Fractional Chromatic Number of Distance Graphs Generated by Two-Interval Sets

Daphne Der-Fen Liu *
Department of Mathematics
California State University, Los Angeles
Los Angeles, CA 90032, USA
Email: dliu@calstatela.edu
Xuding Zhu ${ }^{\dagger}$
Department of Applied Mathematics
National Sun Yat-sen University
Kaohsiung, Taiwan 80424
and
National Center for Theoretical Sciences
Email: zhu@math.nsysu.edu.tw

September 30, 2007

Abstract

Let D be a set of positive integers. The distance graph generated by D, denoted by $G(Z, D)$, has the set Z of all integers as the vertex

^[*Supported in part by the National Science Foundation under grant DMS 0302456. ${ }^{\dagger}$ Supported in part by the National Science Council, R. O. C., under grant NSC94-2115-M-110-001.]

set, and two vertices x and y are adjacent whenever $|x-y| \in D$. For integers $1<a \leq b<m-1$, denote $D_{a, b, m}=\{1,2, \cdots, a-1\} \cup\{b+$ $1, b+2, \cdots, m-1\}$. For the special case $a=b$, the chromatic number for the family of distance graphs $G\left(Z, D_{a, a, m}\right)$ was first studied by Eggleton, Erdős and Skilton [5] and was completely solved by Chang, Liu and Zhu [3]. For the general case $a \leq b$, the fractional chromatic number for $G\left(Z, D_{a, b, m}\right)$ was studied by Lam and Lin [14] and by Wu and Lin [23], in which partial results for special values of a, b, m were obtained. In this article, we completely settle this problem for all possible values of a, b, m.

2000 Mathematics Subject Classification: Primary 05C15 and 11B05.
Keywords: distance graphs, fractional chromatic number, density of integral sequences, T-coloring.

1 Introduction

Let D be a set of positive integers. The distance graph generated by D, denoted by $G(Z, D)$, has the set Z of all integers as the vertex set, and two vertices x and y are adjacent whenever $|x-y| \in D$. Initiated by Eggleton, Erdős and Skilton [5], the study of distance graphs has attracted considerable attention ([2-8, 11-18, 20-25]).

A fractional coloring of a graph G is a mapping f which assigns to each independent set I of G a non-negative weight $f(I)$ such that for each vertex $x, \sum_{x \in I} f(I) \geq 1$. The fractional chromatic number $\chi_{f}(G)$ of G is the least total weight of a fractional coloring for G.

The problem of determining the fractional chromatic number for distance graphs has been studied in different research areas under different names. Firstly, it is equivalent to a sequence density problem in number theory. For a set D of positive integers, a sequence S of non-negative integers is called a D-sequence if $a-b \notin D$ for any $a, b \in S$. Let $S(n)$ denote $|\{0,1, \cdots, n-1\} \cap S|$. The upper density and the lower density of S are defined, respectively, by

$$
\bar{\delta}(S)=\varlimsup_{\lim _{n \rightarrow \infty}} \frac{S(n)}{n}, \quad \underline{\delta}(S)=\underline{\lim }_{n \rightarrow \infty} \frac{S(n)}{n} .
$$

We say S has density $\delta(S)$ if $\bar{\delta}(S)=\underline{\delta}(S)=\delta(S)$. The parameter of interest is the maximum density of a D-sequence, defined by

$$
\mu(D)=\sup \{\delta(S): S \text { is a } D \text {-sequence }\} .
$$

The problem of determining or estimating $\mu(D)$ was initially posed by Motzkin in an unpublished problem collection (cf. [1]), and has been studied in $[1,10,19,9,18]$. Note that, S is a D-sequence if and only if S (as a set of integers) is an independent set of $G(Z, D)$. It was proved by Chang et al. [3] that for any finite set D,

$$
\mu(D)=\frac{1}{\chi_{f}(G(Z, D))}
$$

Secondly, the fractional chromatic number of a distance graph is equivalent to an asymptotic problem in T-coloring. The T-coloring problem was motivated by the channel assignment problem introduced by Hale [10], in which an integer broadcast channel is assigned to each of a given set of stations or transmitters so that interference among nearby stations is avoided. Interference is modeled by a set of non-negative integers T containing 0 as the forbidden channel separations. By using a graph G to represent the broadcast network, a valid channel assignment is defined as a T-coloring for G, which is a mapping $f: V(G) \rightarrow Z$ such that $|f(x)-f(y)| \notin T$ whenever $x y \in E$. The span of a T-coloring f is the difference between the largest and the smallest numbers in $f(V)$, i.e., $\max \{|f(u)-f(v)|: u, v \in V\}$. Given T and G, the T-span of G, denoted by $\operatorname{sp}_{T}(G)$, is the minimum span among all T-colorings of G. As for any graph $G, \operatorname{sp}_{T}(G) \leq \operatorname{sp}_{T}\left(K_{\chi(G)}\right)$, it is useful to estimate $\operatorname{sp}_{T}\left(K_{n}\right)$. Let σ_{n} denote $\operatorname{sp}_{T}\left(K_{n}\right)$. Griggs and Liu [9] proved that for any set T the asymptotic T-coloring ratio

$$
R(T):=\lim _{n \rightarrow \infty} \frac{\sigma_{n}}{n}
$$

exists and is a rational number. It was proved in [3] that for any T, by letting $D=T-\{0\}$, we have $R(T)=\chi_{f}(G(Z, D))$.

Partially due to its rich connections to other problems, the fractional chromatic number for various classes of distance graphs has been studied in the literature (cf. $[2,3,17,18,23,14,24,25])$. If D is a singleton, trivially
$\chi_{f}(G(Z, D))=2$. If $D=\{a, b\}$ and $\operatorname{gcd}(a, b)=1$, it is known [1] that $\chi_{f}(G(Z, D))=\frac{a+b}{\lfloor(a+b) / 2\rfloor}$. For $|D| \geq 3$, the exact values of $\chi_{f}(G(Z, D))$ are known only for some special sets D. For $D=\{a, b, a+b\}$, upper and lower bounds for $\chi_{f}(G(Z, D))$ were obtained by Rabinowitz and Proulx [19]. Let $\chi(G)$ and $\omega(G)$ denote, respectively, the chromatic number and the clique number of G. It is easy to see that $\omega(G) \leq \chi_{f}(G) \leq \chi(G)$ holds for any graph G, and $\chi(G(Z, D)) \leq|D|+1([4,20])$ if D is finite. In [18], the sets D with $\omega(G(Z, D)) \geq|D|$ were characterized and the value of $\chi_{f}(G(Z, D))$ for most of this class of graphs, including $D=\{a, b, a+b\}$, was determined.

For any two integers $a \leq b$, let $[a, b]$ denote the interval of consecutive integers $\{a, a+1, \cdots, b\}$. It is known that if $D=[a, b]$, then $\chi_{f}(G(Z, D))=$ $(a+b) / a[9,2]$. For the sets D of the form $D=[1, m]-\{k, 2 k, \cdots, s k\}$ for integers m, k and s, the values of $\chi_{f}(G(Z, D))$ were determined in [17].

For $1<a \leq b<m-1$, let $D_{a, b, m}$ denote the two-interval set

$$
D_{a, b, m}=[1, a-1] \cup[b+1, m-1] .
$$

Note