Wills
[46] that for any k-tuple ~x = (x1, x2, · · · , xk) of positive integers, κ(~x) ≥ 1

k+1
.

(In the original conjecture, xi could be any nonzero real number, but Wills
showed that it is equivalent to the case that all the xi’s are positive integers.)
This purely number theoretic conjecture turns out to be related to many
other problems. Cusick [12, 13, 14, 15] studied this conjecture, motivated by
a beautiful application in k dimensional geometry-view obstructions; Bienia
et al [2] studied this conjecture, motivated by another beautiful application
in graphs and matroids-the existence of flows; this author encountered the
problem of evaluating κ(~x) when studying the chromatic numbers of distance
graphs [16, 50, 51, 52, 53]. It is interesting to see that different people moti-
vated by completely different problems found them interested in a common
problem in number theory.

Wills’ conjecture has been studied by many authors in the past thirty
years [3, 2, 7, 12, 13, 14, 15, 45, 46, 47, 48, 49]. However, it still remains
open for k ≥ 5. For k = 1, it is trivial; the case k = 2 was proved in [45];
for k = 3, it is already difficult and quite a few different proofs have been
published [3, 2, 12, 13, 14]; for k = 4, the first proof, given by Cusick and
Pomerance [15], is a complicated argument involving exponential sums and
electronic case checking, but recently, Bienia et al [2] gave an elementary
selfcontained proof of this case.

As observed by Wills [45] (and others), the lower bound 1
k+1

in Wills’

conjecture is sharp. For example, if ~x = (1, 2, · · · , k), then κ(~x) = 1
k+1

.
However, it seems that very few k-tuples of integers attain this lower bound.
For example, for k = 2, ~x = (1, 2) is the only pair for which κ(~x) = 1

3
, and for

k = 3, ~x = (1, 2, 3) is the only triple for which κ(~x) = 1
4

[12, 7]. For pairs of
integers ~x = (x1, x2), the value of κ(~x) is determined in [2, 4, 5, 37]. (In [5],
the authors were interested in determining the fractional chromatic number
and circular chromatic number of some distance graphs. The determination
of κ(~x) for ~x = (x1, x2), which was not mentioned explicitly, is just a step
in the proof that leads to the solution of another problem. In [37], the
authors were interested in the asymptotic efficiency of T -colorings. Again
the determination of κ(~x) for ~x = (x1, x2) was not mentioned explicitly, and
it is just a step in the proof that leads to the solution of their problem. In [4],
the authors were interested in determining the density of some special subsets
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of the set of integers, which they called the D-sets. The problem of evaluating
κ(~x) was also not mentioned explictly. So these people were motivated by
completely different problems, and end up at solving the same problem.) For
k ≥ 3, besides the attempts for proving Wills conjecture, it seems that no
efforts have been made to evaluate κ(~x). Since Wills conjecture is still open
for k ≥ 5, and is already difficult for k = 3 and k = 4, it is natural that it
is difficult to determine or estimate the value of κ(~x) for ~x = (x1, x2, · · · , xk)
(k ≥ 3). On the other hand, such efforts may help us understand more about
the function κ(~x), and shed new lights on Wills’ conjecture.

In this paper we estimate the value of κ(~x) for triples ~x = (a, b, c) of
integers. The following theorem is proved:

Theorem 1.1 Suppose ~x = (a, b, c) is a triple of positive integers with a <
b < c and gcd(a, b, c) = 1. Then 1

4
≤ κ(~x) < 1

3
if either ~x = (1, 2, 3s) for

an integer s or c = a + b and a 6≡ b (mod 3). Otherwise 1
3
≤ κ(~x) ≤ 1

2
.

Moreover κ(~x) = 1
2

if and only if all the three integers are odd.

Theorem 1.1 has many connections to problems of different fields of math-
ematics. Firstly, it is a strengthening of the k = 3 case of Wills’ conjecture,
and provides us more information about the function κ(~x). Such informa-
tion might be helpful for approaching Wills’s conjecture for k ≥ 5. Secondly,
it has a nice application to the study of the chromatic number of distance
graphs, which settles in affirmative a conjecture that was proposed indepen-
dently by Chen, Chang and Huang [8] and Voigt [43]. This application is
indeed the original motivation for this author to study the value of κ(~x).
Thirdly, it can also be interpreted as a result concerning view-obstruction
problems in the 3 dimensional geometry, which was first studied by Cusick
[12]. Fourthly, it has an application to the study of flows in graphs and
matroids. Moreover, the function κ(~x) is also connected to the circular chro-
matic number and the fractional chromatic number of distance graphs, and
through the fractional chromatic of distance graphs, it is connected to the
density of D-sets, and to the asymptotic coloring efficiency of the T colorings
(or channel assignments), and to the star-extremality of distance graphs and
circulant graphs.

In Section 2, we discuss applications of Theorem 1.1. Sections 3-9 are
devoted to the proof of Theorem 1.1.

2 Applications of Theorem 1.1

First we apply Theorem 1.1 to settle a conjecture concerning the chromatic
number of distance graphs, which was proposed independently by Chen,
Chang, Huang [8] and Voigt [43].
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Given a subset D of positive integers, we denote by G(Z,D) the graph
with vertex set Z in which i ∼ j if |i− j| ∈ D. The graph G(Z,D) is called
the distance graph generated by the distance set D. We are interested in
determining the chromatic number χ(G(Z,D) of the graph G(Z,D), i.e., find
the minimum integer k, for which there exists a mapping c : Z → {1, 2, · · · , k}
such that c(i) 6= c(j) whenever |i − j| ∈ D. Such a mapping c is called a
k-coloring of G(Z,D), and c(x) is called the color assigned to x.

The problem of determining the chromatic numbers of distance graphs
was studied in [5, 6, 8, 16, 17, 18, 19, 20, 21, 22, 29, 30, 42, 43, 44, 50,
51, 52, 53]. Most of the work deal with distance graphs generated by some
special distance sets. Here we are interested in the case that D = {a, b, c}
contains three integers. The class of distance graphs with D = {a, b, c} has
also been studied by many authors [8, 16, 18, 43, 50, 51]. However, only some
very special cases have been settled. The following conjecture concerning the
chromatic number of such distance graphs was proposed independently by
Chen, Chang, Huang [8] and Voigt [43]:

Conjecture 2.1 Suppose D = {a, b, c}, where a < b < c and gcd(a, b, c) = 1.
Then χ(G(Z,D)) = 4 if D = (1, 2, 3s) for some integer s or c = a + b and
a 6≡ b (mod 3); χ(G(Z,D)) = 2 if a, b, c are odd; and χ(G(Z,D)) = 3 if
none of the conditions above is satisfied.

We now use Theorem 1.1 to prove Conjecture 2.1.

Theorem 2.1 Conjecture 2.1 is true.

Proof.

It is easy to verify the following (cf. [8, 43]):

• For D = {a, b, c}, 2 ≤ χ(G(Z,D)) ≤ 4;

• If D = (1, 2, 3s) for some integer s, or c = a + b and a 6≡ b (mod 3),
then χ(G(Z,D)) = 4;

• χ(G(Z,D)) = 2 if and only if a, b, c are all odd.

Therefore to prove Theorem 2.1, it suffices to show that G(Z,D) is 3-
colorable, provided that D 6= (1, 2, 3s), and c 6= a + b, or c = a + b but a ≡ b
(mod 3). By Theorem 1.1, under these conditions, we have κ(~x) ≥ 1

3
, where
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~x = (a, b, c). This means that there is a real number t and there are integers
i, j, k such that

i +
1

3
≤ ta ≤ i +

2

3
, j +

1

3
≤ tb ≤ j +

2

3
, k +

1

3
≤ tc ≤ k +

2

3
.

Thus

3t ∈ [
3i + 1

a
,
3i + 2

a
] ∩ [

3j + 1

b
,
3j + 2

b
] ∩ [

3k + 1

c
,
3k + 2

c
].

Let r = 1
3t

. We partition the real line R into half open intervals of length r,
i.e., let

Is = [sr, (s + 1)r) for s = 0,±1,±2, · · · .

Define a mapping ∆ : Z → {1, 2, 3} as follows:

∆(x) = s mod 3, if x ∈ Is.

We shall show that ∆ is a proper 3-coloring of the distance graph G(Z,D).

Suppose u ∼ v in G(Z,D), then |u− v| ∈ D. Without loss of generality,
we may assume that u− v = a. We shall prove that ∆(u) 6= ∆(v).

Assume u ∈ Is and v ∈ Is′ , and assume to the contrary, that we have
∆(u) = ∆(v). Then s ≡ s′ (mod 3), i.e., s − s′ = 3h for some integer h.
Since

sr ≤ u < (s + 1)r and s′r ≤ v < (s′ + 1)r,

we have
(s− s′ − 1)r < u− v = a < (s + 1− s′)r.

This implies that
3h− 1

a
<

1

r
<

3h + 1

a
,

contrary to the assumption that

1

r
= 3t ∈ [

3i + 1

a
,
3i + 2

a
]

for some integer i. Therefore ∆ is a proper 3-coloring of the distance graph
G(Z,D), and hence χ(G(Z,D)) ≤ 3.

Now we discuss an interpretation of Theorem 1.1 in the study of view-
obstructions in the 3 dimensional Euclidean space.

Suppose the unit cube C in the k-dimensional Euclidean space Ek has
faces which reflect a certain particle, and in the center of C we place a
subcube αC, where 0 < α < 1 and αC is the magnification of C by the
factor α. Suppose a particle is ejected from a corner of the cube C, and its
movement is not contained in one of the faces of C. How large should α be
so that no matter how the particle is ejected, it will hit the subcube ?
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This problem is equivalent to the following: Let Sk denote the region
0 < xi < ∞ (i = 1, 2, · · · , k) of the k-dimensional Euclidean space Ek.
Partition Sk into k-dimensional cubes of side 1 whose vertices are at the
points with integer coordinates. Place a copy of αC into each of these cubes
at the center. Let ∆(C, α) be the union of these copies of αC. To be precise,

∆(C, α) = {αC +(m1 +
1

2
, m2 +

1

2
, · · · , mk +

1

2
) : mi nonnegative integers}.

How large should the factor α be so that ∆(C, α) will “block the sky”, i.e.,
any half line L, given by xi = ait, ai > 0, t ≥ 0 (i = 1, 2, · · · , k), will intersect
∆(C, α) ?

This minimum α for which every half line L, given by xi = ait, ai > 0, t ≥
0 (i = 1, 2, · · · , k), intersects ∆(C, α) is a function of k, which is denoted by
λ(k). It was conjectured by Cusick that λ(k) = k−1

k+1
. Cusick proved that

this conjecture is equivalent to Wills’ conjecture. So it has been confirmed
for k ≤ 4. If the conjecture is true, then for any α < k−1

k+1
, there are some

half lines L, given by xi = ait, ai > 0, t ≥ 0 (i = 1, 2, · · · , k), which do not
intersect ∆(C, α). In other words, these lines give the angles at which one
can “see through” the sky.

Now we restrict to the 3 dimensional Euclidean space, i.e., consider the
case that k = 3. Cusick’s conjecture was proved for k = 3 [12], i.e., λ(3) = 1

2
.

Thus if α < 1
2
, then there are some half lines L, given by xi = ait, ai >

0, t ≥ 0 (i = 1, 2, 3), do not intersect ∆(C, α). A half line L in R3, given by
xi = ait, ai > 0, t ≥ 0 (i = 1, 2, 3), is called critical if for any α < 1

2
, L does

not intersect ∆(C, α). It was shown in [12] that L is critical if and only if
(a1, a2, a3) = (1, 2, 3).

It is obvious that as α becomes smaller and smaller, more and more half
lines will not intersect ∆(C, α). Intuitively, a person standing at the origin
will have more angles to “see through the sky”. However, our next result
shows that provided α ≥ 1/3, there are not “many” angles one could see
through the sky. To be precise, all the half lines that do not intersect ∆(C, α)
either lie on the plane x3 = x1 + x2, or has direction (a, b, c) = (1, 2, 3s) for
some integer s.

Theorem 2.2 Let C be the unit cube in R3, and let ∆(C, 1
3
) be defined as

above. Then a half line L, given by L = {(ta, tb, tc) : t > 0, a, b, c ∈ Z+, a <
b < c, (a, b, c) = 1}, does not intersect ∆(C, 1

3
) if and only if either (a, b, c) =

(1, 2, 3s) for some integer s, or c = a + b and a 6≡ b (mod 3).

Proof. The line L = {(ta, tb, tc) : t > 0, a, b, c ∈ Z+, a < b < c, (a, b, c) = 1},
does not intersect ∆(C, 1

3
) if and only if for any t > 0, there is an u ∈ {a, b, c}

such that

2||tu− 1

2
|| > 1

3
.
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Since ||x|| = 1
2
− ||x− 1

2
||, the condition above is equivalent to

2(
1

2
− ||tu||) >

1

3

for some u ∈ {a, b, c}. Therefore the line L does not intersect ∆(C, 1
3
) if

and only if for any t > 0, there is an u ∈ {a, b, c} such that ||tu|| < 1
3
. Let

~x = (a, b, c). The condition above is equivalent to κ(~x) < 1
3
. By Theorem

1.1, this happens if and only if (a, b, c) = (1, 2, 3s) or c = a + b and a 6≡ b
(mod 3).

Finally, we give an application of Theorem 1.1 to the study of flows in
graphs. Given a graph G = (V, E). Let ~G = (V, ~E) be an arbitrary orienta-
tion of the edges of G. For a vertex v ∈ V , denote by E+(v) the set of edges
which have v as one of their end vertex, and direct from v to the other end
vertex, denote by E−(v) the set of edges which have v as one of their end
vertex, and direct to v from the other end vertex. Intuitively, E+(v) is the
set of edges leaving v, and E−(v) is the set of edges entering v.

A flow of ~G is an assignment f of real numbers to the edges ~E of ~G such
that for each vertex v, Σe∈E+(v)f(e) = Σe∈E−(v)f(e), i.e., the total amount
of flow entering v is equal to the total amount of flow leaving v. A nowhere
zero flow of ~G is a flow f such that f(e) 6= 0 for all e ∈ ~E. Given an

integer n ≥ 2, a nowhere zero k-flow of ~G is a flow f such that for each
e ∈ ~E, |f(e)| ∈ {1, 2, · · · , k − 1}. It is known [1] that whether or not ~G
has a nowhere zero k-flow does not depend on the orientation of the edges,
rather it is a property of the undirected graph G. The theory of nowhere
zero k-flow is a major topic in combinatorics. It was proved by Seymour [38]
that every bridgeless graph has a nowhere zero 6-flow, and conjectured by
Tutte [41] that every bridgeless graph has a nowhere zero 5-flow. By applying
Seymour’s 6-flow theorem and the n ≤ 4 cases of Wills’ conjecture, Bienia et
al [2] proved the following result:

Theorem 2.3 If G has a nowhere zero flow f such that |f(e)| assumes at
most k − 1 distinct values, then G has a nowhere zero k-flow.

Given a set S of k−1 positive real numbers, we ask the question whether
a graph G has a flow f such that |f(e)| ∈ S for every e. Intuitively, Theorem
2.3 says that among all (k−1) sets, the set {1, 2, · · · , k−1} is the “best”, i.e.,
if the answer for the question above is “yes” for any (k − 1) set S, then the
answer is “yes” for {1, 2, · · · , k − 1}. Our next theorem says that for k = 4,
most other 3 sets are actually merely as good as the set {1, 2}.

Theorem 2.4 Assume G has a nowhere zero flow f such that |f(e)| assumes
at most 3 distinct values {a, b, c}, where a < b < c. If {a, b, c} 6= {a, 2a, 3sa}
and c 6= a + b, then G has a nowhere zero 3-flow. Moreover, if c = a + b

7



but there is no real number r such that a/r, b/r, c/r are all integers, gcd
(a/r, b/r, c/r) = 1 and b/r 6≡ a/r (mod 3), then G also has a nowhere zero
3-flow.

Proof. We shall assume that a, b, c are integers. The case a, b, c are arbitrary
real numbers can be reduced to the all-integer-case, by applying Kronecker’s
approximation theorem. We shall omit this reduction which is similar to the
reduction process that can be found in [45] and [51].

Let f be a nowhere zero flow of an orientation ~G of G such that |f(e)| ∈
{a, b, c} for all e. By Theorem 1.1, there is a real number t such that

||ta|| ≥ 1

3
, ||tb|| ≥ 1

3
, ||tc|| ≥ 1

3
.

In other words, the fractional part of tf is in the interval [1/3, 2/3]. Now tf
is also a flow of G. By a theorem of Ford and Fulkerson [23], G has an integer
valued flow g such that for each e, g(e) is equal to either dtf(e)e or btf(e)c.
Now f ′ = tf − g is also a flow of G, and for every edge e, |f ′(e)| ∈ [1/3, 2/3].
By reversing the orientation of those edges e for which f ′(e) is negative, and
by multiplying |f ′(e)| by 3, we obtain a flow f ∗ of G such that f ∗(e) ∈ [1, 2].
Again by the above mentioned theorem of Ford and Fulkerson, G has an
integer valued flow with values in [1, 2], i.e., G has a nowhere zero 3-flow.

The same discussion carries out for flows in matroids (cf. [2]).

It was conjectured by Tutte [41] that every bridgeless graph without 3-
edge-cut has a nowhere-zero 3-flow. By Theorem 2.4, Tutte’s 3-flow conjec-
ture is equivalent to the following conjecture:

Conjecture 2.2 Every bridgeless graph without 3-edge-cut has a nowhere-
zero flow with |f(e)| ∈ {a, b, c}, where a < b < c are positive integers such
that gcd(a, b, c) = 1, (a, b, c) 6= (1, 2, 3s) for an integer s, and c 6= a + b, or
c = a + b but a ≡ b (mod 3).

Indeed, if Tutte’s 3-flow conjecture is true, then every bridgeless graph
without 3-edge-cut has a nowhere-zero 3-flow, and hence has a nowhere zero
flow, say, with |f(e)| ∈ {1, 2, 4}. Hence Conjecture 2.2 is true. Conversely, if
Conjecture 2.2 is true, then it follows from Theorem 2.4 that every bridge-
less graph without 3-edge-cut has a nowhere-zero 3-flow, i.e., Tutte’s 3-flow
conjecture is true.

The function κ(~x) is also connected to the circular chromatic number
and the fractional chromatic number of distance graphs [5, 6]. Through the
fractional chromatic of distance graphs, it is connected to the density of
D-sets [4, 39], and to the asymptotic coloring efficency of the T colorings
(or channel assignments) [10, 25], and to the star-extremality of distance
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graphs and circulant graphs [24, 34]. We shall not explore such connections
here, and refer interested readers to the cited references for the definitions of
these concepts. We remark that the connections between κ(~x) and the above
mentioned concepts have not been explicitly discussed in the references.

3 Some preliminaries

Sections 3-9 are devoted to the proof of Theorem 1.1. We shall assume that
a, b, c are fixed integers, a < b < c and gcd(a, b, c) = 1. Let ~x = (a, b, c).
Since Wills’ conjecture is true for k = 3, we know that κ(~x) ≥ 1

4
. (The

argument in this paper can be easily extended to a proof of the k = 3 case
of Wills’ conjecture. Indeed, the proof in the remaining part will show that
κ(~x) ≥ 1

3
in most cases. Thus to prove Wills’ conjecture for the case k = 3,

it suffices to consider the case that (a, b, c) = (1, 2, 3s) or c = a + b. These
cases are easy. However, we shall not bother to give another proof of the
k = 3 case of Wills conjecture, as quite a few nice proofs of this case have
been published.) It is also easy to see that κ(~x) = 1/2 if and only if a, b, c are
all odd. Therefore, to prove Theorem 1.1, it suffices to prove the following:

1. κ(~x) < 1/3 if (a, b, c) = (1, 2, 3s) for some integer s, or c = a + b and
a 6≡ b (mod 3);

2. κ(~x) ≥ 1/3 if (a, b, c) does not satisfy any of the two conditions above.

First we observe that the following two statements are equivalent:

1. κ(~x) ≥ 1
k
.

2. There exist three integers i, j, ` such that

[
ki + 1

a
,
ki + k − 1

a
] ∩ [

kj + 1

b
,
kj + k − 1

b
] ∩ [

k` + 1

c
,
k` + k − 1

c
] 6= Ø.

Indeed, ||ta|| ≥ 1/k if and only if kt ∈ [ki+1
a

, ki+k−1
a

] for some integer i.

For convenience, in the remaining of this paper, we shall let

I[x, y; z] = [
x

z
,
y

z
],

and let
Fk(x) = ∪∞i=0I[ki + 1, ki + k − 1; x].

Thus

κ(~x) ≥ 1

k
if and only if Fk(a) ∩ Fk(b) ∩ Fk(c) 6= Ø.
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As observed above, our main concern will be whether or not F3(a)∩ F3(b)∩
F3(c) 6= Ø. This amounts to determine whether or not there exist three
integers k, i, j such that i ≡ j ≡ k ≡ 1 (mod 3) and that

I[k, k + 1; a] ∩ I[i, i + 1; b] ∩ I[j, j + 1; c] 6= Ø.

For this purpose, we first consider those integer pairs (u, v) such that

I[u, u + 1; b] ∩ I[v, v + 1; c] 6= Ø, and u ≡ v (mod 3).

We call such a pair of integers (u, v) a consistent pair. We shall find all
the consistent pairs and for all the consistent pairs (u, v), determine the
intersections I[u, u + 1; b] ∩ [v, v + 1; c].

For a real number x, we denote by {x} the fractional part of x, i.e.,
{x} = x− bxc.

In the remaining part of the paper, there are quite a few special numbers
determined by a, b, c that we shall use frequently. The numbers mi, ni, δi

defined below are among these frequently used special numbers.

For any integer i ≥ 0, we let

mi = b3ic/(c− b)c,

δi = {3ic/(c− b)},

and let
ni = b3ib/(c− b)c.

Then
3ic/(c− b) = mi + δi,

and
3ib/(c− b) = ni + δi.

Note that mi = ni + 3i. In particular, ni ≡ mi (mod 3). As m1, n1, δ1 will
be used more frequently, we let m = m1, n = n1, δ = δ1. Observe that

mi = bi(m + δ)c, ni = bi(n + δ)c, and δi = {iδ}.

Lemma 3.1 For any integer i, we have

I[mi, mi + 1; c] ⊂ I[ni, ni + 1; b].

Therefore (ni, mi) is a consistent pair and

I[ni, ni + 1; b] ∩ I[mi, mi + 1; c] = I[mi, mi + 1; c].
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Proof. It suffices to show that

ni/b ≤ mi/c, and (ni + 1)/b ≥ (mi + 1)/c.

By definition,

ni/b = 3i/(c− b)− δi/b, and mi/c = 3i/(c− b)− δi/c.

Since c > b, it follows that ni/b ≤ mi/c. Similarly,

(ni + 1)/b = 3i/(c− b) + (1− δi)/b

and
(mi + 1)/c = 3i/(c− b) + (1− δi)/c.

Hence (ni + 1)/b ≥ (mi + 1)/c.

Lemma 3.2 Suppose j ≥ 0 is an integer. Then

(mi−j)/c ∈ I[ni−j, ni−j+1; b] if and only if (mi−j)/c ≥ (3i−1)/(c−b);

(mi + 1 + j)/c ∈ I[ni + j, ni + j + 1; b] if and only if (mi + 1 + j)/c ≤
(3i + 1)/(c− b);

(ni−j)/b ∈ I[mi−j−1, mi−j; c] if and only if (ni−j)/b ≥ (3i−1)/(c−b);

(ni+j)/b ∈ I[mi+j, mi+j+1; c] if and only if (ni+j)/b ≤ (3i+1)/(c−b).

Proof. By Lemma 3.1, mi/c ≥ ni/b. Hence

(mi − j)/c = mi/c− j/c ≥ ni/b− j/b = (ni − j)/b.

Thus

(mi − j)/c ∈ I[ni − j, ni − j + 1; b] if and only if (mi − j)/c ≤ (ni − j + 1)/b.

Since
mi/c = 3i/(c− b)− δi/c and ni/b = 3i/(c− b)− δi/b,

this is equivalent to

3i/(c− b)− (δi + j)/c ≤ 3i/(c− b)− (δi + j − 1)/b.

This inequality holds if and only if

(δi + j)/c ≥ (δi + j − 1)/b,

which is equivalent to
(δi + j)/c ≤ 1/(c− b).
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Therefore

(mi−j)/c ∈ I[ni−j, ni−j+1; b] if and only if 3i/(c−b)−(δi+j)/c ≥ (3i−1)/(c−b).

This is equivalent to the condition that (mi − j)/c ≥ (3i− 1)/(c− b).

Also by Lemma 3.1, (mi + 1)/c ≤ (ni + 1)/b, which implies that

(mi + 1 + j)/c ≤ (ni + 1 + j)/b.

Therefore

(mi+1+j)/c ∈ I[ni+j, ni+j+1; b] if and only if (mi+1+j)/c ≥ (ni+j)/b.

Since
mi/c = 3i/(c− b)− δi/c and ni/b = 3i/(c− b)− δi/b,

the condition above is equivalent to

3i/(c− b) + (j + 1− δi)/c ≥ 3i/(c− b) + (j − δi)/b.

This is equivalent to

1/(c− b) ≥ (j + 1− δi)/c.

Hence
(mi + 1 + j)/c ∈ I[ni + j, ni + j + 1; b]

if and only if

3i/(c− b) + (j + 1− δi)/c ≤ (3i + 1)/(c− b),

which means
(mi + 1 + j)/c ≤ (3i + 1)/(c− b).

The other inequalities are proved similarly.

Corollary 3.1 Suppose u, v, j are non-negative integers.

• If v/c ∈ I[3j − 1, 3j; c − b], then (v − 3j, v) is a consistent pair, and
the intersection I[v − 3j, v − 3j + 1; b] ∩ I[v, v + 1; c] is equal to either
[v/c, (v − 3j + 1)/b] or I[v, v + 1; c];

• If v/c ∈ I[3j, 3j + 1; c− b], then (v− 3j − 1, v− 1) is a consistent pair,
and the intersection I[v − 3j − 1, v − 3j; b] ∩ I[v − 1, v; c] is equal to
either [((v − 3j − 1)/b, v/c] or I[v − 1, v; c];
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• If u/b ∈ I[3j− 1, 3j; c− b], then (u− 1, u + 3j− 1) is a consistent pair,
and the intersection I[u − 1, u; b] ∩ I[u + 3j − 1, u + 3j; c] is equal to
[(u + 3j − 1)/c, u/b];

• If u/b ∈ I[3j, 3j + 1; c − b], then (u, u + 3j) is a consistent pair, and
the intersection I[u, u + 1; b] ∩ I[u + 3j, u + 3j + 1; c] is equal to [((v −
3j)/b, (v + 1)/c].

Corollary 3.1 determines all the consistent pairs and the corresponding
intersections. In other words, we have the following:

Lemma 3.3 The pair (u, v) is a consistent pair if and only if there is an
integer j such that v = u + 3j and one of the following is true:

1. v/c ∈ I[3j − 1, 3j; c− b].

2. u/b ∈ I[3j, 3j + 1; c− b].

3. (u + 1)/b ∈ I[3j − 1, 3j; c− b].

Proof. Corollary 3.1 shows that each of the conditions above is sufficient.
So we only need to prove the necessity.

Suppose (u, v) is consistent. Then there is an integer j such that

v − u = 3j and I[u, u + 1; b] ∩ I[v, v + 1; c] 6= Ø.

Since c > b, the intersection

I[u, u + 1; b] ∩ I[v, v + 1; c]

is equal to

either I[v, v + 1; c], or [u/b, (v + 1)/c], or [v/c, (u + 1)/b].

If
I[u, u + 1; b] ∩ I[v, v + 1; c] = I[v, v + 1; c],

then
u/b ≤ v/c and (u + 1)/b ≥ (v + 1)/c,

i.e.,
(v − 3j)c ≤ vb and (v − 3j + 1)c ≥ (v + 1)b.

13



This implies that

v(c− b) ≤ 3jc and (v + 1)(c− b) ≥ 3jc.

Hence v/c ∈ I[3j − 1, 3j; c− b].

If
I[u, u + 1; b] ∩ I[v, v + 1; c] = [u/b, (v + 1)/c],

then
(u + 3j)/c = v/c ≤ u/b ≤ (v + 1)/c = (u + 3j + 1)/c.

Therefore
3jb ≤ u(c− b) ≤ 3jb + b.

Hence u/b ∈ I[3j, 3j + 1; c− b].

If
I[u, u + 1; b] ∩ I[v.v + 1; c] = [v/c, (u + 1)/b],

then

(u + 3j)/c = v/c ≤ (u + 1)/b ≤ (v + 1)/c = (u + 3j + 1)/c.

Therefore
(3j − 1)b ≤ (u + 1)(c− b) ≤ 3jb,

i.e., (u + 1)/b ∈ I[3j − 1, 3j; c− b].

Note that some of the sufficient conditions in Corollary 3.1 for a pair
to be consistent do not appear in Lemma 3.3. This is because these condi-
tions are implied by other conditions, so the conditions in Corollary 3.1 have
redundency. We keep these conditions, as we shall use them later.

For the remaining of this paper, let d be the largest integer such that
dc ≤ (d + 1)b. By our assumption, c < 2b. Therefore d ≥ 1. The integer d is
one of the frequently used special numbers.

Lemma 3.4 For i = 0, 1, · · ·, and for j = 0, 1, · · · , d, we have

(mi − j)/c ∈ I[ni − j, ni − j + 1; b],

and
(mi + 1 + j)/c ∈ I[ni + j, ni + j + 1; b].

Proof. Since

mi − j

c
=

3i

c− b
− δi + j

c
and

ni − j

b
=

3i

c− b
− δi + j

b
,

it follows that
ni − j

b
<

mi − j

c
.
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On the other hand,

ni − j + 1

b
=

3i

c− b
− δi + j − 1

b
.

Since j ≤ d and δi < 1, we have δi + j − 1 < d. It follows from the definition
of d that

(δi + j − 1)c ≤ (δi + j)b.

Therefore
mi − j

c
≤ ni − j + 1

b
.

This proves that (mi− j)/c ∈ I[ni− j, ni− j + 1; b]. The remaining part can
be proved similarly.

Corollary 3.2 For i = 0, 1, 2, · · ·, for j = 0, 1, · · · , d, the pairs of integers
(ni − j, mi − j) and (ni + j, mi + j) are consistent pairs. Moreover, if j 6= 0
then

I[ni − j, ni − j + 1; b] ∩ I[mi − j, mi − j + 1; c] = [
mi − j

c
,
ni − j + 1

b
],

and

I[ni + j, ni + j + 1; b] ∩ I[mi + j, mi + j + 1; c] = [
ni + j

b
,
mj + j + 1

c
].

4 Some easy cases

First we settle some easy cases of Theorem 1.1.

Lemma 4.1 If (a, b, c) = (1, 2, 3s) for some integer s, or c = a+b and a 6≡ b
(mod 3), then κ(~x) < 1/3.

Proof. It is straightforward to verify that

F3(1) ∩ F3(2) = {1, 2, · · ·}.

Since i 6∈ I[3j + 1, 3j + 2; 3s] for any integers i, j, we conclude that

F3(1) ∩ F3(2) ∩ F3(3s) = Ø,

which implies that for ~x = (1, 2, 3s), κ(~x) < 1/3.
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Assume now that c = a+ b and a 6≡ b (mod 3). Assume to the contrary
that κ(~x) ≥ 1/3. Then there are integers k, u, v such that k ≡ u ≡ v ≡ 1
(mod 3) and

I[k, k + 1; a] ∩ I[u, u + 1; b] ∩ I[v, v + 1; c] 6= Ø.

In particular, (u, v) is a consistent pair. By Lemma 3.3 and Corollary 3.1,
either v/c ∈ I[3j − 1, 3j; c− b], and

I[u, u + 1; b] ∩ I[v, v + 1; c] = [v/c, (u + 1)/b] or I[v, v + 1; c],

or u/b ∈ I[3j, 3j + 1; c− b] and

I[u, u + 1; b] ∩ I[v, v + 1; c] = [u/b, (v + 1)/c],

or (u + 1)/b ∈ I[3j − 1, 3j; c− b] and

I[u, u + 1; b] ∩ I[v, v + 1; c] = [v/c, (u + 1)/b].

Note that a = c− b. Hence

I[u, u + 1; b] ∩ I[v, v + 1; c] ∩ I[k, k + 1; c− b] 6= Ø,

where u ≡ v ≡ k ≡ 1 (mod 3). Therefore in the first case, we must
have k = 3j − 2, and v/c = (3j − 1)/(c − b). Suppose v = 3s + 1, then
2c− b = 3(jc− s(c− b)), hence

2c− b ≡ 0 (mod 3),

contrary to the assumption that

a = c− b 6≡ b (mod 3).

Similar calculation shows that in the second case, u/b = (3j + 1)/(c − b),
which again implies that a ≡ b (mod 3), contrary to the assumption. In
the third case, we must have

(u + 1)/b = (3j − 1)/(c− b),

which implies that 2c ≡ b (mod 3), again contrary to the assumption.

To prove Theorem 1.1, it remains to prove that under the condition
(a, b, c) 6= (1, 2, 3k) and c 6= a + b, or c = a + b but a ≡ b (mod 3), we
have κ(~x) ≥ 1

3
.

For x > 0, we let Cx be the circle obtained from the interval [0, x] by
identifying the end points 0 and x, and let φx : R → Cx be the mapping
defined as φ(t) = t mod x. The mapping φx can be viewed as “wrapping”
the real line around the circle Cx. Given two points u, v ∈ Cx, we denote
by [u, v] (resp. [u, v), (u, v], (u, v)) the closed (resp. half closed, open) arc of
Cx from u to v along the clockwise direction, i.e., the increasing direction.
Thus, [u, v) and [v, u) form a partition of Cx. In case the real number x is
clear from the context, we may simply write C for Cx, φ for φx, etc.
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Lemma 4.2 If c ≤ 2a, then κ(~x) ≥ 1
3
;

if c = a + b and a ≡ b (mod 3), then κ(~x) ≥ 1
3
;

If a = 1, b = 2 and 3 6 |c, then κ(~x) ≥ 1
3
;

if b = 2a and a 6 |c, then κ(~x) ≥ 1
3
.

Proof. If c ≤ 2a, then

I[1, 2; a] ∩ I[1, 2; b] ∩ I[1, 2; c] 6= Ø.

If c = a + b and a ≡ b (mod 3), then since gcd(a, b, c) = 1, we conclude
that none of a, b, c is a multiple of 3, and hence

1 ∈ F3(a) ∩ F3(b) ∩ F3(c).

If a = 1, b = 2 and 3 6 |c, then again

1 ∈ F3(a) ∩ F3(b) ∩ F3(c).

Assume b = 2a and c is not a multiple of a. Then

F3(a) ∩ F3(b) = {3i + 1

a
,
3i + 2

a
: i = 0, 1, · · ·}.

Let C = C3/c, φ = φ3/c. and for i = 0, 1, · · ·, let

f(i) = φ(
3i + 1

a
).

Since f(i + a) = f(i), we know that f(Z) is a finite set.

Let x1, x2, · · · , xk be the points of f(Z), ordered cyclically in this order
on the circle C. Now we show that the arcs [xi, xi+1] are of the same length.
Assume to the contrary that the arc [xi, xi+1] has length smaller than the
length of the arc [xj, xj+1]. Assume that f(u) = xi, f(v) = xi+1 and f(w) =
xj. It follows from the definition that the arc [f(w), f(w + v − u)] has the
same length as the arc [f(u), f(v)]. Therefore f(w + v − u) is contained in
the arc [xj, xj+1], contrary to the definition of xj+1. So the arcs [xi, xi+1]
are of the same length, which simply says that the points of f(Z) are evenly
distributed on C. (In the later proofs, there are similarly defined mapping
f and circle C, and so the points of f(Z) are evenly distributed on C. The
proofs will be the same and shall be omitted.)

Since c is not a multiple of a, we conclude that |f(Z)| ≥ 2. If |f(Z)| ≥ 3,
then since the points of f(Z) are evenly distributed on C, and since the arc
[1
c
, 2

c
] has length 1/3 of the total length of C, there is one image point, say

f(i), lies on the arc [1
c
, 2

c
]. This means that there is an integer j such that

3i + 1

a
∈ I[3j + 1, 3j + 2; c].
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Therefore
3i + 1

a
∈ F3(a) ∩ F3(b) ∩ F3(c) 6= Ø.

If |f(Z)| = 2, then f(2) = f(0), which implies that 6/a is a multiple of 3/c,
i.e., 2c is a multiple of a. Because c is not a multiple of a, we conclude that

1

a
≡ 1

2c
(mod 3/c) or

1

a
≡ 3

2c
(mod 3/c) or

1

a
≡ 5

2c
(mod 3/c).

If 1/a ≡ 3/(2c) (mod 3/c), then

f(0) ∈ [
1

c
,
2

c
],

and we are done as before. If

1/a ≡ 1/(2c) (mod 3/c), or 1/a ≡ 5/(2c) (mod 3/c),

then

φ(2/a) ∈ [
1

c
,
2

c
],

hence
2

a
∈ F3(a) ∩ F3(b) ∩ F3(c) 6= Ø.

Lemma 4.3 If b 6= 2a and c ≥ 2b, then κ(~x) ≥ 1
3
.

Proof. Assume that b 6= 2a and c ≥ 2b. Note that if there are integers i, j
such that

I[3i + 1, 3i + 2; a] ∩ I[3j + 1, 3j + 2; b] = [x, y]

is an interval of length at least 2/c, then we are done. Indeed, it is easy
to see that F3(c) has nonempty intersection with any interval of length 2/c.
Therefore

F3(a) ∩ F3(b) ∩ F3(c) ⊃ [x, y] ∩ F3(c) 6= Ø.

If b ≥ 4a, then let j be the smallest integer such that 3j+1
b

≥ 1
a
, it is easy

to verify that
I[3j + 1, 3j + 2; b] ⊂ I[1, 2; a].

Hence
I[3j + 1, 3j + 2; b] ∩ I[1, 2; a]

has length 1
b
≥ 2

c
, and we are done.

Assume 2a < b < 4a. If 5a ≤ 2b, then

I[4, 5; b] ⊂ I[1, 2; a],
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and we are done as above. Assume 5a > 2b, and let i be the smallest integer
such that

(6i + 5)a ≤ (3i + 2)b.

(such an i ≥ 0 exists because b > 2a.) Then

6i + 4

b
≥ 3i + 1

a
,

because otherwise we have

6i− 1

b
≤ 3i− 1

a
,

contrary to the minimality of i. Therefore

I[6i + 4, 6i + 5; b] ⊂ I[3i + 1, 3i + 2; a].

Hence I[3j + 1, 3j + 2; b] ∩ I[3i + 1, 3i + 2; a] has length 1/b ≥ 2/c, and we
are done.

Assume now that b < 2a.

First we consider the case that c ≥ 4b. If 2b ≤ 3a, then

I[1, 2; a] ∩ I[1, 2; b] = [
1

a
,
2

b
]

is an interval of length at least 1/(2b) ≥ 2/c, and hence we are done. Thus
we may assume 2b > 3a. Let C = C3/a and φ = φ3/a. For i = 0, 1, · · ·, let

f(i) = φ(
3i + 2

b
).

Then f(Z) is a finite set of points evenly distributed on C. Assume that
|f(Z)| = g. Then ga is a multiple of b. Because 3a/2 < b < 2a, we know
that g ≥ 5. If g ≥ 6, then as the images f(Z) are evenly distributed on the
circle C, there is one point, say f(j), contained in the arc [ 3

2a
, 2

a
]. This means

that there is an integer i such that

3i + 1.5

a
≤ 3j + 2

b
≤ 3i + 2

a
,

which implies that

I[3j + 1, 3j + 2; b] ∩ I[3i + 1, 3i + 2; a]

is an interval of length at least 1/(2b) ≥ 2/c. Hence we are done. Suppose
|f(Z)| = 5. Then 5a is a multiple of b. Because 3a/2 < b < 2a, we know
that 5a = 3b. Easy calculation shows that

f(3) ∈ [
3

2a
,
2

a
],
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and we are also done as above.

If 7b/2 ≤ c < 4b, then since b < 2a, which implies that c < 8a. Hence

I[7, 8; c] ∩ I[1, 2; a] ∩ I[1, 2; b] = I[7, 8; c] ∩ [
1

a
,
2

b
] 6= Ø,

and we are done.

Assume 3b ≤ c < 7b/2. If 4a ≥ 3b, then

I[1, 2; a] ∩ I[1, 2; b] = [
1

a
,
2

b
]

is an interval of length 2/b − 1/a ≥ 2
3b

> 2
c
, and we are done. Assume that

4a < 3b. Let

C = C3/a, φ = φ3/a, and f(i) = φ(
3i + 2

b
).

Since b is not a multiple of a, we know that |f(Z)| ≥ 2. Since the points of
f(Z) are evenly distributed on C, we conclude that there is one point, say
f(j), contained in the arc [ 3

2a
, 2

a
]. This implies that there is an integer i such

that either
I[3j + 1, 3j + 2; b] ⊂ I[3i + 1, 3i + 2; a],

or
I[3j + 1, 3j + 2; b] ∩ I[3i + 1, 3i + 2; a]

is an interval of length at least 1/(2a). In the former case, we are done as
I[3j +1, 3j +2; b] has length at least 2/c; in the latter case, because 4a < 3b,
which implies that 1

2a
> 2

3b
≥ 2

c
, we are also done.

Assume 5b/2 ≤ c < 3b. If 5a ≥ c, then easy calculation shows that

5

c
∈ I[4, 5; c] ∩ I[1, 2; b] ∩ I[1, 2; a],

hence we are done. Therefore we may assume 5b/2 < 5a < c < 3b. Again,
let

C = C3/a, φ = φ3/a, and f(i) = φ(
3i + 2

b
).

Suppose f(Z) contains g points, then ga is a multiple of b. Since 5b/2 <
5a < 3b, we know that g ≥ 6, which implies that there is one point, say
f(j), contained in the arc [ 3

2a
, 2

a
]. Similarly to the previous paragraph, we

can show that for some integers i, j, we have

I[3j + 1, 3j + 2; b] ∩ I[3i + 1, 3i + 2; a]

has length at least 2
c
, and hence we are done.

If 2b ≤ c < 5b/2, then easy calculation shows that

2

b
∈ I[1, 2; a] ∩ I[4, 5; c],

and we are done. This completes the proof of Lemma 4.3.

20



5 Strongly consistent pairs

In the remaining part of the proof of Theorem 1.1, we assume that 2a < c <
2b, c 6= a + b and b 6= 2a. We shall prove that under these conditions, there
are three integers u, v, w such that

I[u, u + 1; a] ∩ I[v, v + 1; b] ∩ I[w, w + 1; c] 6= Ø

and that u ≡ v ≡ w ≡ 1 (mod 3). As shown in Section 3, this is equivalent
to the statement that κ(~x) ≥ 1

3
.

In Section 3, we have determined all the consistent pairs (u, v) of integers,
i.e., those pairs (u, v) such that I[u, u + 1; b] ∩ I[v, v + 1; c] 6= Ø and u ≡ v
(mod 3). For all the consistent pairs (u, v), we have also determined the
intersection I[u, u + 1; b] ∩ I[v, v + 1; c]. Now we shall take those intervals
I[3i + 1, 3i + 2; a] into considerations. We say a consistent pair (u, v) is
strongly consistent if there is an integer i such that

I[3i + 1, 3i + 2; a] ∩ I[u, u + 1; b] ∩ I[v, v + 1; c] 6= Ø.

Using this notion, to prove Theorem 1.1, it suffices to prove Proposition 5.1
below.

Proposition 5.1 Under the assumption that c 6= a + b, b 6= 2a, and 2a <
c < 2b, there is a strongly consistent pair (u, v) such that v ≡ 1 (mod 3).

We shall prove Proposition 5.1 by contradiction, i.e., assuming proposi-
tion 5.1 is not true, we shall derive a contradiction. Thus for the remaining
part of this paper, we assume the following

General Assumption: c 6= a + b, b 6= 2a, 2a < c < 2b, and there is no
strongly consistent pair (u, v) for which v ≡ 1 (mod 3).

In order to derive a contradiction, we shall try to find as many strongly
consistent pairs as possible. Lemma 5.1 below is just a combination of Corol-
lary 3.2 and the definition of strongly consistency.

Lemma 5.1 Suppose i, j, ` are non-negative integers.

• If I[3i + 1, 3i + 2; a] contains the point 3j/(c − b), then (nj, mj) is
strongly consistent.

• If (nj − `)/b ∈ I[3i + 1, 3i + 2; a] ∩ I[3j − 1, 3j; c − b], then
(nj − `−1, mj − `−1) is strongly consistent. In particular, if ` ≤ d−1
and (nj − `)/b ∈ I[3i + 1, 3i + 2; a] then (nj − ` − 1, mj − ` − 1) is
strongly consistent.
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• If (nj + `)/b ∈ I[3i + 1, 3i + 2; a] ∩ I[3j, 3j + 1; c − b], then
(nj + `, mj + `) is strongly consistent. In particular, if ` ≤ d and
(nj +`)/b ∈ I[3i+1, 3i+2; a] then (nj +`, mj +`) is strongly consistent.

• If (mj − `)/c ∈ I[3i + 1, 3i + 2; a] ∩ I[3j − 1, 3j; c − b], then
(nj − `, mj − `) is strongly consistent. In particular, if ` ≤ d and
(mj−`)/c ∈ I[3i+1, 3i+2; a] then (nj−`, mj−`) is strongly consistent.

• If (mj + `)/c ∈ I[3i + 1, 3i + 2; a] ∩ I[3j, 3j + 1; c − b], then (nj + ` −
1, mj + ` − 1) is strongly consistent. In particular, if ` ≤ d + 1 and
(mj + `)/c ∈ I[3i + 1, 3i + 2; a] then (nj + `− 1, mj + `− 1) is strongly
consistent.

Corollary 5.1 Suppose i, j are non-negative integers and that I[3i + 1, 3i +
2; a] contains the point 3j/(c− b). If (3i + 1)(c− b)/a ≤ 3j − γ and mj ≡ 2
(mod 3), then

δj > γb/(c− b) > γ;

if (3i + 2)(c− b)/a ≥ 3j + γ and mj ≡ 0 (mod 3), then

1− δj > γb/(c− b) > γ.

Proof. Suppose i, j are integers such that

3j/(c− b) ∈ I[3i + 1, 3i + 2; a] and (3i + 1)(c− b)/a ≤ 3j − γ.

First note that 3j/(c−b) ∈ I[3i+1, 3i+2; a] implies that (3i+1)(c−b)/a ≤ 3j.
Thus γ ≥ 0.

If δj ≤ γb/(c− b) then

δj/b ≤ γ/(c− b) ≤ 3j/(c− b)− (3i + 1)/a.

Since nj/b = 3j/(c−b)−δj/b and 3j/(c−b) ∈ I[3i+1, 3i+2; a], we conclude
that

(3i + 2)/a ≥ 3j/(c− b) ≥ nj/b ≥ (3i + 1)/a.

Hence nj/b ∈ I[3i + 1, 3i + 2; a], and it follows from Lemma 5.1 that
(nj − 1, mj − 1) is strongly consistent, which implies that mj 6≡ 2 (mod 3).
Therefore mj ≡ 2 (mod 3) implies that δj > γb/(c − b). Since 2b > c, it
follows that γb/(c− b) > γ.

Assume now (3i + 2)(c − b)/a ≥ 3j + γ. Similarly, because 3j/(c − b) ∈
I[3i + 1, 3i + 2; a], we know that γ ≥ 0. If 1− δj ≤ γb/(c− b), then

(1− δj)/b ≤ γ/(c− b) ≤ (3i + 2)/a− 3j/(c− b).
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Therefore (nj + 1)/b = 3j/(c − b) + (1 − δj)/b ≤ (3i + 2)/a, which implies
that (nj + 1, mj + 1) is strongly consistent (by Lemma 5.1). Hence mj 6≡ 0
(mod 3). Therefore mj ≡ 0 (mod 3) and (3i + 2)(c− b)/a ≥ 3j + γ implies
that 1− δj > γb/(c− b) > γ.

Lemma 5.2 Suppose i, j are non-negative integers.
If I[3i + 1, 3i + 2; a] ⊃ I[3j − 1, 3j; c− b] then d = 1 and mj ≡ 0 (mod 3);
if I[3i + 1, 3i + 2; a] ⊃ I[3j, 3j + 1; c− b] then d = 1 and mj ≡ 2 (mod 3).

Proof. If
I[3i + 1, 3i + 2; a] ⊃ I[3j − 1, 3j; c− b],

then it follows from Corollary 3.2 that

(nj, mj), (nj − 1, mj − 1), · · · , (nj − d,mj − d)

are strongly consistent. Since d ≥ 1 and none of the integers mj, mj −
1, · · · , mj − d is equivalent to 1 modulo 3, we must have d = 1 and mj ≡ 0
(mod 3).

If
I[3i + 1, 3i + 2; a] ⊃ I[3j, 3j + 1; c− b],

then it follows from Corollary 3.2 that

(nj, mj), (nj + 1, mj + 1), · · · , (nj + d,mj + d)

are strongly consistent. Since d ≥ 1 and none of the integers mj, mj +
1, · · · , mj + d is equivalent to 1 modulo 3, we must have d = 1 and mj ≡ 2
(mod 3).

Corollary 5.2 There are no non-negative integers i, j such that

I[3i + 1, 3i + 2; a] ⊃ I[3j − 1, 3j + 1; c− b].

Proof. If
I[3i + 1, 3i + 2; a] ⊃ I[3j − 1, 3j + 1; c− b],

then
I[3i + 1, 3i + 2; a] ⊃ I[3j − 1, 3j; c− b]

which implies that mj ≡ 0 (mod 3). On the other hand,

I[3i + 1, 3i + 2; a] ⊃ I[3j, 3j + 1; c− b]

which implies that mj ≡ 2 (mod 3), an obvious contradiction.

In the remaining part of the paper, we let

C = C3/(c−b), φ = φ3/(c−b),
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and for i = 0,±1,±2, · · ·, let

f(i) = φ((3i + 1)/a).

Then f(Z) is a finite set of points that are evenly distributed on the circle
C. We assume that |f(Z)| = q, and denote these q points, according to
their clockwise cyclic ordering, by x0, x1, · · · , xq−1. We shall refer the points
x0, x1, · · · , xq−1 as image points.

Since the q points x0, x1, · · · , xq−1 are evenly distributed on the circle C,
any half open arc [x, y) (or (x, y]) of C of length 3/(q(c− b)) contains exactly
one of the image points.

We assume that f(0) = φ(1/a) = x0, and f(1) = φ(4/a) = xp. Because
(3i + 1)/a − 1/a = i(4/a − 1/a), it follows that f(i) = φ((3i + 1)/a) = xip,
where the index ip takes the modulo q value of ip. The two integers p, q must
be coprime, for otherwise φ((3i+1)/a) cannot assume the value x1. Let α, β
be the unique integers such that 1 ≤ α ≤ q−1, 0 ≤ β ≤ p−1 and αp−βq = 1.
Then α is the smallest positive integer such that φ((3α+1)/a) = x1. Clearly
if p = 1 then α = 1 and β = 0. We also note that q = 1 if and only if
φ(4/a) = φ(1/a), which is equivalent to the condition that c− b is a multiple
of a.

Since φ(1/a) = x0, φ(4/a) = xp and the arc [x0, xp] has length 3p/(q(c−
b)), it follows that there is an integer t ≥ 0 such that

c− b

a
= t +

p

q
.

The numbers α, β, p, q, t defined above will be used frequently in the
remaining of the paper. The circle C, the mapping φ and those points
x0, x1, · · · , xq−1 of C will also be used frequently in the remaining.

6 The case c− b ≥ 2a

In this section, we assume that c−b ≥ 2a and we shall derive a contradiction
to our general assumption. First we prove a lemma which will be used in
this section as well as in Section 8. For an interval I of the real line R, we
shall denote the length of I by length(I).

Lemma 6.1 If a < c− b then d = 1.

Proof. First we claim that there are integers i, j such that

length(I[3i + 1, 3i + 2; a] ∩ I[3j − 1, 3j + 1; c− b]) ≥ 1/(c− b).

24



If q = 1, then c− b = ta for some integer t ≥ 2. If t = 2 then

I[1, 2; a] ∩ I[2, 4; c− b] = I[2, 4; c− b],

which is an interval of length 2/(c− b).

If t = 3 then

I[1, 2; a] ∩ I[2, 4; c− b] = I[3, 4; c− b],

which is an interval of length 1/(c− b).

If t ≥ 4 then length(I[1, 2; a]) ≥ 4/(c − b). Let j be the smallest integer
such that (3j − 1)/(c − b) ≥ 1/a, then it is straightforward to verify that
I[1, 2; a] ⊃ I[3j − 1, 3j + 1; c− b].

If q = 2, then p = 1 and (c − b)/a = t + 1/2 for some integer t ≥ 1. In
particular (c − b)/a ≥ 3/2. The arc [1.5/(c − b), 3/(c − b)] of C has length
3/(q(c− b)), and hence contains an image point. Suppose

φ((3i + 1)/a) ∈ [1.5/(c− b), 3/(c− b)].

By the definition of φ, it means that for some integer j,

(3j − 1.5)/(c− b) ≤ (3i + 1)/a ≤ 3j/(c− b).

Since (c− b)/a ≥ 3/2, it follows that 1/a ≥ 3/(2(c− b)). Therefore

I[3i + 1, 3i + 2; a] ⊃ I[3j − 1, 3j; c− b].

If q ≥ 3, then the arc [2/(c − b), 3/(c − b)] of C has length at least
3/(q(c− b)), hence it contains an image point. Suppose

φ((3i + 1)/a) ∈ [2/(c− b), 3/(c− b)].

Then for some integer j,

(3j − 1)/(c− b) ≤ (3i + 1)/a ≤ 3j/(c− b).

Therefore either I[3i + 1, 3i + 2; a] ⊂ I[3j − 1, 3j + 1; c − b], which implies
that

I[3i + 1, 3i + 2; a] ∩ I[3j − 1, 3j + 1; c− b] = I[3i + 1, 3i + 2; a], or

I[3i + 1, 3i + 2; a] ⊃ I[3j, 3j + 1; c− b].

By noting that a < c− b, which implies that 1/a > 1/(c− b), we have proved
the claim. Thus we may assume that i, j are integers such that

length(I[3i + 1, 3i + 2; a] ∩ I[3j − 1, 3j + 1; c− b]) ≥ 1/(c− b).
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This implies that 3j/(c − b) ∈ I[3i + 1, 3i + 2; a]. Hence by Lemma 5.1,
(nj, mj) is strongly consistent.

Assume to the contrary of this Lemma that d ≥ 2. That means 2c ≤ 3b,
and hence 2/b ≤ 1/(c− b). Since

length(I[3i + 1, 3i + 2; a] ∩ I[3j − 1, 3j + 1; c− b]) ≥ 1/(c− b) ≥ 2/b,

there are two consecutive integers u, u + 1 such that

u/b, (u + 1)/b ∈ I[3i + 1, 3i + 2; a] ∩ I[3j − 1, 3j + 1; c− b].

If both points u/b, (u+1)/b are contained in I[3j−1, 3j; c−b], then since
3j/(c − b) ∈ I[3i + 1, 3i + 2; a], we may assume that u + 1 = nj. Therefore
both points nj/b and (nj − 1)/b are contained in the intersection

I[3i + 1, 3i + 2; a] ∩ I[3j − 1, 3j + 1; c− b].

By Lemma 5.2, both (nj − 1, mj − 1) and (nj − 2, mj − 2) are strongly
consistent. However, we have observed in the second previous paragraph
that (nj, mj) is also strongly consistent. This is in contrary to the general
assumption, as one of the integers mj, mj−1, mj−2 is equivalent to 1 modulo
3.

If u/b ≤ 3j/(c− b) and (u + 1)/b > (u + 1)/b, then by applying Lemma
5.2 as above, we conclude that

(nj − 1, mj − 1), (nj, mj), (nj + 1, mj + 1)

are all strongly consistent, contrary to the general assumption. If u/b >
3j/(c − b), then since 3j/(c − b) ∈ I[3i + 1, 3i + 2; a], we may assume that
u + 1 = nj + 1. Similarly as above, we can conclude that

(nj, mj), (nj + 1, mj + 1), (nj + 2, mj + 2)

are all strongly consistent, contrary to the general assumption.

Thus for the remaining part of this section, we may assume that d = 1.
This implies that 3b < 2c and hence c− b > b/2 and c− b > c/3.

Lemma 6.2 3a ≥ c− b.

Proof. Assume to the contrary that 3a < c−b. We shall show that, contrary
to Corollary 5.2, there exist integers i, j such that

I[3j − 1, 3j + 1; c− b] ⊂ I[3i + 1, 3i + 2; a].
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If q ≥ 3, then the arc [1/(c− b), 2/(c− b)] of C contains an image point.
Suppose

φ((3i + 1)/a) ∈ [1/(c− b), 2/(c− b)].

Then for some integer j,

(3j − 2)/(c− b) ≤ (3i + 1)/a ≤ (3j − 1)/(c− b).

Because 1/a > 3/(c− b), i.e.,

length(I[3i + 1, 3i + 2; a]) ≥ 3/(c− b),

we conclude that

I[3j − 1, 3j + 1; c− b] ⊂ I[3i + 1, 3i + 2; a].

If q = 2, then p = 1 and (c− b)/a = t+1/2 for some integer t ≥ 3. Hence
(c− b)/a ≥ 3.5. The arc [1/(2(c− b)), 2/(c− b)] of C has length 3/(q(c− b)),
hence it contains an image point. Suppose

φ((3i + 1)/a) ∈ [1/(2(c− b)), 2/(c− b)].

Then for some integer j,

(3j − 2.5)/(c− b) ≤ (3i + 1)/a ≤ (3j − 1)/(c− b).

Because 1/a ≥ 3.5/(c− b), i.e.,

length(I[3i + 1, 3i + 2; a]) ≥ 3.5/(c− b),

we conclude that

I[3j − 1, 3j + 1; c− b] ⊂ I[3i + 1, 3i + 2; a].

If q = 1 then c− b = ta for some integer t ≥ 4. If t ≥ 5 then

length(I[1, 2; a]) ≥ 5/(c− b).

Then it is obvious that for some integer j,

I[3j − 1, 3j + 1; c− b] ⊂ I[1, 2; a].

If t = 4 then
I[5, 7; c− b] ⊂ I[1, 2; a].

Lemma 6.3 3a 6= c− b.
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Proof. Assume to the contrary that 3a = c− b. Then

I[1, 2; a] ⊃ I[3, 4; c− b] ∪ I[5, 6; c− b].

By Lemma 5.2,

m1 = m ≡ 2 (mod 3), and m2 = b2(m + δ)c ≡ 0 (mod 3).

This is an obvious contradiction, as 0 ≤ 2δ < 2.

Lemma 6.4 c− b ≤ 2a.

Proof. Assume to the contrary that 2a < c − b < 3a. (Note that we have
already shown that c − b < 3a.) Since (c − b)/a = t + p/q for some integer
t, we have t = 2. First we assume that p ≥ 3. The arc [2/(c− b)− 3/(q(c−
b)), 2/(c − b)] of C has length 3/(q(c − b)). Therefore it contains an image
point. Suppose

φ((3i + 1)/a) ∈ [2/(c− b)− 3/(q(c− b)), 2/(c− b)].

Then for some integer j,

3j − 1− 3
q

c− b
≤ 3i + 1

a
≤ 3j − 1

c− b
.

Since the interval I[3i + 1, 3i + 2; a] has length

1

a
=

2 + p
q

c− b
≥

2 + 3
q

c− b
,

we conclude that, in contrary to Corollary 5.2,

I[3j − 1, 3j + 1; c− b] ⊂ I[3i + 1, 3i + 2; a].

If p = 2 then q = 2s + 1 for some integer s. Therefore

c− b

a
= 2 +

2

2s + 1
.

Then it is straightforward to verify that

I[6s + 5, 6s + 7; c− b] ⊂ I[3s + 1, 3s + 2; a],

again in contrary to Corollary 5.2.

Finally we assume that p = 1. Then (c − b)/a = 2 + 1/q. It is straight-
forward to verify that

I[3, 4; c− b] ⊂ I[1, 2; a], and
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I[6q − 1, 6q; c− b] ⊂ I[3(q − 1) + 1, 3(q − 1) + 2; a].

By Lemma 5.2,

m ≡ 2 (mod 3), and m2q ≡ 0 (mod 3).

As (c − b)/a = 3 − (q − 1)/q, by Corollary 5.1 we have δ > (q − 1)/q.
Then

2q(m + 1) > 2q(m + δ) > 2q(m + 1)− 2,

which implies that

m2q = b2q(m + δ)c 6≡ 0 (mod 3)

(note that m + 1 ≡ 0 (mod 3)), contrary to the previous conclusion.

Lemma 6.5 2a 6= c− b.

Proof. If 2a = c− b then I[1, 2; a] = I[2, 4; c− b], contrary to Corollary 5.2.

Thus we have proved that under the general assumption, we have c− b <
2a.

7 A technical lemma

The results in Sections 4 and 6 prove Theorem 1.1 for the cases

c− b ≥ 2a, c ≤ 2a, b = 2a, c = a + b.

It remains to show that Theorem 1.1 is also true for those triples a, b, c such
that

2a < c < 2a + b, and c 6= a + b, b 6= 2a.

We note that the intersection F3(a) ∩ F3(b) ∩ F3(c) is becoming smaller as
the triple (a, b, c) is closer to the plane c = a+ b. Indeed, if the triple (a, b, c)
is on the plane c = a + b and a ≡ b (mod 3), then

F3(a) ∩ F3(b) ∩ F3(c) = Ø,

and hence κ(~x) < 1
3
. Therefore it is natural that it becomes more difficult to

prove that F3(a) ∩ F3(b) ∩ F3(c) 6= Ø when the triples become closer to the
plane c = a+b. The proofs for the remaining cases are more complicated and
involved. In this section, we prove a technical lemma which will be crucial
to the proofs in the next two sections.
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Lemma 7.1 Let b(tq + p)(m + δ)c = w and {(tq + p)(m + δ)} = δ′. Then
w ≡ 0 (mod 3) and δ′ = 0, i.e., (tq + p)(m + δ) is an integer equivalent to
0 modulo 3. In particular (tq + p)δ is an integer.

Proof. Recall that (c − b)/a = t + p
q
. As we have already proved Theorem

1.1 for c − b ≥ 2a, it remains to consider the cases that t = 0, 1. However,
the proof for t = 1 is also valid for t ≥ 2.

First we consider the case t = 0. Thus we assume that (c − b)/a = p/q,
and we shall prove that p(m + δ) is an integer equivalent to 0 modulo 3.
Observe that since p/q < 1, we have 1/a < 1/(c− b).

Claim 7.1 There are integers i, j such that

I[3i + 1, 3i + 2; a] ⊂ I[3j − 1, 3j + 1; c− b].

Indeed, if q = 2 then p = 1 and

I[1, 2; a] ⊂ [0, 1/(c− b)].

If q ≥ 3 then the arc [2/(c − b), 3/(c − b)] of C contains one of the image
points. Suppose f(i) ∈ [2/(c−b), 3/(c−b)], then it follows from the definition
of f(i) that there exists an integer j such that

(3j − 1)/(c− b) ≤ (3i + 1)/a ≤ 3j/(c− b).

Since 1/a < 1/(c− b), we conclude that

I[3i + 1, 3i + 2; a] ⊂ I[3j − 1, 3j + 1; c− b].

This completes the proof of Claim 7.1.

Suppose I[3i + 1, 3i + 2; a] is contained in I[3j − 1, 3j + 1; c − b]. By
symmetry, we may assume that

I[3i + 1, 3i + 2; a] ∩ I[3j − 1, 3j; c− b] 6= Ø.

Since (c− b)/a = p/q, for any integer k, we have 3kq/a = 3kp/(c− b), hence

I[3(i + kq) + 1, 3(i + kq) + 2; a] ⊂ I[3(j + kp)− 1, 3(j + kp) + 1; c− b]

and that

I[3(i + kq) + 1, 3(i + kq) + 2; a] ∩ I[3(j + kp)− 1, 3(j + kp); c− b] 6= Ø.

Let
τ = max{0, 3jc/(c− b)− (3i + 2)c/a}.
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Then for all k, we have

max{0, 3(j + kp)/(c− b)− (3(i + kq) + 2)/a} = τ.

Let τ ∗ = 0 when τ = 0, and τ ∗ = τ + 1 − {τ} if τ > 0. Alternately, we
can define τ ∗ as τ ∗ = dτe when τ = 0 or τ is not an integer, and τ ∗ = τ + 1
when τ is a positive integer.

Claim 7.2 For any integer k, (nj+kp−τ ∗, mj+kp−τ ∗) is strongly consistent.

Indeed, if τ = 0 then

3(j + kp)/(c− b) ∈ I[3(i + kq) + 1, 3(i + kq) + 2; a].

By Lemma 5.1, (nj+kp, mj+kp) is strongly consistent. If τ > 0 then

τ = 3(j + kp)c/(c− b)− (3(i + kq) + 2)c/a.

Hence τ/c = 3(j + kp)/(c− b)− (3(i + kq) + 2)/a. Therefore

mj+kp − τ ∗

c
=

3(j + kp)

c− b
− δj+kp

c
− τ

c
− 1− {τ}

c

=
3(i + kq) + 2

a
− δj+kp + (1− {τ})

c
.

As 2/c < 1/a, 0 < δj+kp + (1− {τ}) < 2, it follows that

mj+kp − τ − 1 + {τ}
c

∈ I[3(i + kq) + 1, 3(i + kq) + 2; a]

∩ I[3(j + kp)− 1, 3(j + kp); c− b].

By Lemma 5.1, (nj+kp−τ ∗, mj+kp−τ ∗) is strongly consistent. This completes
the proof of Claim 7.2.

Therefore for all k,

mj+kp − τ ∗ 6≡ 1 (mod 3).

Since

mj+kp = bmj + δj + kp(m + δ)c
= mj + bk(w + δ′) + δjc,

we have

mj+kp − τ ∗ − (mj − τ ∗) = bk(w + δ′) + δjc.

Claim 7.3 w 6≡ 2 (mod 3).
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Assume to the contrary that w ≡ 2 (mod 3). If mj − τ ∗ ≡ 0 (mod 3),
then for all k ≥ 0,

mj+kp − τ ∗ ≡ bk(w + δ′) + δjc
≡ 2k + bkδ′ + δjc (mod 3).

Let k0 ≥ 2 be the least integer such that k0δ
′ + δj < k0 − 1 (such an integer

k exists because 0 ≤ δj, δ
′ < 1). Then we have

k0 − 2 ≤ k0δ
′ + δj < k0 − 1.

This implies that

mj+k0p − τ ∗ ≡ 2k0 + b(k0 − 1)δ′ + δjc = 3k0 − 2 ≡ 1 (mod 3),

contrary to the fact that for all k,

mj+kp − τ ∗ 6≡ 1 (mod 3).

If mj − τ ∗ ≡ 2 (mod 3), then

mj+kp − τ ∗ ≡ 2 + bk(w + δ′) + δjc
≡ 2 + 2k + bkδ′ + δjc (mod 3).

Let k0 ≥ 1 be the least integer such that k0δ
′ + δj < k0. Then

k0 − 1 ≤ k0δ
′ + δj < k0.

Hence
mj+k0p − τ ∗ ≡ 1 (mod 3),

again contrary to the fact that for all k,

mj+kp − τ ∗ 6≡ 1 (mod 3).

This completes the proof of Claim 7.3.

Claim 7.4 If w ≡ 0 (mod 3), then δ′ = 0.

If w ≡ 0 (mod 3), then

mj+kp − τ ∗ ≡ (mj − τ ∗) + bkδ′c (mod 3).

If mj − τ ∗ ≡ 0 (mod 3), then

mj+kp − τ ∗ ≡ bkδ′c (mod 3).
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Assume to the contrary that δ′ 6= 0. Let k0 be the least integer such that
k0δ

′ ≥ 1. Then

mj+k0p − τ ∗ ≡ bkδ′c
≡ 1 (mod 3),

contrary to the fact that for all k,

mj+kp − τ ∗ 6≡ 1 (mod 3).

If mj − τ ∗ ≡ 2 (mod 3), then

mj+kp − τ ∗ ≡ 2 + bkδ′c (mod 3).

Assume to the contrary that δ′ 6= 0. Let k0 ≥ 3 be the least integer such
that k0δ

′ ≥ 2. Then

mj+k0p − τ ∗ ≡ 2 + bkδ′c
≡ 1 (mod 3),

contrary to the fact that for all k,

mj+kp − τ ∗ 6≡ 1 (mod 3).

This completes the proof Claim 7.4

Claim 7.5 w 6≡ 1 (mod 3).

Assume to the contrary that w ≡ 1 (mod 3). We shall only consider the
case when τ > 0, i.e., (3i + 2)/a < 3j/(c − b). The case when τ = 0 needs
to be discussed separately, but the idea is the same. We shall just point out
the difference at the appropriate places of the proof, and omit the details for
that case.

By Claim 7.2,
mj − τ ∗ 6≡ 1 (mod 3).

Assume first that
mj − τ ∗ ≡ 0 (mod 3).

Then

mj+kp − τ ∗ ≡ bk(w + δ′) + δjc
≡ k + bkδ′ + δjc (mod 3).

We now prove by induction that for all k,

mj+2kp − τ ∗ ≡ 0 (mod 3),

mj+(2k+1)p − τ ∗ ≡ 2 (mod 3),

2kδ′ + δj < k + 1,

(2k + 1)δ′ + δj ≥ k + 1.
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When k = 0, we have mj − τ ∗ ≡ 0 (mod 3) by assumption. Moreover,

mj+p − τ ∗ ≡ 1 + bδ′ + δjc (mod 3).

Since mj+p − τ ∗ 6≡ 1 (mod 3), we must have

mj+p − τ ∗ ≡ 2 (mod 3)

and hence
δ′ + δj ≥ 1.

Suppose the above statement is true for integers ≤ k. Then

mj+2(k+1)p − τ ∗ ≡ 2(k + 1) + b2(k + 1)δ′ + δjc (mod 3).

By the induction hypothesis, we have

2kδ′ + δj < k + 1, and (2k + 1)δ′ + δj ≥ k + 1.

This implies that
k + 1 ≤ 2(k + 1)δ′ + δj < k + 3.

If 2(k + 1)δ′ + δj ≥ k + 2, then we would have

b2(k + 1)δ′ + δjc = k + 2,

and hence
mj+2(k+1)p − τ ∗ ≡ 1 (mod 3),

contrary to our previous conclusion. Therefore we have

2(k + 1)δ′ + δj < k + 2

and
mj+2(k+1)p − τ ∗ ≡ 0 (mod 3).

Also we have

mj+(2k+3)p − τ ∗ ≡ 2k + 3 + b(2k + 3)δ′ + δjc (mod 3).

Since k + 1 ≤ 2(k + 1)δ′ + δj < k + 2, we have

k + 1 ≤ (2k + 3)δ′ + δj < k + 3.

Because
mj+(2k+3)p − τ ∗ 6≡ 1 (mod 3),

we conclude that
k + 2 ≤ (2k + 3)δ′ + δj < k + 3
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and
mj+(2k+3)p − τ ∗ ≡ 2 (mod 3).

Now 2kδ′ + δj < k + 1 and (2k + 1)δ′ + δj ≥ k + 1 for all k implies that
δ′ = 1/2 and δj ≥ 1/2.

Next we show that δj < {τ}. Assume to the contrary that δj ≥ {τ}.
Then

δj − {τ} ≥ 0.

Recall that
τ = 3jc/(c− b)− (3i + 2)c/a,

hence
τ/c = 3j/(c− b)− (3i + 2)/a.

Therefore

mj − τ ∗ + 1

c
=

3j

c− b
− δj

c
− τ

c
+
{τ}
c

=
3i + 2

a
− δj − {τ}

c
.

As 2/c < 1/a, 0 ≤ δj − {τ} < 1, it follows that

mj − τ ∗ + 1

c
∈ I[3i + 1, 3i + 2; a]

∩ I[3j − 1, 3j; c− b].

By Lemma 5.1, (nj − τ ∗ + 1, mj − τ ∗ + 1) is strongly consistent. However
mj − τ ∗ + 1 ≡ 1 (mod 3), contrary to the general assumption.

Summing up the discussion above, we have proved that

δ′ = 1/2, δj ≥ 1/2, and δj < {τ}.

It follows then that

mj+p − τ ∗ ≡ 1 + bδj + δ′c ≡ 2 (mod 3),

and
δj+p = δj + δ′ − 1 = δj − 1/2 < 1/2.

Since {τ} > δj ≥ 1/2, we conclude that

δj+p − {τ} < 0.

Then the same calculation as above shows that

mj+p − τ ∗ − 1

c
=

3(j + p)

c− b
− δj+p

c
− τ

c
− 2− {τ}

c

=
3(i + q) + 2

a
− 2− {τ}+ δj+p

c
.
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Therefore

mj+p − τ ∗ − 1

c
∈ I[3(i + q) + 1, 3(i + q) + 2; a]

∩ I[3(j + p)− 1, 3(j + p); c− b].

By Lemma 5.1, (nj+p− τ ∗−1, mj+p− τ ∗−1) is strongly consistent. However
mj+p − τ ∗ − 1 ≡ 1 (mod 3), contrary to the general assumption. This
completes the proof for the case when mj − τ ∗ ≡ 0 (mod 3).

We note that in the proof of this case, we assumed that τ > 0. In case
τ = 0, then instead of showing that {τ} > δj, we should prove that

(3i + 1)/a ≤ 3j/(c− b)− δj/a,

and instead of considering (mj − τ ∗ + 1)/c and (mj+p − τ ∗− 1)/c, we should
consider (nj + 1)/b and nj+p/b, respectively. The rest of the argument is the
same.

Now we consider the case when mj − τ ∗ ≡ 2 (mod 3). Then

mj+p − τ ∗ = b(j + p)(m + δ)c − τ ∗

= mj + w − τ ∗ + bδj + δ′c
≡ bδj + δ′c (mod 3).

Since mj+p − τ ∗ 6≡ 1, we conclude that

mj+p − τ ∗ ≡ 0 (mod 3).

Thus we may replace j by j + p in the proof for the case when mj − τ ∗ ≡
0 (mod 3), and obtain a contradiction to the general assumption. This
completes the proof of Claim 7.5, as well as the proof of the t = 0 case of
Lemma 7.1.

The case t ≥ 1 of Lemma 7.1 is proved similarly. The following two
paragraphs point out the difference.

If t ≥ 1, then 1/a > 1/(c − b). We observe first that there are integers
i, j such that

3j/(c− b) ∈ I[3i + 1, 3i + 2; a].

Indeed, if q ≥ 3 then there is an image point contained in the arc [2/(c −
b), 3/(c− b)] of C. If

f(i) ∈ [2/(c− b), 3/(c− b)],

then the image arc
[φ((3i + 1)/a), φ((3i + 2)/a)]

contains the points 3/(c− b) which implies that for some j, I[3i+1, 3i+2; a]
contains the point 3j/(c− b). The case q = 1 or 2 are easy, and we omit the
details.
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It is easy to see that the fact that I[3i + 1, 3i + 2; a] contains the point
3j/(c− b) implies that for all k ≥ 0,

3(j + k(tq + p))/(c− b) ∈ I[3(i + qk) + 1, 3(i + qk) + 2; a].

By Lemma 5.1, mj+k(tq+p) 6≡ 1 (mod 3) for all integer k. The rest of the
proof is the same as the corresponding part of the proof for the case when
t = 0, and we omit the detail.

The following corollary is an easy consequence of the fact that δj = {jδ}
for any integer j.

Corollary 7.1 For any j, (tq+p)δj is an integer. Therefore δj = sj/(tq+p)
for some integer sj. In particular,

0 ≤ δj ≤ (tq + p− 1)/(tq + p).

8 The case 2a > c− b > a

In this section, we assume that 2a > c − b > a, and we shall derive a
contradiction to the general assumption. Since 2a > c−b > a and (c−b)/a =
t + p/q for some integer t, we must have t = 1, i.e.,

(c− b)/a = 1 + p/q.

We also note that by Lemma 6.1, we may assume that d = 1, hence 3b/2 <
c < 2b. In particular, 3 < 3b/(c− b) = n + δ < 6.

Lemma 8.1 q 6= 2.

Proof. If q = 2, then p = 1 and (c− b)/a = 3/2. Therefore

I[2, 3; c− b] ⊂ I[1, 2; a], and

[6, 7; c− b] ⊂ I[4, 5; a].

By Lemma 5.2, we have m ≡ 0 (mod 3) and m2 ≡ 2 (mod 3). However if
m ≡ 0 (mod 3) then m2 = b2(m + δ)c ≡ b2δc 6≡ 2 (mod 3).

Lemma 8.2 If q = 3 then p 6= 2.
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Proof. Assume to the contrary that q = 3 and p = 2. Then (c − b)/a =
5/3.Therefore

I[1, 2; a] ⊃ I[2, 3; c− b].

By Lemma 5.2, m ≡ n ≡ 0 (mod 3). By Lemma 7.1,

(q + p)(m + δ) = 5(m + δ) ≡ 5δ ≡ 0 (mod 3).

Therefore δ = 0 or 3/5. If δ = 0, then 3 < 3b/(c − b) = n < 6, contrary
to the previous conclusion that n ≡ m ≡ 0 (mod 3). If δ = 3/5, then
3b/(c− b) = n + δ = 3 + 3/5 (because n ≡ 0 (mod 3) and b > c− b > b/2).
Therefore

b

a
=

b

c− b

c− b

a
= 2,

contrary to the general assumption.

Lemma 8.3 q 6= 3.

Proof. Assume to the contrary that q = 3. Then since p 6= 2 we must have
p = 1. Therefore (c − b)/a = 4/3, hence 6/(c − b) ∈ I[4, 5; a]. By Lemma
5.1, we have m2 6≡ 1 (mod 3). Moreover, since 4(c − b)/a = 6 − 2/3 and
5(c− b)/a = 6 + 2/3, it follows from Corollary 5.1 that if m2 ≡ 2 (mod 3),
then δ2 > 2/3; if m2 ≡ 0 (mod 3), then δ2 < 1/3.

Next we show that m3 6≡ 0 (mod 3). Since (c − b)/a = 4/3, we have
7(c− b)/a = 9 + 1/3. Recall that 2c < 3b, which implies 1/c > 1/(3(c− b)).
As

m3/c = 9/(c− b)− δ3/c,

we have

(m3 + 2)/c = 9/(c− b) + (2− δ3)/c

> 9/(c− b) + 1/(3(c− b))

= 7/a.

On the other hand, as c < 2b we have

(2− δ3)/c < 2/c < 1/(c− b),

hence (m3 + 2)/c < 10/(c− b) < 8/a. Therefore

(m3 + 2)/c ∈ I[7, 8; a] ∩ I[9, 10; c− b].

By Lemma 5.1, (n3 + 1, m3 + 1) is strongly consistent. Therefore m3 6≡ 0
(mod 3).
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Similarly, m/c = 3/(c− b)− δ/c implies that

(m− 1)/c = 3/(c− b)− (1 + δ)/c

> 3/(c− b)− 2/c > 2/(c− b)

= 1.5/a,

and

(m− 1)/c ≤ 3/(c− b)− 1/c

< 8/(3(c− b)) = 2/a.

Hence
(m− 1)/c ∈ I[1, 2; a] ∩ I[2, 3; c− b].

By Lemma 5.1, (n− 1, m− 1) is strongly consistent, hence m 6≡ 2 (mod 3).

By Lemma 7.1,
4(m + δ) ≡ 0 (mod 3).

If m ≡ 0 (mod 3), then 4δ ≡ 0 (mod 3). Hence either δ = 0 or δ = 3/4.
If δ = 3/4 then m2 ≡ 1 (mod 3), contrary to our previous conclusion. If
δ = 0 then m3 ≡ 0 (mod 3), again contrary to our previous conclusion.

If m ≡ 1 (mod 3), then 4(m + δ) ≡ 0 (mod 3) implies that 4δ ≡ 2
(mod 3), hence δ = 1/2. But then m2 ≡ 2 (mod 3) and δ2 = 0, contrary to
the first paragraph of this proof.

For the remaining part of this section, we assume that q ≥ 4. First we
consider the case when p = 1.

Lemma 8.4 If p = 1 then q 6≡ 1 (mod 3).

Proof. Assume to the contrary that p = 1 and q = 3s + 1 for some integer
s ≥ 1. Then

(c− b)/a = 1 + 1/q = (3s + 2)/(3s + 1).

It follows that for i ≥ 0,

3(s + i + 1)a

c− b
=

3(s + i + 1)(3s + 1)

3s + 2

= 3(s + i + 1)− 3(s + i + 1)

3s + 2

= 3(s + i) + 2− 3i + 1

3s + 2
.

Therefore for i = 0, 1, · · · , s,

3(s + i + 1)/(c− b) ∈ I[3(s + i) + 1, 3(s + i) + 2; a],
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and that
I[3s + 1, 3s + 2; a] ⊃ I[3s + 2, 3s + 3; c− b], and

I[6s + 1, 6s + 2; a] ⊃ I[3(2s + 1), 3(2s + 1) + 1; c− b].

By Lemma 5.2, ms+1 ≡ 0 (mod 3) and m2s+1 ≡ 2 (mod 3), and by Lemma
5.1, ms+i+1 6≡ 1 (mod 3) for i = 0, 1, · · · , s.

Assume first that m ≡ 0 (mod 3). Then since ms+1 ≡ 0 (mod 3), for
i = 0, 1, · · · , s, we have

ms+i+1 ≡ bms+1 + δs+1 + im + iδc
≡ bδs+1 + iδc (mod 3).

Since m2s+1 ≡ 2 (mod 3), we have δs+1 + sδ ≥ 2. Let i0 be the least integer
such that δs+1 + i0δ ≥ 1. Then 1 ≤ i0 < s, and

1 ≤ δs+1 + i0δ < 2,

hence
ms+i0+1 ≡ 1 (mod 3),

contrary to the previous conclusion.

Assume now that m ≡ 1 (mod 3). Then

ms+2 = bms+1 + δs+1 + m + δc
≡ b1 + δs+1 + δc (mod 3).

Since q ≥ 4 which implies that s ≥ 1, we know that s+2 ≤ 2s+1 and hence
ms+2 6≡ 1 (mod 3). Therefore

δs+1 + δ > 1, and ms+2 ≡ 2 (mod 3).

Moreover, since

(3(s + 1) + 1)(c− b)/a = 3(s + 2)− (q − 3)/q,

it follows from Corollary 5.1 that

δs+2 = δs+1 + δ − 1 > (q − 3)/q.

Therefore δ > (q − 3)/q.

If s ≥ 2 then s + 3 < 2s + 1, which implies that ms+3 6≡ 1 (mod 3).
However,

ms+3 = bms+2 + δs+2 + m + δc
≡ bδ + δs+2c (mod 3).
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Since q ≥ 7 and δ > (q − 3)/q, δs+2 > (q − 3)/q, we conclude that ms+3 ≡ 1
(mod 3), which is a contradiction. Thus we may assume that s = 1, i.e.,
q = 4. By Lemma 7.1, (p + q)(m + δ) = 5(m + δ) ≡ 0 (mod 3). Since
m ≡ 1 (mod 3) we have 5δ ≡ 1 (mod 3). Hence δ = 1/5 or 4/5. However
since

ms+1 = m2 = b2(m + δ)c ≡ 0 (mod 3),

we conclude that 2δ ≥ 1, hence δ = 4/5. Then 3b/(c− b) = n + δ = 4 + 4/5
implies that b/(c− b) = 8/5. Therefore

n3 = b9b/(c− b)c ≡ 2

and
δ3 = {9b/(c− b)} = 2/5.

However, 7(c − b)/a = 9 − 1/4. It follows from Corollary 5.1 that δ3 >
(1/4)b/(c− b) = 2/5, a contradiction.

Finally we consider the case when m ≡ 2 (mod 3). Since 3b/(c − b) =
m + δ and 3b/2 < c < 2b, we have m = 5, i.e., 3b/(c − b) = 5 + δ. Now for
i = 0, 1, · · ·,

ms+i+1 = bms+1 + δs+1 + i(m + δ)c
≡ 2i + biδ + δs+1c (mod 3).

If sδ + δs+1 < s−1, then let j∗ be the smallest integer such that j∗δ + δs+1 <
j∗ − 1. Then 2 ≤ j∗ ≤ s and by the minimality of j∗, we have

j∗ − 2 ≤ j∗δ + δs+1 < j∗ − 1.

This implies that
ms+j∗+1 ≡ 1 (mod 3),

contrary to our previous conclusion. Therefore,

sδ + δs+1 ≥ s− 1,

which implies that
δ ≥ 1− (1 + δs+1)/s.

As q = 3s + 1, straightforward calculation shows that

(q + 1)δ = (3s + 2)δ

≥ (q + 1)− 3− 3δs+1 − (2 + 2δs+1)/s

> q − 9.

By Lemma 7.1, (q+1)(m+δ) ≡ 0 (mod 3). Since (q+1) ≡ 2 (mod 3)
and m ≡ 2 (mod 3), it follows that (q + 1)δ ≡ 2 (mod 3). Therefore the
possible values for (q + 1)δ are q − 2, q − 5 and q − 8.
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If (q +1)δ = q−8 then q ≥ 8. Hence s ≥ 3, which implies that (q +1)δ ≥
q − 6, a contradiction.

If (q + 1)δ = q − 2, then δ = (q − 2)/(q + 1). This implies that

δ2s+1 = {(2s + 1)δ} = 1/(q + 1).

However, since (c − b)/a = (3s + 2)/(3s + 1), straightforward calculation
shows that (6s+1)(c−b)/a = 3(2s+1)−1/q. Since m2s+1 ≡ 2 (mod 3), by
Corollary 5.1, we should have δ2s+1 > 1/q, which is an obvious contradiction.

If (q + 1)δ = q − 5 then q ≥ 5 and δ = (q − 5)/(q + 1). This implies that
3b/(c − b) = 5 + (q − 5)/(q + 1), hence b/(c − b) = 2q/(q + 1). Therefore
b = 2a, contrary to our general assumption.

Lemma 8.5 If p = 1 then q 6≡ 2 (mod 3).

Proof. Assume to the contrary that p = 1 and q = 3s + 2 for some integer
s ≥ 1. Then

(c− b)/a = (p + q)/q = (3s + 3)/(3s + 2).

It follows that for i ≥ 0,

3(s + i + 1)a

c− b
=

3(s + i + 1)(3s + 2)

3s + 3

= 3(s + i + 1)− 3(s + i + 1)

3s + 3

= 3(s + i) + 2− 3i

3s + 3
.

Therefore for i = 0, 1, · · · , s + 1,

3(s + i + 1)/(c− b) ∈ I[3(s + i) + 1, 3(s + i) + 2; a],

and that
I[3s + 1, 3s + 2; a] ⊃ I[3s + 2, 3s + 3; c− b], and

I[3(2s + 1) + 1, 3(2s + 1) + 2; a] ⊃ I[3(2s + 2), 3(2s + 2) + 1; c− b].

By Lemma 5.2, ms+1 ≡ 0 (mod 3) and m2s+2 ≡ 2 (mod 3), and by Lemma
5.1, ms+i+1 6≡ 1 (mod 3) for i = 0, 1, · · · , s + 1.

Assume first that m ≡ 0 (mod 3). Then for i = 0, 1, · · · , s + 1,

ms+i+1 = bms+1 + δs+1 + i(m + δ)c
≡ biδ + δs+1c (mod 3).

Since m2s+2 ≡ 2 (mod 3), we conclude that (s + 1)δ + δs+1 ≥ 2. let j∗ be
the smallest integer such that j∗δ + δs+1 ≥ 1. Then 1 ≤ j∗ ≤ s and by the
minimality of j∗, we have 1 ≤ j∗δ + δs+1 < 2. This implies that

ms+j∗+1 ≡ 1 (mod 3),
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contrary to our previous conclusion.

If m ≡ 1 (mod 3), then

ms+2 = bms+1 + δs+1 + m + δc
≡ b1 + δs+1 + δc (mod 3).

Since ms+2 6≡ 1 (mod 3), we have δs+1 + δ > 1 and ms+2 ≡ 2 (mod 3).
Moreover, since

(3(s + 1) + 1)(c− b)/a = 3(s + 2)− (q − 2)/q,

it follows from Corollary 5.1 that δs+2 > (q − 2)/q. Now

δs+2 = {δs+1 + δ} = δs+1 + δ − 1.

Hence δ + δs+1 > 1 + (q − 2)/q, which implies that δ > (q − 2)/q and
δs+1 > (q − 2)/q. Therefore

ms+3 = bms+2 + δs+2 + m + δc ≡ bδ + δs+2c ≡ 1 (mod 3).

Since s ≥ 1. Hence s + 3 ≤ 2s + 2, which implies that ms+3 6≡ 1 (mod 3),
a contradiction.

Finally we consider the case when m ≡ 2 (mod 3). Then for i =
0, 1, · · · , s + 1,

ms+i+1 = bms+1 + δs+1 + i(m + δ)c
≡ 2i + biδ + δs+1c (mod 3).

If (s+1)δ+δs+1 < s, then let j∗ be the smallest integer such that j∗δ+δs+1 <
j∗ − 1. Then 2 ≤ j∗ ≤ s + 1, and

j∗ − 2 ≤ j∗δ + δs+1 < j∗ − 1.

Hence

ms+j∗+1 ≡ 2i + i− 2

≡ 1 (mod 3),

contrary to our previous conclusion. Therefore

(s + 1)δ + δs+1 ≥ s.

This implies that δ ≥ 1− (1 + δs+1)/(s + 1), and hence

(q + 1)δ ≥ q − 2− 3δs+1

> q − 5.
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By Lemma 7.1, (q + 1)(m + δ) ≡ 0 (mod 3). Since q + 1 ≡ 0 (mod 3), we
conclude that (q + 1)δ ≡ 0 (mod 3). Therefore (q + 1)δ = q− 2, and hence
δ = (q − 2)/(q + 1) = s/(s + 1). This implies that δ2s+2 = {(2s + 2)δ} = 0.
Since m2s+2 ≡ 2, and

3(2s + 2)/(c− b) ∈ I[3(2s + 1) + 1, 3(2s + 1) + 2; a],

this is in contrary to Corollary 5.1.

Lemma 8.6 If p = 1 then q 6≡ 0 (mod 3).

Proof. Assume to the contrary that p = 1 and q = 3s for some integer s.
Since q 6= 3, we know that s ≥ 2. As (c − b)/a = (3s + 1)/(3s), it follows
that for i ≥ 0,

3(s + i + 1)a

c− b
=

3(s + i + 1)(3s)

3s + 1

= 3(s + i + 1)− 3(s + i + 1)

3s + 1

= 3(s + i) + 2− 3i + 2

3s + 1
.

Therefore for i = 0, 1, · · · , s− 1,

3(s + i + 1)/(c− b) ∈ I[3(s + i) + 1, 3(s + i) + 2; a].

It follows from Lemma 5.1 that ms+i+1 6≡ 1 (mod 3) for i = 0, 1, · · · , s− 1.
We consider three cases:

Case 1. m ≡ 0 (mod 3).

Assume first that ms+1 ≡ 0 (mod 3). Then

ms+i+1 = ms+1 + bi(m + δ) + δs+1c
≡ biδ + δs+1c (mod 3).

If (s−1)δ+δs+1 ≥ 1, then let j∗ be the smallest integer such that j∗δ+δs+1 ≥
1, then 1 ≤ j∗ ≤ s− 1, and

ms+j∗+1 ≡ 1 (mod 3),

contrary to our previous conclusion. Therefore we have (s− 1)δ + δs+1 < 1,
which implies that δ < 1/(s− 1), and m2s ≡ 0 (mod 3). Since

m2s ≡ b2sδc,

we conclude that 2sδ < 1, i.e., δ < 1/(2s). By Lemma 7.1,

(q + p)(m + δ) ≡ (3s + 1)δ ≡ 0 (mod 3).
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Because δ < 1/(2s), we conclude that δ = 0. Hence 3b/(c − b) = n1 ≡ 0
(mod 3), i.e., b/(c − b) is an integer. This is in contrary to the fact that
b > c− b > b/2.

Assume now that

ms+1 ≡ b(s + 1)δc ≡ 2 (mod 3).

Since (3s + 1)(c− b)/a = 3(s + 1)− (q − 1)/q, by Corollary 5.1, we have

δs+1 >
q − 1

q

b

c− b
>

q − 1

q
.

Since (q+1)δs+1 is an integer (by Lemma 7.1), we must have δs+1 = q/(q+1).
Therefore

q/(q + 1) = δs+1 >
q − 1

q

b

c− b
.

It follows that b/(c − b) < q2/(q2 − 1). Because n ≡ m ≡ 0 (mod 3) and
that

3b/(c− b) = n + δ < 3q2/(q2 − 1),

we conclude that n = 3 and δ < 3/(q2 − 1). As q = 3s, this is in contrary to
our previous conclusion that δs+1 = {(s + 1)δ} = q/(q + 1).

Case 2. m ≡ 1 (mod 3).

If m ≡ 1 (mod 3) then, because b > c− b > b/2 and 3b/(c− b) = m+ δ,
we conclude that

3b/(c− b) = 4 + δ ≥ 4.

If ms+1 ≡ 2 (mod 3), then since (3s + 1)(c − b)/a = 3(s + 1) − (q − 1)/q,
by Corollary 5.1, we have

δs+1 >
q − 1

q

b

c− b

≥ 4(q − 1)

3q
.

This is impossible, because q ≥ 6 and δs+1 < 1. Therefore ms+1 ≡ 0
(mod 3).

Since
(3s + 2)(c− b)/a = 3(s + 1) + 2/q,

by Corollary 5.1, we have (1− δs+1) > 2/q, i.e., δs+1 < (q − 2)/q. Since

ms+2 ≡ bms+1 + 1 + δs+1 + δc
≡ b1 + δs+1 + δc (mod 3),

and since s ≥ 2, which implies that ms+2 6≡ 1 (mod 3), we must have
ms+2 ≡ 2 (mod 3) and

δs+2 = δs+1 + δ − 1.

45



As (c− b)/a = (3s + 1)/(3s), it follows that

(3s + 4)(c− b)/a = 3(s + 2)− (q − 4)/q.

By Corollary 5.1, we have δs+2 > (q − 4)/q. Since δs+1 < (q − 2)/q, we have
δ > (q − 2)/q.

If s ≥ 3, then

ms+3 ≡ bms+2 + m + δs+2 + δc
≡ bδs+2 + δc
≡ 1 (mod 3),

because q ≥ 9, δs+2 > (q − 4)/q and δ > (q − 2)/q. However, s ≥ 3 implies
that ms+3 6≡ 1 (mod 3), a contradiction. Therefore we have s = 2 and
q = 6. But then since δ > (q − 2)/q = 2/3, we have

ms+1 = m3 = b3(m + δ)c ≡ b3δc ≡ 2 (mod 3),

contrary to our previous conclusion.

Case 3. m ≡ 2 (mod 3).

If m ≡ 2 (mod 3) then 3b/(c− b) = 5 + δ. Hence

b/(c− b) = (5 + δ)/3 ≥ 5/3.

If ms+1 ≡ 2 (mod 3), then as in Case 1, we have that

δs+1 >
q − 1

q

b

c− b
.

But this is impossible as δs+1 < 1, b/(c − b) ≥ 5/3 and q ≥ 6. Therefore
ms+1 ≡ 0 (mod 3).

If m2s ≡ 0 (mod 3), then since

(6s− 1)(c− b)/a = 3(2s) + (1− 1

3s
),

by Corollary 5.1, we have

1− δ2s >
q − 1

q

b

c− b
,

which is impossible (as 1 − δ2s ≤ 1 q ≥ 6, b/(c − b) ≥ 5/3). Hence we have
m2s ≡ 2 (mod 3).

Since ms+1 ≡ 0 (mod 3) and m2s ≡ 2 (mod 3), and since

m2s ≡ 2(s− 1) + bδs+1 + (s− 1)δc, (mod 3)
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we conclude that (s− 1)δ + δs+1 < s− 1. If (s− 1)δ + δs+1 < s− 2,, then let
j∗ be the least integer such that j∗δ + δs+1 < j∗ − 1. Then 2 ≤ j∗ ≤ s − 1.
By the minimality of j∗, we have j∗− 2 ≤ j∗δ + δs+1 < j∗− 1, which implies
that

ms+j∗+1 ≡ 1 (mod 3),

contrary to our previous conclusion. Therefore we have

s− 2 ≤ (s− 1)δ + δs+1 < s− 1.

This implies that δ ≥ 1− (1 + δs+1)/(s− 1) and hence

(q + 1)δ ≥ q + 1− 3− 3δs+1 − (4 + 4δs+1)/(s− 1)

≥ q − 13.

By Lemma 7.1,

(q + 1)(m + δ) ≡ 0 (mod 3).

As q ≡ 0 (mod 3) and m ≡ 2 (mod 3), we know that

(q + 1)δ ≡ 1 (mod 3).

Therefore the possible values for (q + 1)δ are q − 2, q − 5, q − 8 and q − 11.

If (q + 1)δ = q − 11 then q ≥ 11. Hence s ≥ 4, which implies that
(q + 1)δ ≥ q − 8, a contradiction.

If (q + 1)δ = q − 8 then q ≥ 8, hence s ≥ 3. Therefore

q − 8 = (q + 1)δ ≥ q − 4− 5δs+1.

This implies that δs+1 ≥ 4/5. Since δs+1 = {(s + 1)δ}, q = 3s and δ =
(q − 8)/(q + 1), it follows that

δs+1 = 1− 6/(3s + 1).

Now 4/5 ≤ δs+1 = 1 − 6/(3s + 1) implies that 3s + 1 ≥ 30, hence s ≥ 10.
But then

(q + 1)δ ≥ q + 1− 3− 3δs+1 − (4 + 4δs+1)/(s− 1) > q − 6,

an obvious contradiction.

If (q + 1)δ = q − 2, then δ = (q − 2)/(q + 1). This implies that

δ2s = {2sδ} = 2/(q + 1).

However,
(3(2s− 1) + 1)(c− b)/a = 6s− 2/q.
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Since m2s ≡ 2 (mod 3), this is in contrary to Corollary 5.1

Assume now that (q + 1)δ = q − 5. Then q ≥ 5 and δ = (q − 5)/(q + 1).
Hence 3b/(c − b) = 5 + δ = 6 − 6/(q + 1), which implies that (c − b)/b =
(q + 1)/(2q) and hence b = 2a, contrary to our general assumption.

Combining Lemmas 8.4, 8.5, 8.6, we conclude that p 6= 1. For the re-
maining part of this section, we assume that p ≥ 2.

Since the integer α+β will be very frequently used in the remaining part
of this section (more than 50 times), we use a single letter h in place of it, i.e.,
we let h = α+β. Since αp = βq+1, we have α(p+q) = βq+αq+1 = hq+1.
This formula will be frequently used in the the following.

Let
i0 = d(q − 2p)/3e, and j0 = b(2q − p)/3c.

(Note that i0 could be negative). Since p ≥ 2, we know that

(c− b)/a = (p + q)/q ≥ 1 + 2/q.

For and integer j, we have

(3jα + 1)(c− b)

a
=

(3jα + 1)(p + q)

q

= 3jh +
p + q + 3j

q

= 3(jh + 1) +
p− 2q + 3j

q

For i0 ≤ j ≤ j0, since (q − 2p)/3 + 2/3 ≤ i0 and j0 ≥ (2q − p)/3− 2/3, it
follows that

3(jh + 1)

c− b
∈ I[3jα + 1, 3jα + 2; a].

Moreover, we have

I[3i0h + 2, 3i0h + 3; c− b] ⊂ I[3i0α + 1, 3i0α + 2; a],

and
I[3j0h + 3, 3j0h + 4; c− b] ⊂ I[3j0α + 1, 3j0α + 2; a].

By Corollary 5.1, we have

mi0h+1 ≡ 0 (mod 3),

mj0h+1 ≡ 2 (mod 3),

mjh+1 6≡ 1 (mod 3), for j = i0, i0 + 1, · · · , j0.

By Lemma 7.1, (q + p)(m + δ) ≡ 0 (mod 3). In particular, (q + p)δ is
an integer.

48



Suppose h(m + δ) = µ + ε, where

µ = bh(m + δ)c

and
ε = {h(m + δ)} = {hδ}.

Since αp = βq + 1, we have

q(µ + ε) + m + δ = qh(m + δ) + m + δ

= q(α + β)(m + δ) + m + δ

= (αq + βq + 1)(m + δ)

= α(q + p)(m + δ) ≡ 0 (mod 3).

Hence qε + δ is an integer. Also observe that

(q + p)(ε + µ) = (q + p)h(m + δ) ≡ 0 (mod 3).

In particular, we have (q + p)ε is an integer.

For j ≥ 0,

m(i0+j)h+1 = mi0h+1 + bjh(m + δ) + δi0h+1c
= b(j(µ + ε) + δi0h+1c
≡ bjε + δi0h+1c (mod 3).

Lemma 8.7 µ 6≡ 0 (mod 3).

Proof. Assume to the contrary that µ ≡ 0 (mod 3). Then for j ≥ 0,

m(i0+j)h+1 = mi0h+1 + bjh(m + δ) + δi0h+1c
= b(j(µ + ε) + δi0h+1c
≡ bjε + δi0h+1c (mod 3).

Since
mj0h+1 ≡ 2 (mod 3),

we conclude that
(j0 − i0)ε + δi0h+1 ≥ 2.

Let j∗ be the least integer such that j∗ε + δi0h+1 ≥ 1, then 1 ≤ j∗ < j0 − i0,
and by the minimality of j∗, we have

m(i0+j∗)h+1 ≡ 1 (mod 3),

contrary to our previous conclusion.

Lemma 8.8 µ 6≡ 1 (mod 3).

49



Proof. Assume to the contrary that µ ≡ 1 (mod 3). Since q ≥ 4 we know
that j0 ≥ i0 + 1. Hence m(i0+1)h+1 6≡ 1 (mod 3). On the other hand,

m(i0+1)h+1 = bmi0h+1 + δi0h+1 + µ + εc
≡ 1 + bε + δi0h+1c (mod 3).

Therefore

ε + δi0h+1 ≥ 1,

m(i0+1)h+1 ≡ 2 (mod 3),

δ(i0+1)h+1 = ε + δi0h+1 − 1.

Since i0 ≤ (q−2p)/3+2/3, αp = βq+1, h = α+β, (c− b)/a = (p+q)/q,
it follows that

3((i0 + 1)h + 1)/(c− b) ∈ I[3(i0 + 1)α + 1, 3(i0 + 1)α + 2; a], and

(3(i0 + 1)α + 1)(c− b)/a ≤ 3((i0 + 1)h + 1)− (q + p− 5)/q.

By Corollary 5.1,
δ(i0+1)h+1 > (q + p− 5)/q,

which implies that

ε > (q + p− 5)/q ≥ (q − 3)/q,

and
δi0h+1 > (q − 3)/q.

First we consider the case q ≥ 6. Then j0 ≥ i0 + 2 and hence

m(i0+2)h+1 6≡ 1 (mod 3).

However
m(i0+2)h+1 ≡ 2 + b2ε + δi0h+1c (mod 3).

As
2 ≤ 2(q − 3)/q + (q − 3)/q < 2ε + δi0h+1 < 3,

we conclude that
b2ε + δi0h+1c = 2.

Hence m(i0+2)h+1 ≡ 1 (mod 3), which is a contradiction.

If q = 4 then p = 3 (as p ≥ 2 and gcd(p, q) = 1), and (c − b)/a = 7/4.
This implies that

I[1, 2; a] ⊃ I[2, 3; c− b].

By Lemma 5.2, m ≡ 0 (mod 3). By Lemma 7.1

(q + p)(m + δ) ≡ 0 (mod 3),
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which implies that 7δ ≡ 0 (mod 3). Since (c − b)/a = 7/4, which implies
that 2(c − b)/a = 3 + 1/2, by Corollary 5.1 we have 1 − δ > 1/2, hence
δ < 1/2. Therefore δ = 0 or δ = 3/7. It is straightforward to verify that

I[18, 19; c− b] ⊂ I[10, 11; a], and 10(c− b)/a = 18− 1/2.

It follows from Lemma 5.2 that

m6 ≡ 2 (mod 3)

and follows from Corollary 5.1 that

δ6 = {6δ} > 1/2.

This implies that δ 6= 0, hence δ = 3/7. Note that 1 < b/(c − b) < 2 and
3b/(c− b) = m + δ. Since m ≡ 0 (mod 3), we conclude that

3b/(c− b) = 3 + δ = 24/7,

which implies that b = 2a, contrary to the general assumption.

Assume that q = 5. Then p = 2, 3, or 4. If q = 5 and p = 2, then
(c− b)/a = 7/5. Hence

I[4, 5; a] ⊃ I[6, 7; c− b]

and 4(c−b)/a = 6−2/5. By Lemma 5.2, m2 = b2(m+δ)c ≡ 2 (mod 3) and
by Corollary 5.1 δ2 > 2/5. This implies that m 6≡ 0 (mod 3) (for otherwise
we would have m2 ≡ b2δc (mod 3).

It is also straightforward to verify that I[10, 11; a] ⊃ I[14, 15; c−b], which
implies that m5 ≡ 0 (mod 3) (by Lemma 5.2).

If m ≡ 1 (mod 3) then by 7.1, 7(1 + δ) ≡ 0 (mod 3), hence

7δ ≡ 2 (mod 3).

Therefore δ = 2/7 or δ = 5/7. If δ = 5/7, then m5 ≡ b5(1 + 5
7
)c ≡ 2

(mod 3), contrary to our previous conclusion. If δ = 2/7 then 3b/(c − b) =
4+ δ = 30/7, which implies that b = 2a, contrary to our general assumption.

If m ≡ 2 (mod 3), then

7(2 + δ) ≡ 0 (mod 3).

Hence δ = 1/7 or 4/7. In any case, δ2 = {2δ} < 2/5, contrary to our previous
conclusion.

If q = 5 and p = 3, then (c− b)/a = 8/5. Hence

I[2, 3; c] ⊂ I[1, 2; a],
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and 2(c− b)/a = 3+1/5. By Lemma 5.2, m ≡ 0 (mod 3) and by Corollary
5.1, δ < 4/5. By Lemma 7.1, 8δ ≡ 0 (mod 3). Therefore δ = 0 or 3/8 or
6/8. However, δ = 0 would imply that 3b/(c − b) = 3, and hence c = 2b,
contrary to our assumption; and δ = 6/8 would imply that 3b/(c − b) =
3+6/8 = 30/8, which implies that b = 2a, again contrary to our assumption.
Therefore δ = 3/8.

Now m ≡ 0 (mod 3) and δ = 3/8 implies that m4 ≡ b4δc ≡ 1 (mod 3).
However, straightforward calculation shows that 12/(c − b) ∈ I[7, 8; a]. By
Lemma 5.1, (n4, m4) is strongly consistent, contrary to the general assump-
tion.

If q = 5 and p = 4, then (c− b)/a = 9/5. Then

I[2, 3; c− b] ⊂ I[1, 2; a],

which implie that m ≡ 0 (mod 3) (by Lemma 5.1). Moreover, 2(c− b)/a =
3+3/5, which implies that 1−δ > 3/5 (by Corollary 5.1), hence δ < 2/5. By
Lemma 7.1, 9(m + δ) ≡ 0 (mod 3), which implies that δ = 0 or 3/9 or 6/9.
Since δ < 2/5, so δ 6= 6/9. Also δ = 0 would imply that 3b/(c− b) = 3 which
implies that c = 2b, contrary to our assumption. Therefore δ = 3/9 = 1/3.
But this implies that 3b/(c− b) = 3 + 1/3, and hence b = 2a, again contrary
to our general assumption.

Lemma 8.9 µ 6≡ 2 (mod 3).

Proof. Assume to the contrary that µ ≡ 2 (mod 3). Then for j =
0, 1, 2, · · · , j0 − i0,

m(i0+j)h+1 ≡ mi0h+1 + bδi0h+1 + j(µ + ε)c
≡ 2j + bjε + δi0h+1c (mod 3).

If there is an integer 1 ≤ j ≤ j0 − i0 such that

jε + δi0h+1 < j − 1,

then let j∗ be the least such integer, we would have

j∗ − 2 ≤ j∗ε + δi0h+1 < j∗ − 1.

This implies that
m(i0+j∗)h+1 ≡ 1 (mod 3),

contrary to our previous conclusion. Therefore for 1 ≤ j ≤ j0 − i0,

jε + δi0h+1 ≥ j − 1.

In particular,
(j0 − i0)ε ≥ (j0 − i0)− 1− δi0h+1.
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Therefore we have

q + p > (q + p)ε ≥ q + p− (1 + δi0h+1)(q + p)/(j0 − i0).

Recall that

(q + p)(ε + µ) ≡ (q + p)(ε + 2) ≡ 0 (mod 3).

It follows that (q + p)ε = q + p− 3i for some integer i ≥ 1.

We consider three cases:

Case 1: q + p ≡ 0 (mod 3).

If q + p ≡ 0 (mod 3), then i0 = (q − 2p)/3, j0 = (2q − p)/3 and
(j0 − i0) = (q + p)/3 and hence

(q + p)ε ≥ q + p− 3− 3δi0h+1 > q + p− 6.

Therefore (q + p)ε = q + p − 3 and ε = 1 − 3/(q + p). Since qε + δ is an
integer, we know that δ = {3q/(q + p)}. Because

δj0h+1 = {j0ε + δ}, and j0 = (2q − p)/3,

straightforward calculation shows that δj0h+1 = 0. As mj0h+1 ≡ 2 (mod 3)
and 3mj0h+1/(c− b) ∈ I[3j0α+1, 3j0α+2; a], this is in contrary to Corollary
5.1.

Case 2: q + p ≡ 1 (mod 3).

If q + p ≡ 1 (mod 3), then i0 = (q − 2p + 2)/3, j0 = (2q − p− 2)/3 and
j0 − i0 = (q + p− 4)/3. Hence

(q + p)ε ≥ q + p− 3− 3δi0h+1 −
12 + 12δi0h+1

q + p− 4
.

Since p ≥ 2, q ≥ 4 and gcd(q, p) = 1, we know that q + p ≥ 7, hence

(12 + 12δi0h+1)/(q + p− 4) < 8.

Therefore the possible values for (q + p)ε are q + p− 3i for i = 1, 2, 3, 4.

If (q + p)ε = q + p− 12 then q + p ≥ 12 and hence

q + p− 3− 3δi0h+1 −
12 + 12δi0h+1

q + p− 4
> q + p− 6− 24

8
= q + p− 9,

which is a contradiction.

If (q + p)ε = q + p− 9 then q + p ≥ 9. Since q + p ≡ 1 (mod 3), we have
q + p ≥ 10. This implies that

q + p− 9 ≥ q + p− 3− 3δi0h+1 − (12 + 12δi0h+1)/6.
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Therefore δi0h+1 ≥ 4/5. Since

i0 = (q − 2p + 2)/3, δi0h+1 = {δ + i0ε}, δ = {9q/(q + p)}

(which follows from the fact that qε + δ is an integer and ε = 1− 9/(p + q)),
we conclude that

δi0h+1 = {9q/(q + p)− 3(q − 2p + 2)/(q + p)}
= 1− 6/(q + p).

Therefore 6/(q + p) < 1/5, and hence q + p > 30. But then

(q + p)ε ≥ q + p− 3− 3δi0h+1 −
12 + 12δi0h+1

q + p− 4

> q + p− 6− 24

26
,

which is a contradiction.

If (q + p)ε = q + p− 3, then ε = 1− 3/(p + q). Since qε + δ is an integer,
we have δ = {3q/(q + p)}. Since j0 = (2q − p− 2)/3 and δj0h+1 = {(j0ε + δ},
easy calculation shows that

δj0h+1 = 2/(q + p).

However, since (c− b)/a = (q + p)/q, j0 = (2q − p− 2)/3 and αp = βq + 1,
it is straightforward to verify that

(3j0α + 1)(c− b)/a = (3(j0h + 1)− 2/q.

Since mj0h+1 ≡ 2 (mod 3), this is in contrary to Corollary 5.1.

Now we consider the case when (q + p)ε = q + p− 6. If q > 5p then since
qε + δ is an integer, we conclude that

δ = (q − 5p)/(q + p).

If m ≡ 2 (mod 3) then

3b/(c− b) = 5 + δ = 6q/(q + p),

which implies that b = 2a, contrary to the general assumption. If m ≡ 0
(mod 3) then, contrary to our previous conclusion, we have

mi0h+1 = bi0(µ + ε) + m + δc

≡ bq − 5p

q + p
− q − 2p + 2

3

6

q + p
c

≡ 1 (mod 3).
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If m ≡ 1 (mod 3) then, contrary to our previous conclusion, we have

mi0h+1 = bi0(µ + ε) + δc
≡ 1 + bi0(2 + ε) + δc

≡ 1 + bq − 5p

q + p
− q − 2p + 2

3

6

q + p
c

≡ 2 (mod 3).

Thus we may assume that q < 5p. If 5p > q > 2p then δ = (2q−4p)/(q +
p).

If m ≡ 2 (mod 3), then, contrary to our previous conclusion, we have

mi0h+1 = bi0(µ + ε) + m + δc
≡ 2 + bi0(2 + ε) + δc

≡ 2 + b2q − 4p

q + p
− q − 2p + 2

3

6

q + p
c

≡ 1 (mod 3).

If m ≡ 1 (mod 3), then

3b/(c− b) = 4 + δ

and hence
b/(c− b) = 2q/(q + p),

which implies that b = 2a, contrary to our general assumption.

If m ≡ 0 (mod 3) then, contrary to our previous conclusion, we have

mi0h+1 = bi0(µ + ε) + m + δc
≡ bi0(2 + ε) + δc

≡ b2q − 4p

q + p
− q − 2p + 2

3

6

q + p
c

≡ 2 (mod 3).

If q < 2p, then δ = 3(q − p)/(q + p), and

I[1, 2; a] ⊃ I[2, 3; c− b].

By Lemma 5.2, m ≡ 0 (mod 3). Hence

3b/(c− b) = 3 + δ = 6q/(q + p).

This implies that b = 2a, contrary to the general assumption. This completes
the proof of Case 2.

Case 3: q + p ≡ 2 (mod 3).
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If q + p ≡ 2 (mod 3) then

i0 = (q − 2p + 1)/3, j0 = (2q − p− 1)/3

and
j0 − i0 = (q + p− 2)/3.

Hence

q + p > (q + p)ε > q + p− 3− 3δi0h+1 −
6 + 6δi0h+1

q + p− 2
.

Since q + p ≥ 7, we have

(q + p)ε ≥ q + p− 8.

Therefore the possible values for (q + p)ε are q + p− 3 and q + p− 6.

If (q+p)ε = q+p−3, then ε = 1−3/(q+p) and hence δ = {(q−2p)/(q+p)}
(recall that qε + δ is an integer). Because

δj0h+1 = {j0ε + δ}

and j0 = (2q − p− 1)/3, straightforward calculation shows that

δj0h+1 = 1/(q + p).

However, it is easy to verify that

(3j0α + 1)(c− b)/a = (3(j0h + 1)− 1/q.

Since mj0h+1 ≡ 2 (mod 3), this is in contrary to Corollary 5.1.

It remains to consider the case when (q + p)ε = q + p − 6. The proof
is similar to the corresponding part of the proof for Case 2. If q > 5p then
δ = (q − 5p)/(q + p) (by using the fact that qε + δ is an integer). If m ≡ 2
(mod 3) then

3b/(c− b) = 5 + δ = 6q/(q + p),

which implies that b = 2a, contrary to the general assumption. If m ≡ 0
(mod 3) then, contrary to our previous conclusion, we have

mi0h+1 = bi0(µ + ε) + m + δc

≡ bq − 5p

q + p
− q − 2p + 1

3

6

q + p
c

≡ 1 (mod 3).

If m ≡ 1 (mod 3) then, contrary to our previous conclusion, we have

mi0h+1 = bi0(µ + ε) + δc
≡ 1 + bi0(2 + ε) + δc

≡ 1 + bq − 5p

q + p
− q − 2p + 1

3

6

q + p
c

≡ 2 (mod 3).
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Thus we may assume that q < 5p. If 5p > q > 2p then

δ = (2q − 4p)/(q + p).

If m ≡ 2 (mod 3), then, contrary to our previous conclusion, we have

mi0h+1 = bi0(µ + ε) + m + δc
≡ 2 + bi0(2 + ε) + δc

≡ 2 + b2q − 4p

q + p
− q − 2p + 1

3

6

q + p
c

≡ 1 (mod 3).

If m ≡ 1 (mod 3), then 3b/(c− b) = 4 + δ and hence

b/(c− b) = 2q/(q + p),

which implies that b = 2a, contrary to our general assumption. If m ≡ 0
(mod 3) then, contrary to our previous conclusion, we have

mi0h+1 = bi0(µ + ε) + m + δc
≡ bi0(2 + ε) + δc

≡ b2q − 4p

q + p
− q − 2p + 1

3

6

q + p
c

≡ 2 (mod 3).

If q < 2p, then δ = 3(q − p)/(q + p), and

I[1, 2; a] ⊃ I[2, 3; c− b].

By Lemma 5.2, m ≡ 0 (mod 3). Hence

3b/(c− b) = 3 + δ = 6q/(q + p).

This implies that b = 2a, contrary to the general assumption.

Combining Lemmas 8.7, 8.8, 8.9, we obtain the final contradiction. There-
fore under the general assumption, we cannot have 2a > c− b > a.

9 The case a > c− b

In this section we assume that a > c − b, and derive a contradiction to our
general assumption. Since a > c− b and (c− b)/a = t + p/q, we have t = 0
and (c− b)/a = p/q.
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Lemma 9.1 If there are integers i, j such that

I[3i + 1, 3i + 2; a] ⊂ I[3j − 1, 3j; c− b],

or
I[3i + 1, 3i + 2; a] ⊂ I[3j, 3j + 1; c− b],

then c < 3a. In general, we have c < 4a.

Proof. Suppose to the contrary that there are integers i, j such that

I[3i + 1, 3i + 2; a] ⊂ I[3j − 1, 3j; c− b], and c ≥ 3a.

Since I[3i + 1, 3i + 2; a] has length 1/a ≥ 3/c, it follows that there is an
integer u such that

u/c, (u + 1)/c, (u + 2)/c ∈ I[3i + 1, 3i + 2; a] ∩ I[3j − 1, 3j; c− b].

By Lemma 5.1,

(u− 3j, u), (u + 1− 3j, u + 1), (u + 2− 3j, u + 2)

are all strongly consistent pairs. One of the three integers u, u + 1, u + 2 is
equivalent to 1 modulo 3, which is in contrary to the general assumption.

The case when I[3i + 1, 3i + 2; a] ⊂ I[3j, 3j + 1; c− b] is proved similarly.

Next we show that in general we have c < 4a.

If q = 2, then 1/a = 1/2(c − b). Hence I[4, 5; a] ⊂ I[2, 3; c − b], which
implies that c < 3a.

If q ≥ 3, then since the arc [2/(c− b), 3/(c− b)] of C has length at least
3/(q(c− b)), it contains an image point. Suppose

f(i) = φ((3i + 1)/a) ∈ [2/(c− b), 3/(c− b)].

This means that for some integer j,

(3j − 1)/(c− b) ≤ (3i + 1)/a ≤ 3j/(c− b).

Since 1/a < 1/(c− b), it follows that

I[3i + 1, 3i + 2; a] ⊂ I[3j − 1, 3j + 1; c− b].

Assume to the contrary of the Lemma that c ≥ 4a, i.e., 1/a ≥ 4/c. It
follows that there is an integer u such that for ` = 0, 1, 2, 3,

(u + `)/c ∈ I[3i + 1, 3i + 2; a].
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Now it is easy to see that either there is an ` ∈ {0, 1, 2, 3} such that u+` ≡ 1
(mod 3) and

(u + `)/c ∈ I[3i + 1, 3i + 2; a] ∩ I[3j − 1, 3j; c− b]

or there is an ` ∈ {0, 1, 2, 3} such that u + ` ≡ 2 (mod 3) and

(u + `)/c ∈ I[3i + 1, 3i + 2; a] ∩ I[3j, 3j + 1; c− b].

Applying Lemma 5.1, we obtain a contrary to the general assumption.

Let β(m + δ) = µ + ε. Then

p(µ + ε) = pβ(m + δ) ≡ 0 (mod 3)

(cf. Lemma 7.1). In particular, pε is an integer.

Also observe that

q(µ + ε) + m + δ = qβ(m + δ) + m + δ

= (qβ + 1)(m + δ)

= αp(m + δ)

≡ 0 (mod 3).

In particular, qε + δ is an integer.

Recall that mj + δj = 3jc/(c− b) = j(m + δ) and nj + δj = 3jb/(c− b) =
j(n + δ). In the following, we shall frequently use the formula that

mjβ+1 + δjβ+1 = j(µ + ε) + m + δ.

Lemma 9.2 p 6= 1.

Proof. If p = 1 then q ≥ 2 = 2p, i.e., (c − b)/a = p/q ≤ 1/2. Hence
2/a ≤ 1/(c− b), which implies that

I[1, 2; a] ⊂ [0, 1/(c− b)].

By Lemma 9.1, c < 3a. By Lemma 7.1, we have

p(m + δ) = m + δ ≡ 0 (mod 3).

Therefore δ = 0 and m ≡ 0 (mod 3). Recall that m + δ = 3c/(c − b) =
3b/(c− b)+3 = n+ δ +3, it follows that b/(c− b) = n/3 = s and c/(c− b) =
m/3 = s+1 for some integer s. Since c > 2a and a/(c−b) = q, it follows that
s ≥ 2q. Therefore b ≥ 2a. It follows that 4/b ≤ 2/a. Since 4/b > 4/c > 1/a,
we conclude that

4/b ∈ I[1, 2; a] ⊂ [0, 1/(c− b)].

Hence, by Lemma 5.1, (4, 4) is strongly consistent, contrary to the general
assumption.
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Lemma 9.3 p 6= 2.

Proof. Assume to the contrary that p = 2. Since gcd(p, q) = 1, we know
that q = 2u + 1 for some integer u. It follows that (3u + 3/2)/a = 3/(c− b),
i.e., the point 3/(c− b) is the middle point of the interval I[3u+1, 3u+2; a].
By lemma 5.1, (n, m) is strongly consistent, and hence m 6≡ 1 (mod 3).
Since 1/a > 1/b, at least one of the points n/b, (n + 1)/b is contained in
I[3u + 1, 3u + 2; a].

If (n + 1)/b ∈ I[3u + 1, 3u + 2; a], then by Lemma 5.1, (n + 1, m + 1) is
strongly consistent, and hence m ≡ 2 (mod 3). By Lemma 7.1, 2(m+δ) ≡ 0
(mod 3). But this is impossible because 0 ≤ 2δ < 2.

If n/b ∈ I[3u+ 1, 3u+ 2; a] then by Lemma 5.1, (n− 1, m− 1) is strongly
consistent, and hence m ≡ 0 (mod 3). Thus m = 3s for some integer s.
By Lemma 7.1, 2(m + δ) ≡ 0 (mod 3). Therefore 2δ ≡ 0 (mod 3) hence
δ = 0. Then it follows from the definition of m, n and δ that

b/(c− b) = s, c/(c− b) = s + 1.

Since 1/c < 1/(2a), we conclude that

q/c < q/(2a) = 1/(c− b) = s/b = (s + 1)/c.

Therefore q ≤ s, and hence 1/b ≤ 1/(2a). This implies (by the definition of
n) that

(n + 1)/b ≤ 3/(c− b) + 1/b ≤ (3u + 2)/a,

hence (n + 1)/b ∈ I[3u + 1, 3u + 2; a], and by Lemma 5.1, (n + 1, m + 1)
is strongly consistent, contrary to the general assumption (as m + 1 ≡ 1
(mod 3)).

For the remaining, we assume that p ≥ 3. Let i0 = dq − 2p/3e and
j0 = bq − p/3c. In other words,
if p ≡ 0 (mod 3), then i0 = q − 2p/3 and j0 = q − p/3;
if p ≡ 1 (mod 3), then i0 = q − 2p/3 + 2/3 and j0 = q − p/3− 2/3;
if p ≡ 2 (mod 3), then i0 = q − 2p/3 + 1/3 and j0 = q − p/3− 1/3. Since
p ≥ 3, we know that i0 ≤ j0, and that i0 = j0 if and only if p = 4.

Since αp = βq + 1, and (c− b)/a = p/q, we have

3jα(c− b)

a
=

3jαp

q

=
3j(βq + 1)

q

= 3jβ +
3j

q
,

60



or equivalently,

3jα

a
=

3jβ

c− b
+

3j

q(c− b)
.

This formula will be used frequently in the remaining.

Lemma 9.4 For i0 ≤ j ≤ j0, mjβ+1 6≡ 1 (mod 3).

Proof. Note that

(3jα + 1)(c− b)

a
= 3jβ +

3j + p

q
,

and

(3jα + 2)(c− b)

a
= 3jβ +

3j + 2p

q
.

Since
3q − 2p ≤ 3i0 ≤ 3j ≤ 3j0 ≤ 3q − p,

we conclude that
(3jα + 1)(c− b)

a
≤ 3(jβ + 1),

and
(3jα + 2)(c− b)

a
≥ 3(jβ + 1).

Hence
3(jβ + 1)/(c− b) ∈ I[3jα + 1, 3jα + 2; a].

By Lemma 5.1, (njβ+1, mjβ+1) is a strongly consistent pair for j = i0, i0 +
1, · · · , j0. Hence mjβ+1 6≡ 1 (mod 3) for j = i0, i0 + 1, · · · , j0.

Lemma 9.5 If p ≡ 1 (mod 3), then (n(i0−1)β+1 − 1, m(i0−1)β+1 − 1) is
strongly consistent.

Proof. Assume p ≡ 1 (mod 3). Then 3i0 = 3q − 2p + 2, and hence

(3(i0 − 1)α + 1)(c− b)

a
= 3(i0 − 1)β +

3(i0 − 1)

q
+

p

q

= 3(i0 − 1)β + 3− p + 1

q

≥ 3((i0 − 1)β + 1)− 1.
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Similarly, we have

(3(i0 − 1)α + 2)(c− b)

a

= 3((i0 − 1)β + 1)− 1

q

< 3((i0 − 1)β + 1).

This implies that

I[3(i0 − 1)α + 1, 3(i0 − 1)α + 2; a]

⊂ I[3((i0 − 1)β + 1)− 1, 3((i0 − 1)β + 1); c− b].

Since c > 2a, we have

m(i0−1)β+1 − 1

c
=

3((i0 − 1)β + 1)

c− b
−

1 + δ(i0−1)β+1

c

>
3((i0 − 1)β + 1)

c− b
− 2

c

>
3((i0 − 1)β + 1)

c− b
− 1

a

>
3(i0 − 1)α + 2

a
− 1

a

=
3(i0 − 1)α + 1

a
.

Since (c− b)/a = p/q, p ≥ 4 and c < 4a (by Lemma 9.1), we have

1/c > 1/(4a) = p/(4q(c− b)) ≥ 1/(q(c− b)).

This implies that

m(i0−1)β+1 − 1

c
≤ 3((i0 − 1)β + 1)

c− b
− 1

c

<
3((i0 − 1)β + 1)

c− b
− 1

q(c− b)

=
3(i0 − 1)α + 2

a
.

Therefore,

m(i0−1)β+1 − 1

c
∈ I[3(i0 − 1)α + 1, 3(i0 − 1)α + 2; a]

⊂ I[3((i0 − 1)β + 1)− 1, 3((i0 − 1)β + 1); c− b].

By Lemma 5.1, (n(i0−1)β+1 − 1, m(i0−1)β+1 − 1) is strongly consistent.

Lemma 9.6 mi0β+1 ≡ 0 (mod 3).
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Proof. We consider three cases.

Case 1 p ≡ 0 (mod 3).

In this case, 3i0 = 3q − 2p. It follows that

(3i0α + 2)(c− b)

a
=

(3i0α + 2)p

q

=
3i0βq + 3i0 + 2p

q

= 3(i0β + 1).

Therefore

(3i0α + 2)

a
=

3(i0β + 1)

c− b
.

Since 1/a < 1/(c− b), it follows that

I[3i0α + 1, 3i0α + 2; a] ⊂ I[3(i0β + 1)− 1, 3(i0β + 1); c− b].

Recall that 2/c < 1/a. Therefore

mi0β+1 − 1

c
=

3(i0β + 1)

c− b
− 1 + δi0β+1

c

≥ 3(i0β + 1)

c− b
− 2

c

≥ 3(i0β + 1)

c− b
− 1

a

=
(3i0α + 1)

a

Since
mi0β+1 − 1

c
≤ 3(i0β + 1)

c− b
=

(3i0α + 2)

a
,

we conclude that

mi0β+1 − 1

c
∈ I[3i0α + 1, 3i0α + 2; a] ∩ I[3i0β + 2, 3i0β + 3; c− b].

By Lemma 5.1, (ni0β+1 − 1, mi0β+1 − 1) is strongly consistent. Therefore

mi0β+1 − 1 6≡ 1 (mod 3).

By Lemma 9.4, mi0β+1 6≡ 1 (mod 3). Therefore

mi0β+1 ≡ 0 (mod 3).

Case 2 p ≡ 1 (mod 3).
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In this case, 3i0 = 3q − 2p + 2. It follows that

(3i0α + 1)(c− b)

a
=

(3i0α + 1)p

q

=
3i0βq + 3i0 + p

q

= 3(i0β + 1)− (p− 2)/q.

Assume to the contrary that mi0β+1 6≡ 0 (mod 3). Then by Lemma 9.4,
mi0β+1 ≡ 2 (mod 3). By Corollary 5.1,

δi0β+1 >
(p− 2)b

q(c− b)
.

As 1/a = p/(q(c− b)), we conclude that

δi0β+1 >
p− 2

q

b

c− b
>

p− 2

q

a

c− b
= (p− 2)/p.

By Corollary 7.1, δi0β+1 = s/p for some integer s, hence we must have

δi0β+1 = (p− 1)/p.

Now (p− 1)/p = δi0β+1 > (p− 2)b/(pa) implies that

(p− 1)a > (p− 2)b.

As p ≥ 4, we have 3a > 2b, hence

4/c < 2/a = 2p/(q(c− b)) < 3/b.

This implies that
q < 2p.

Indeed, if q ≥ 2p, then

4/c < 2p/(q(c− b)) ≤ 1/(c− b),

which implies that 3/b < 4/c, contrary to the above.

By Lemma 9.5, (n(i0−1)β+1−1, m(i0−1)β+1−1) is strongly consistent. Now

m(i0−1)β+1 = mi0β+1 − µ + bδi0β+1 − εc.

Since ε ≤ (p− 1)/p and δi0β+1 = (p− 1)/p, we conclude that

m(i0−1)β+1 ≡ mi0β+1 − µ (mod 3).

Since m(i0−1)β+1 6≡ 2 (mod 3) and mi0β+1 ≡ 2 (mod 3), we conclude that
µ 6≡ 0 (mod 3).
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Thus either µ ≡ 1 (mod 3) or µ ≡ 2 (mod 3). Assume first that µ ≡ 1
(mod 3). Since δi0β+1 = (p− 1)/p, we conclude that δ 6= 0, and hence ε 6= 0
(as qε + δ is an integer). Because pε is an integer, ε ≥ 1/p, and hence

bε + δi0β+1c = 1.

This implies that

m(i0+1)β+1 = mi0β+1 + u + bδi0β+1 + εc
≡ 1 (mod 3).

By applying Lemma 9.4, we conclude that j0 = i0, i.e., p = 4. Since p < q <
2p, and gcd(p, q) = 1, the possible values for q are 5 and 7.

If q = 7 then α = 2, β = 1 and i0 = q − 2p/3 + 2/3 = 5. Hence
µ + ε = m + δ, i.e., µ = m, ε = δ. Moreover

mi0β+1 + δi0β+1 = i0(µ + ε) + m + δ

= 6(m + δ).

Since mi0β+1 ≡ 2 (mod 3) and δi0β+1 = (p − 1)/p = 3/4, we conclude
that 6δ = 2 + 3/4 = 11/4. However, by Lemma 7.1, 4δ is an integer, which
is an obvious contradiction.

If q = 5 then α = 4, β = 3 and i0 = q − 2p/3 + 2/3 = 3. Since

β(m + δ) = 3(m + δ) = µ + ε

and µ ≡ 1 (mod 3), we conclude that 3δ = 1 + ε. Therefore δ 6= 0, which
implies that ε 6= 0 (because qε + δ is an integer.) As 4ε is an integer, we
know that ε ≥ 1/4. Because 4δ is an integer, we know that δ = s/4 for
some integer s. Now 3δ = 1 + ε implies that δ = ε = 1/2. But i0 = 3
implies that δi0β+1 = {3ε + δ} = 0, contrary to the previous conclusion that
δi0β+1 = (p− 1)/p = 3/4.

Assume next that µ ≡ 2 (mod 3). If p = 4, then q = 5 or 7. If q = 7,
we obtain the same contradiction as above. If q = 5 then α = 4, β = 3 and
i0 = 3. Since

β(m + δ) = 3(m + δ) = µ + ε

and µ ≡ 2 (mod 3), we conclude that 3δ = 2 + ε. Since ε ≥ 1/4 and
4δ is an integer, it follows that δ = 3/4 and ε = 1/4. But i0 = 3 implies
that δi0β+1 = {3ε + δ} = 1/2, contrary to the previous conclusion that
δi0β+1 = (p− 1)/p = 3/4.

Thus we may assume that p ≥ 7, and hence j0 − i0 ≥ 1. For i0 ≤ j ≤ j0,
we have

mjβ+1 = mi0β+1 + b(j − i0)(µ + ε) + δi0β+1c
≡ 2 + 2(j − i0) + b(j − i0)ε + δi0β+1c (mod 3)
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If
(j0 − i0)ε + δi0β+1 < j0 − i0,

then let j∗ be the least integer such that

(j∗ − i0)ε + δi0β+1 < j∗ − i0.

Then i0 + 1 ≤ j∗ ≤ j0, and by the minimality of j∗, we have b(j∗ − i0)ε +
δi0β+1c = j∗ − i0 − 1. It follows that mj∗β+1 ≡ 1 (mod 3), contrary to
Lemma 9.4. Therefore we have

(j0 − i0)ε + δi0β+1 ≥ j0 − i0,

and hence mj0β+1 ≡ 2 (mod 3). It follows from above that

ε ≥ 1− δi0β+1/(j0 − i0)

= 1− (p− 1)/(p(j0 − i0)).

Since j0 − i0 = (p− 4)/3, it follows that

pε ≥ p− 3(p− 1)/(p− 4).

Since p ≥ 7, we conclude that pε ≥ p − 6. Because p(µ + ε) ≡ 0 (mod 3),
we conclude that pε = p−3 or p−6. If pε = p−6, then 3(p−1)/(p−4) ≥ 6,
and it follows that p = 7 and ε = 1/7. Hence j0 − i0 = 1 and

δj0β+1 = {δi0β+1 + ε} = {6/7 + 1/7} = 0.

Since mj0β+1 ≡ 2 (mod 3), and (by the proof of Lemma 9.4)

3(j0β + 1)/(c− b) ∈ I[3j0α + 1, 3j0α + 2; a],

this is in contrary to Corollary 5.1.

If pε = p− 3, then δ = {3q/p} (because qε + δ is an integer) and hence

δi0β+1 = {i0ε + δ}

= {3q − 2p + 2

3
(1− 3

p
) +

3q

p
}

=
p− 2

p
,

contrary to the previous conclusion that δi0β+1 = (p− 1)/p.

Case 3 p ≡ 2 (mod 3).

Assume to the contrary that mi0β+1 ≡ 2 (mod 3). As p ≡ 2 (mod 3),
we have 3i0 = 3q − 2p + 1. Therefore

(3i0α + 1)(c− b)

a
=

(3i0α + 1)p

q
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=
3i0βq + 3i0 + p

q

=
3i0βq + 3q − p + 1

q

= 3(i0β + 1)− p− 1

q
.

Because (by the proof of Lemma 9.4)

3(i0β + 1)/(c− b) ∈ I[3i0α + 1, 3i0α + 2; a],

by Corollary 5.1,
δi0β+1(c− b)/b > (p− 1)/q.

As 1/a = p/(q(c− b)), we conclude that

δi0β+1 >
p− 1

q

b

c− b

>
p− 1

q

q

p

=
p− 1

p
.

However, by Corollary 7.1, δi0β+1 = s/p for some integer s, which is a con-
tradiction.

Lemma 9.7 If p ≡ 0 (mod 3), then mj0β+1 ≡ 2 (mod 3).
If p ≡ 2 (mod 3) and mj0β+1 ≡ 0 (mod 3), then δj0β+1 = 0.
If p ≡ 1 (mod 3) and mj0β+1 ≡ 0 (mod 3), then either δj0β+1 = 0, or

δj0β+1 = 1/p, 2p > q and (p− 1)a > (p− 2)b.

Proof. If p ≡ 0 (mod 3), then 3j0 = 3q − p, and it follows that

(3j0α + 2)(c− b)/a = 3(j0β + 1) + p/q.

If mj0β+1 ≡ 0 (mod 3), then by Corollary 5.1,

1− δj0β+1 >
pb

q(c− b)
.

As b/(c− b) > a/(c− b) = q/p, we conclude that

1− δj0β+1 >
p

q

b

c− b
>

p

q

q

p
= 1,

which is an obvious contradiction.
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If p ≡ 2 (mod 3), then 3j0 = 3q − p− 1, and it follows that

(3j0α + 2)(c− b)

a
=

(3j0α + 2)p

q

=
3j0βq + 3j0 + 2p

q

= 3(j0β + 1) + (p− 1)/q.

If mj0β+1 ≡ 0 (mod 3), then by Corollary 5.1,

1− δj0β+1 >
(p− 1)b

q(c− b)
.

As 1/a = p/(q(c− b)), we conclude that

1− δj0β+1 >
p− 1

q

b

c− b
=

p− 1

q

b

a

a

c− b

>
p− 1

q

a

c− b
=

p− 1

p
.

As pδj is an integer for all j, we conclude that

δj0β+1 = 0.

If p ≡ 1 (mod 3), then 3j0 = 3q − p− 2. Therefore

(3j0α + 2)(c− b)/a = 3(j0β + 1) + (p− 2)/q.

If mj0β+1 ≡ 0 (mod 3), then by Corollary 5.1,

1− δj0β+1 >
(p− 2)b

q(c− b)
.

As 1/a = p/(q(c− b)), we conclude that

1− δj0β+1 >
p− 2

q

b

c− b
>

p− 2

q

a

c− b
= (p− 2)/p.

Hence δj0β+1 < 2/p. By Corollary 7.1, δj0β+1 = s/p for some integer s, hence
either

δj0β+1 = 0,

or
δj0β+1 = 1/p.

If δj0β+1 = 1/p, then (p− 1)/p = 1− δi0β+1 > (p− 2)b/(pa) implies that
(p − 1)a > (p − 2)b. This implies that q < 2p. Indeed, if q ≥ 2p then since
2/c < 1/a, we conclude that

4/c < 2/a = 2p/(q(c− b)) ≤ 1/(c− b).

It is easy to see that 4/c < 1/(c − b) implies that 3/b < 4/c. Hence 3/b <
2/a, which implies that 2b > 3a, contrary to the previous conclusion that
(p− 1)a > (p− 2)b (as p ≥ 4). This completes the proof of Lemma 9.7.
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Lemma 9.8 p 6= 4.

Proof. Suppose p = 4, then i0 = j0 = q − 2. By Lemma 9.6, mi0β+1 =
mj0β+1 ≡ 0 (mod 3). By Lemma 9.7, either δj0β+1 = 0 or

δj0β+1 = 1/p, 2p > q and (p− 1)a > (p− 2)b.

Assume first that δi0β+1 = 1/p = 1/4. Then p < q < 2p. Therefore either
q = 5 or q = 7.

If q = 5 then α = 4, β = 3 and i0 = 3. Hence i0β + 1 = 10, and
1/4 = δi0β+1 = {10δ}. This is impossible, because by Lemma 7.1, δ = s/4
for some integer s.

If q = 7 then α = 2, β = 1 and i0 = 5. Hence i0β + 1 = 6, and we obtain
the same contradiction.

It remains to consider the case that δi0β+1 = 0. Because gcd(p, q) = 1,
we know that either q = 4s + 1 or q = 4s + 3 for some integer s ≥ 1.

Note that
(3i0α + 1.5)(c− b)

a
= 3(i0β + 1).

As (c− b)/a = 4/q, we have

3i0α + 1

a
=

3(i0β + 1)

c− b
− 2

q(c− b)
,

and
3i0α + 2

a
=

3(i0β + 1)

c− b
+

2

q(c− b)
.

First we show that 2a > b. Indeed, if to the contrary that 2a ≤ b, then
because δi0β+1 = 0, we have

ni0β+1 + 1

b
=

3(i0β + 1)

c− b
+

1

b

≤ 3(i0β + 1)

c− b
+

1

2a

=
3(i0β + 1)

c− b
+

2

q(c− b)

=
3i0α + 2

a
.

Therefore

ni0β+1 + 1

b
∈ I[3(i0β + 1), 3(i0β + 1) + 1; c− b]

∩ I[3i0α + 1, 3i0α + 2; a].
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Hence by Lemma 5.1, (ni0β+1 + 1, mi0β+1 + 1) is strongly consistent. As
mi0β+1 + 1 ≡ 1 (mod 3), this is in contrary to the general assumption.

If q = 4s + 1, then α = 3s + 1, β = 3 and i0 = 4s− 1. If q = 4s + 3, then
α = s + 1, β = 1 and i0 = 4s + 1. In any case,

i0β + 1 ≡ 2 (mod 4).

Since δi0β+1 = {(i0β + 1)δ} = 0, it follows that δ 6= 3/4, 1/4. Since 4δ is
an integer, it follows that the possible values for δ are 0 and 1/2.

First we consider the case that δ = 0. Then δj = 0 for all j, and ε = 0.
It is straightforward to verify that

3(i0 + 1)α + 1

a
=

3((i0 + 1)β + 1)

c− b
+

1

q(c− b)
,

3(i0 + 1)α + 2

a
=

3((i0 + 1)β + 1)

c− b
+

5

q(c− b)
.

As q ≥ 5, it follows that

I[3(i0 + 1)α + 1, 3(i0 + 1)α + 2; a]

⊂ I[3((i0 + 1)β + 1), 3((i0 + 1)β + 1) + 1; c− b].

By lemma 9.1, 2a < c < 3a. Recall that m(i0+1)β+1 + δ(i0+1)β+1 = mi0β+1 +
δi0β+1 + µ + ε. Therefore

m(i0+1)β+1 ≡ µ (mod 3),

and
δ(i0+1)β+1 = 0.

By using the facts that δ(i0+1)β+1 = 0, 2a < c < 3a and a < b < 2a, it is easy
to verify that

m(i0+1)β+1 + 1

c
∈ I[3(i0 + 1)α + 1, 3(i0 + 1)α + 2; a],

and
n(i0+1)β+1 + 1

b
∈ I[3(i0 + 1)α + 1, 3(i0 + 1)α + 2; a].

By Lemma 5.1, (n(i0+1)β+1, m(i0+1)β+1) is strongly consistent, and
(n(i0+1)β+1 + 1, m(i0+1)β+1 + 1) is strongly consistent. As n(i0+1)β+1 ≡ µ
(mod 3), by the general assumption, we have µ ≡ 2 (mod 3).

If 2/b ≤ 5/(q(c− b)), then it is easy to verify that

n(i0+1)β+1 + 2

b
∈ I[3(i0 + 1)α + 1, 3(i0 + 1)α + 2; a],
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which implies that (n(i0+1)β+1 + 2, m(i0+1)β+1 + 2) is strongly consistent, con-
trary to the general assumption. Thus we may assume that 2/b > 5/(q(c−b)),
which implies that 8a > 5b.

If q ≥ 11, then since

1

c− b
=

q

4a
≥ 11

4a
>

11

2c
,

we conclude that 11b > 9c > 18a, contrary to the previous conclusion that
8a > 5b. Therefore we have 5 ≤ q ≤ 10. As gcd(q, 4) = 1, the possible values
for q are 5, 7 and 9.

If q = 5 or q = 9, then β = 3, and µ = b3(m + δ)c ≡ 2 (mod 3),
which is an obvious contradiction (as δ = 0). If q = 7, then β = 1, hence
µ = m ≡ n ≡ 2 (mod 3). As a < b < 14(c − b)/5, we have 21/4 <
n + δ = 3b/(c − b) < 42/5. As n ≡ 2 (mod 3) and δ = 0, so n = 8, i.e.,
3b/(c− b) = 8. It follows that

m(i0+2)β+1 − 2

b
=

3((i0 + 2)β + 1)

c− b
− 2

b

=
3((i0 + 2)β + 1)

c− b
− 3

4(c− b)
.

It is straightforward to verify that

3(i0 + 2)α− 2

a
=

3(i0 + 2)β + 1)

c− b
− 8

7(c− b)
,

3(i0 + 2)α− 1

a
=

3((i0 + 2)β + 1)

c− b
− 4

7(c− b)
.

Hence

m(i0+2)β+1 − 2

b
∈ I[3(i0 + 2)α− 2, 3(i0 + 2)α− 1; a]

∩ I[3((i0 + 2)β + 1)− 1, 3((i0 + 2)β + 1); c− b].

By Lemma 5.1, (n(i0+2)β+1 − 3, m(i0+2)β+1 − 3) is strongly consistent. But
m(i0+2)β+1 ≡ 2µ ≡ 1 (mod 3), which is in contrary to the general assump-
tion.

Now we consider the case that δ = 1/2.

If q = 4s + 1, then α = 3s + 1, β = 3 and i0 = 4s− 1, and

i0β + 1 ≡ 1 (mod 3),
1

2
(i0β + 1) ≡ 2 (mod 3).
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Because

mi0β+1 = b(i0β + 1)(m + 1/2)c

= m(i0β + 1) +
1

2
(i0β + 1)

≡ m + 2

≡ 0 (mod 3),

we conclude that n ≡ m ≡ 1 (mod 3).

As 2a > b, we have 3b/(c− b) = n + 1/2 < 6a/(c− b) = 6s + 1 + 1/2, it
follows that n ≤ 6s. As n ≡ 1 (mod 3), we conclude that n ≤ 6s− 2. So

3b

c− b
≤ 6s− 2 +

1

2
,

which implies that

2b

c− b
≤ 4s− 1,

and hence

c− b

c
≥ 2

4s + 1
.

As a/(c− b) = (4s + 1)/4, we conclude that

a

c
=

a

c− b

c− b

c

≥ 4s + 1

4

2

4s + 1

=
1

2
.

This is in contrary to the general assumption.

Assume now that q = 4s + 3. Then α = s + 1, β = 1 and i0 = 4s + 1.
Since β = 1 and δ = 1/2, we have µ = m ≡ n (mod 3) and ε = δ = 1/2.

Since 2a > b, we have

3b

c− b
= n + 1/2 <

6a

c− b
= 6s + 4 +

1

2
.

Hence n ≤ 6s + 3. If n ≤ 6s + 1, then

3b/(c− b) = n + 1/2 ≤ 6s + 3/2,

and
2b/(c− b) = n/3 + 1/6 ≤ 4s + 1.
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Therefore (4s + 3)b ≤ (4s + 1)c and c− b ≥ 2c/(4s + 3). It follows that

a

c
≥ a

c− b

2

4s + 3
= 1/2.

This is in contrary to the general assumption.

Thus we may assume that 6s + 2 ≤ n ≤ 6s + 3. If n = 6s + 2, then

b

c− b
= 2s +

5

6
>

3q

10

and it follows that
2− 1/2

b
<

5

q(c− b)
.

Therefore

n(i0+1)β+1 + 2

b
=

3((i0 + 1)β + 1)

c− b
+

2− 1/2

b

<
3((i0 + 1)β + 1)

c− b
+

5

q(c− b)

=
3(i0 + 1)α + 2

a

≤ 3((i0 + 1)β + 1) + 1

c− b
.

Because

n(i0+1)β+1 + 2

b
=

3((i0 + 1)β + 1)

c− b
+

2− 1/2

b

>
3((i0 + 1)β + 1)

c− b
+

1

b

>
3((i0 + 1)β + 1)

c− b
+

1

2a

=
3((i0 + 1)β + 1)

c− b
+

2

q(c− b)

>
3(i0 + 1)α + 1

a
,

we conclude that

n(i0+1)β+1 + 2

b
∈ I[3(i0 + 1)α + 1, 3(i0 + 1)α + 2; a]

⊂ I[3((i0 + 1)β + 1), 3((i0 + 1)β + 1) + 1; c− b].

By Lemma 5.1, (n(i0+1)β+1 + 2, m(i0+1)β+1 + 2) is strongly consistent.

However, µ ≡ n ≡ 2 (mod 3). Hence,

m(i0+1)β+1 = bmi0β+1 + δi0β+1 + µ + εc
≡ 2 (mod 3),
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which implies that m(i0+1)β+1 + 2 ≡ 1 (mod 3), contrary to the general
assumption.

If n = 6s + 3, then µ ≡ n ≡ 0 (mod 3). Because

n(i0+1)β+1 + 1

b
=

3((i0 + 1)β + 1)

c− b
+

1− 1/2

b

<
3((i0 + 1)β + 1)

c− b
+

5

q(c− b)

=
3(i0 + 1)α + 2

a

≤ 3((i0 + 1)β + 1) + 1

c− b
,

and

n(i0+1)β+1 + 1

b
=

3((i0 + 1)β + 1)

c− b
+

1− 1/2

b

>
3((i0 + 1)β + 1)

c− b
+

1

4a

=
3((i0 + 1)β + 1)

c− b
+

1

q(c− b)

>
3(i0 + 1)α + 1

a
,

we conclude that

n(i0+1)β+1 + 1

b
∈ I[3(i0 + 1)α + 1, 3(i0 + 1)α + 2; a]

⊂ I[3((i0 + 1)β + 1), 3((i0 + 1)β + 1) + 1; c− b].

By Lemma 5.1, (n(i0+1)β+1 + 1, m(i0+1)β+1 + 1) is strongly consistent.

However, µ ≡ n ≡ 0 (mod 3). Hence, m(i0+1)β+1 + 1 ≡ µ + 1 ≡ 1
(mod 3), which is in contrary to the general assumption.

Lemma 9.9 µ 6≡ 0 (mod 3).

Proof. Assume to the contrary that µ ≡ 0 (mod 3). For any j ≥ 0,

m(i0+j)β+1 = mi0β+1 + jµ + bjε + δi0β+1c
≡ bjε + δi0β+1c.

If (j0 − i0)ε + δi0β+1 ≥ 1, then let j∗ be the least integer such that

j∗ε + δi0β+1 ≥ 1.
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Then 1 ≤ j∗ ≤ j0 − i0. By the minimality of j∗, it follows that

m(i0+j∗)β+1 ≡ 1 (mod 3),

contrary to Lemma 9.4. Therefore we have (j0− i0)ε + δi0β+1 < 1, and hence

mj0β+1 ≡ 0 (mod 3),

and
δj0β+1 = (j0 − i0)ε + δi0β+1.

By Lemma 9.7, p 6≡ 0 (mod 3).

If p ≡ 2 (mod 3), then by Lemma 9.7, δj0β+1 = 0. Since j0− i0 6= 0, this
implies that ε = 0. As qε + δ is an integer, it follows that δ = 0 and hence
δj = 0 for all j.

Now µ ≡ 0 (mod 3) and ε = 0 implies that for all j,

mjβ+1 ≡ 0 (mod 3).

In particular,
m(j0+1)β+1 ≡ 0 (mod 3).

Since c < 4a, and p ≥ 5, it follows that

1/c > 1/(4a) = p/(4q(c− b)) > 1/(q(c− b)).

As δ(j0+1)β+1 = 0, we have

m(j0+1)β+1 + 2

c
=

3((j0 + 1)β + 1)

c− b
+

2

c

>
3((j0 + 1)β + 1)

c− b
+

2

q(c− b)
.

On the other hand,

(3(j0 + 1)α + 1)(c− b)

a
=

(3(j0 + 1)α + 1)p

q

=
(3(j0 + 1)βq + 3(j0 + 1) + p

q

= 3((j0 + 1)β + 1) +
2

q
.

As c > 2a, we have

3(j0 + 1)α + 2

a
>

3((j0 + 1)β + 1)

c− b
+

1

a

>
3((j0 + 1)β + 1)

c− b
+

2

c

=
m(j0+1)β+1 + 2

c
.
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Therefore

m(j0+1)β+1 + 2

c
∈ I[3(j0 + 1)α + 1, 3(j0 + 1)α + 2; a]

∩ I[3((j0 + 1)β + 1), 3((j0 + 1)β + 1) + 1; c− b].

By Lemma 5.1, (n(j0+1)β+1+1, m(j0+1)β+1+1) is strongly consistent. However,
m(j0+1)β+1 + 1 ≡ 1 (mod 3), contrary to our general assumption.

If p ≡ 1 (mod 3), then by Lemma 9.7, either δj0β+1 = 0, or

δj0β+1 = 1/p, 2p > q and (p− 1)a > (p− 2)b.

Since

m(j0+1)β+1 ≡ bε + δj0β+1c (mod 3),

δ(j0+1)β+1 = {ε + δj0β+1}
ε ≤ (p− 1)/p,

we conclude that either

m(j0+1)β+1 ≡ 0 (mod 3),

or
m(j0+1)β+1 ≡ 1 (mod 3), and δ(j0+1)β+1 = 0.

Since

1/c > 1/(4a) = p/(4q(c− b)) ≥ 1/(q(c− b)),

j0 = q − p/3− 2/3,

(c− b)/a = p/q,

αp = βq + 1,

we have

(3(j0 + 1)α + 1)(c− b)

a
=

(3(j0 + 1)α + 1)p

q

=
(3(j0 + 1)βq + 3(j0 + 1) + p

q

= 3((j0 + 1)β + 1) +
1

q
.

Hence

m(j0+1)β+1 + 2

c
=

3((j0 + 1)β + 1)

c− b
+

2− δ(j0+1)β+1

c

>
3((j0 + 1)β + 1)

c− b
+

1

c

>
3((j0 + 1)β + 1)

c− b
+

1

q(c− b)

=
3(j0 + 1)α + 1

a
.
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On the other hand, as 2/c < 1/a < 1/(c− b), we have

m(j0+1)β+1 + 2

c
≤ 3((j0 + 1)β + 1)

c− b
+ 2/c

< min{3(j0 + 1)α + 2

a
,
3((j0 + 1)β + 1) + 1

c− b
}.

Therefore

m(j0+1)β+1 + 2

c
∈ I[3(j0 + 1)α + 1, 3(j0 + 1)α + 2; a]

∩ I[3((j0 + 1)β + 1), 3((j0 + 1)β + 1) + 1; c− b].

By Lemma 5.1, (n(j0+1)β+1 + 1, m(j0+1)β+1 + 1) is strongly consistent. Hence
m(j0+1)β+1 6≡ 0 (mod 3),

Therefore we have m(j0+1)β+1 ≡ bε + δj0β+1c ≡ 1 (mod 3) and
δ(j0+1)β+1 = 0.

However, by using the fact that δ(j0+1)β+1 = 0, the calculation above
shows that

m(j0+1)β+1 + 1

c
∈ I[3(j0 + 1)α + 1, 3(j0 + 1)α + 2; a]

∩ I[3((j0 + 1)β + 1), 3((j0 + 1)β + 1) + 1; c− b].

By Lemma 5.1, (n(j0+1)β+1, m(j0+1)β+1) is strongly consistent, again contrary
to the general assumption.

Lemma 9.10 µ 6≡ 1 (mod 3).

Proof. Assume to the contrary that µ ≡ 1 (mod 3). We consider three
cases.

Case 1 p ≡ 0. Then j0 = q − p/3 > q − 2p/3 = i0, hence

m(i0+1)β+1 6≡ 1 (mod 3).

As
m(i0+1)β+1 ≡ 1 + bε + δi0β+1c (mod 3),

we conclude that

m(i0+1)β+1 ≡ 2 (mod 3),

ε + δi0β+1 ≥ 1

δ(i0+1)β+1 = ε + δi0β+1 − 1.

Since i0 = q − 2p/3, (c − b)/a = p/q and αp = βq + 1, it is straightforward
to verify that

(3(i0 + 1)α + 1)(c− b)/a = 3((i0 + 1)β + 1)− (p− 3)/q.
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By Corollary 5.1, we have

δ(i0+1)β+1 >
p− 3

q

b

c− b
>

p− 3

q

a

c− b
=

p− 3

p
.

As δ(i0+1)β+1 = ε + δi0β+1 − 1, we conclude that ε > (p− 3)/p.

If p ≥ 6 then j0−i0 = p/3 ≥ 2. Hence m(i0+2)β+1 6≡ 1 (mod 3). However

m(i0+2)β+1 ≡ m(i0+1)β+1 + µ + bδ(i0+1)β+1 + εc
≡ bδ(i0+1)β+1 + εc (mod 3).

Since δ(i0+1)β+1 > (p − 3)/p ≥ 1/2 and ε > (p − 3)/p ≥ 1/2, we have
m(i0+2)β+1 ≡ 1 (mod 3), which is in contrary to the general assumption.

If p = 3 then by Lemma 7.1, we have 3(m + δ) ≡ 0 (mod 3), which
implies that 3δ ≡ 0 (mod 3), hence δ = 0. Then δi0β+1 = ε = 0, contrary
to our previous conclusion that ε + δi0β+1 ≥ 1.

Case 2 p ≡ 1 (mod 3). By Lemma 9.5, (n(i0−1)β+1 − 1, m(i0−1)β+1 − 1) is
strongly consistent. Hence

m(i0−1)β+1 6≡ 2 (mod 3).

Note that

m(i0−1)β+1 = mi0β+1 − µ + bδi0β+1 − εc
≡ 2 + bδi0β+1 − εc (mod 3).

Thus we conclude that

m(i0−1)β+1 ≡ 1 (mod 3), ε > δi0β+1 and δ(i0−1)β+1 = 1 + δi0β+1 − ε.

Since i0 = q − 2p/3 + 2/3, it is straightforward to verify that

(3(i0 − 1)α + 2)(c− b)/a = 3((i0 − 1)β + 1)− 1/q.

If δ(i0−1)β+1/c ≥ 1/(q(c− b)) then we would have

m(i0−1)β+1

c
=

3((i0 − 1)β + 1)

c− b
−

δ(i0−1)β+1

c
∈ I[3(i0 − 1)α + 1, 3(i0 − 1)α + 2; a]

∩ I[3((i0 − 1)β + 1)− 1, 3((i0 − 1)β + 1); c− b].

which implies that (n(i0−1)β+1, m(i0−1)β+1) is strongly consistent, contrary to
the general assumption. Therefore we may assume that

δ(i0−1)β+1 = 1 + δi0β+1 − ε < c/(q(c− b)).
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Since 3(i0 − 1) = 3q − 2p− 1, we have

(3(i0 − 1)α + 1)(c− b)

a
= 3((i0 − 1)β + 1)− p + 1

q

≥ 3((i0 − 1)β + 1)− 1

and

(3(i0 − 1)α + 2)(c− b)

a
= 3((i0 − 1)β + 1)− 1

q

< 3((i0 − 1)β + 1).

Therefore

I[3(i0−1)α+1, 3(i0−1)α+2; a] ⊂ I[3((i0−1)β+1)−1, 3((i0−1)β+1); c−b].

By Lemma 9.1, c < 3a. Hence c/(q(c− b)) < 3a/(q(c− b)) = 3/p. Therefore

ε− δi0β+1 > 1− 3/p.

Since pδi0β+1, pε are integers, we conclude that ε−δi0β+1 ≥ 1−2/p. Therefore
δi0β+1 = 0 or 1/p, and ε = 1− 1/p or 1− 2/p.

If δi0β+1 = 1/p, then ε = 1 − 1/p, which implies that m(i0+1)β+1 ≡ 2
(mod 3) and δ(i0+1)β+1 = 0. By Lemma 9.8, p 6= 4, hence i0 + 1 ≤ j0. By the
proof of Lemma 9.4,

(3(i0 + 1)β + 1)/(c− b) ∈ I[3(i0 + 1)α + 1, 3(i0 + 1)α + 2; a].

This is in contrary to Corollary 5.1.

If δi0β+1 = 0, then m(i0+1)β+1 ≡ 1(mod3). This is in contrary to Lemma
9.4 (because p 6= 4, by Lemma 9.8).

Case 3 p ≡ 2 (mod 3). Then p ≥ 5, and j0 − i0 ≥ 1. By Lemma 9.4,

m(i0+1)β+1 6≡ 1 (mod 3).

Since
m(i0+1)β+1 ≡ b1 + δi0β+1 + εc (mod 3),

it follows that

δi0β+1 + ε ≥ 1, m(i0+1)β+1 ≡ 2 (mod 3), and δ(i0+1)β+1 = δi0β+1 + ε− 1.

Straightforward calculation shows that

(3(i0 + 1)α + 1)(c− b)/a = 3((i0 + 1)β + 1)− (p− 4)/q.

By applying Corollary 5.1, we conclude that

δ(i0+1)β+1(c− b)/b > (p− 4)/q.
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Therefore

δ(i0+1)β+1 >
p− 4

q

b

c− b
>

p− 4

q

a

c− b

=
p− 4

p
.

This implies that ε > (p− 4)/p.

Assume that p 6= 5. Then p ≥ 8 and j0 ≥ i0 +2. Therefore m(i0+2)β+1 6≡ 1
(mod 3). On the other hand,

m(i0+2)β+1 ≡ m(i0+1)β+1 + µ + bε + δ(i0+1)β+1c
≡ bε + δ(i0+1)β+1c (mod 3).

As m(i0+1)β+1 ≡ 2 (mod 3), µ ≡ 1 (mod 3), ε > (p − 4)/p ≥ 1/2 and
δ(i0+1)β+1 > (p − 4)/p ≥ 1/2, we conclude that m(i0+2)β+1 ≡ 1 (mod 3), a
contradiction.

Now we consider the case that p = 5. This turns out to be a very subtle
case.

Since i0 = q − 2p/3 + 1/3, (c − b)/a = p/q and αp = βq + 1, it is
straightforward to verify that

(3i0α + 2)(c− b)/a = 3(i0β + 1) + 1/q.

Since (by Lemma 9.6) mi0β+1 ≡ 0 (mod 3), it follows from Corollary 5.1
that

1− δi0β+1 >
1

q

b

c− b
.

Since b/(c− b) > a/(c− b) = q/p, we have

1− δi0β+1 > 1/p.

By Lemma 7.1, pδj is an integer for all j. Hence

1− δi0β+1 ≥ 2/p = 2/5.

Therefore δi0β+1 ≤ 3/5.

On the other hand,

m(i0+1)β+1 = mi0β+1 + µ + bδi0β+1 + εc.

Since j0 − i0 ≥ 1, by Lemma 9.4, m(i0+1)β+1 6≡ 1 (mod 3). It follows that

m(i0+1)β+1 ≡ 2 (mod 3),

and
δ(i0+1)β+1 = δi0β+1 + ε− 1.

80



It is straightforward to verify that

(3(i0 + 1)α + 1)(c− b)/a = 3((i0 + 1)β + 1)− 1/q.

By Corollary 5.1,

δ(i0+1)β+1 >
1

q

b

c− b
>

1

p
.

Therefore
δ(i0+1)β+1 > 1/5.

Hence
δ(i0+1)β+1 = δi0β+1 + ε− 1 ≥ 2/5.

This implies that

δi0β+1 = 3/5, δ(i0+1)β+1 = 2/5, and ε = 4/5.

Since
2

5
= 1− δi0β+1 >

1

q

b

c− b
= b/5a,

we have 2a > b.

Since qε + δ is an integer and ε = 4/5, we conclude that δ = {q/5}.
Suppose q ≡ i(mod5), where 1 ≤ i ≤ 4 (since gcd(p, q) = 1 we know that
i 6= 0). Suppose q = 5k + i. Then δ = {q/5} = i/5. By Lemma 7.1,
p(m+ δ) ≡ 0 (mod 3). Therefore 5m+ i ≡ 0 (mod 3), which implies that
m ≡ i (mod 3).

Suppose m = 3s + i. Then

3c/(c− b) = 3s + i + δ = 3s + i + i/5.

This implies that

c/(c− b) = s + 2i/5, and b/(c− b) = s− 1 + 2i/5.

Recall that
a/(c− b) = q/p = (5k + i)/5 = k + i/5.

If s ≤ 2k then c ≤ 2a, contrary to our assumption. If s ≥ 2k+1 then b ≥ 2a,
contrary to our previous conclusion.

Lemma 9.11 µ 6≡ 2.

Proof. Assume to the contrary that µ ≡ 2. Then for j ≥ i0,

mjβ+1 = mi0β+1 + (j − i0)µ + bδi0β+1 + (j − i0)εc
≡ 2(j − i0) + bδi0β+1 + (j − i0)εc (mod 3).
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By Lemma 9.8, p 6= 4, hence j0 > i0.

If
(j0 − i0)ε + δi0β+1 < j0 − i0 − 1,

then let j∗ be the least integer such that

(j∗ − i0)ε + δi0β+1 < j∗ − i0 − 1,

we would have i0 + 2 ≤ j∗ ≤ j0, and

j∗ − i0 − 2 ≤ (j∗ − i0)ε + δi0β+1 < j∗ − i0 − 1.

This implies that
mj∗β+1 ≡ 1 (mod 3),

contrary to Lemma 9.4. Therefore we have

(j0 − i0)ε + δi0β+1 ≥ j0 − i0 − 1.

So
ε ≥ 1− (1 + δi0β+1)/(j0 − i0) > 1− 2/(j0 − i0).

If p ≡ 0 (mod 3), then j0 − i0 = p/3, hence pε > p− 6.

If p ≡ 1 (mod 3), then since p 6= 4, we have p ≥ 7. As j0−i0 = (p−4)/3,
we conclude that

ε ≥ 1− 3/(p− 4)− 3δi0β+1/(p− 4).

Therefore
pε ≥ p− 3p/(p− 4)− 3δi0β+1p/(p− 4).

Since p ≥ 7, we have p/(p− 4) ≤ 7/3. Hence pε > p− 14.

If p ≡ 2 (mod 3), then j0 − i0 = (p− 2)/3. Since p ≥ 5 and p/(p− 2) <
5/3, it follows that

pε ≥ p− 3p/(p− 2)− 3δi0β+1p/(p− 2) > p− 10.

By Lemma 7.1, p(µ + ε) ≡ 0 (mod 3). Therefore we conclude that:

if p ≡ 0 (mod 3), then pε = p− 3;
if p ≡ 1 (mod 3), then the possible values of pε are p−3, p−6, p−9, p−12;
if p ≡ 2 (mod 3), then the possible values of pε are p− 3, p− 6, p− 9.

If pε = p− 12, then p ≥ 12, which implies that

pε ≥ p− 3p/(p− 4)− 3δi0β+1p/(p− 4) > p− 12,

which is an obvious contradiction.
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If pε = p − 9, then p 6≡ 0 (mod 3)). Therefore, p ≥ 10. When p ≡ 2
(mod 3), then p/(p− 2) < 5/4, and hence

pε ≥ p− 3p/(p− 2)− 3δi0β+1p/(p− 2) > p− 9,

which is an obvious contradiction.

When p ≡ 1 (mod 3), then i0 = q − 2p/3 + 2/3. As ε = 1 − 9/p and
qε + δ is an integer, it follows that δ = {9q/p}. Therefore

δi0β+1 = {(i0β + 1)δ}
= {δ + i0ε}
= {9q/p− (q − 2p/3 + 2/3)9/p}
= 1− 6/p.

Since p ≥ 10, which implies that p/(p− 4) ≤ 5/3, and that

pε ≥ p− 3p/(p− 4)− 3δi0β+1p/(p− 4),

we conclude that
δi0β+1 ≥ 4/5.

Therefore 6/p ≤ 1/5, hence p ≥ 30. But this implies that p/(p− 4) ≤ 30/26,
hence

pε > p− 9,

which is an obvious contradiction.

Assume now that pε = p − 6. Then p 6≡ 0 (mod 3), ε = 1 − 6/p, and
δ = {6q/p} (because qε + δ is an integer.)

First we show that

2q/p− 1 < b/(c− b) < 2q/p.

The first inequality follows easily from the fact that 2/c < 1/a = p/(q(c−b)).
To show that the second inequality holds, we assume to the contrary that
b/(c− b) ≥ 2q/p. Then 2/b ≤ p/(q(c− b)).

If p ≡ 1 (mod 3), then i0 = q − p/3 + 2/3. Since δ = {6q/p}, straight-
forward calculation shows that

δi0β+1 = {i0ε + δ} = 1− 4/p.

Therefore

ni0β+1 + 1

b
=

3(i0β + 1)

c− b
+

1− δi0β+1

b

=
3(i0β + 1)

c− b
+

4

pb

≤ 3(i0β + 1) + 2/q

c− b

=
3i0α + 2

a
.
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As shown in Lemma 9.4,

3i0α + 1

a
<

3(i0β + 1)

c− b
,

Therefore

ni0β+1 + 1

b
∈ I[3i0α + 1, 3i0α + 2; a]

∩ I[3(i0β + 1), 3(i0β + 1) + 1; c− b].

By Lemma 5.1, we know that (ni0β+1 + 1, mi0β+1 + 1) is strongly consistent.
By Lemma 9.6, mi0β+1 ≡ 0 (mod 3), this is in contrary to the general
assumption.

If p ≡ 2 (mod 3), then i0 = q−p/3+1/3. However, the same argument
as above still works, and derives a contradiction.

Therefore we have proved that

2q/p− 1 < b/(c− b) < 2q/p.

This implies that
6q/p− 3 < 3b/(c− b) < 6q/p.

Recall that by definition δ = {3c/(c − b)} = {3b/(c − b)}. Now δ = {6q/p}
implies that

{6q/p} = {3b/(c− b)}.
It follows that

n + δ = 3b/(c− b) = 6q/p− 2 or 6q/p− 1,

and
m + δ = 3b/(c− b) = 6q/p + 1 or 6q/p + 2.

If p ≡ 1 (mod 3), then i0 = q − (2p− 2)/3, and hence

mi0β+1 = bi0(µ + ε) + m + δc

≡ b(q − 2p− 2

3
)(3− 6

p
) + m + δc

≡ bm + δ − 6q

p
+

4p− 4

p
c (mod 3).

If m + δ = 6q/p + 1 then mi0β+1 ≡ 1 (mod 3). If m + δ = 6q/p + 2 then
mi0β+1 ≡ 2 (mod 3). In any case, this is in contrary to Lemma 9.6.

If p ≡ 2 (mod 3), then i0 = q − (2p− 1)/3, and hence

mi0β+1 = bi0(µ + ε) + m + δc

≡ b(q − 2p− 1

3
)(3− 6

p
) + m + δc

≡ bm + δ − 6q

p
+

4p− 2

p
c (mod 3).
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If m + δ = 6q/p + 1 then mi0β+1 ≡ 1 (mod 3). If m + δ = 6q/p + 2 then
mi0β+1 ≡ 2 (mod 3). In any case, this is in contrary to Lemma 9.6.

Finally we consider the case that pε = p− 3. If p ≡ 0 (mod 3), then by
Lemma 9.7,

mj0β+1 ≡ 2 (mod 3).

By the proof of Lemma 9.4, we know that

3(j0β + 1)/(c− b) ∈ I[3i0α + 1, 3i0α + 2; a].

Therefore, by Corollary 5.1,
δj0β+1 > 0.

However, since ε = 1− 3/p, δ = {3q/p}, it follows that

δj0β+1 = {j0ε + δ} = {(q − p/3)(1− 3/p) + 3q/p} = 0,

which is a contradiction.

If p ≡ 1 (mod 3), then j0 = q−p/3−2/3, i0 = q−2p/3+2/3, ε = 1−3/p
and δ = {3q/p} (because qε + δ is an integer). Therefore

δj0β+1 = {j0ε + δ} = {3q

p
− 3q − p− 2

p
} =

2

p
,

and

δi0β+1 = {i0ε + δ} = {3q

p
− 3q − 2p + 2

p
} =

p− 2

p
.

This implies that

mj0β+1 = mi0β+1 + (j0 − i0)µ + b(j0 − i0)ε + δi0β+1c

≡ bδi0β+1 −
3(j0 − i0)

p
c

≡ bp− 2

p
− p− 4

p
c

≡ 0 (mod 3).

This is in contrary to Lemma 9.7.

If p ≡ 2 (mod 3), then j0 = q−p/3−1/3 and i0 = q−2p/3+1/3. Since
ε = 1− 3/p, and δ = {3q/p}, it follows that

δi0β+1 = {δ + i0ε} = {3q

p
− 3q − 2p + 1

p
} =

p− 1

p
,

and

δj0β+1 = {δ + j0ε} = {3q

p
− 3q − p− 1

p
} =

1

p
.
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It follows that

mj0β+1 = mi0β+1 + (j0 − i0)µ + b(j0 − i0)ε + δi0β+1c

≡ bδi0β+1 −
3(j0 − i0)

p
c

≡ bp− 1

p
− p− 2

p
c

≡ 0 (mod 3).

This is again in contrary to Lemma 9.7.
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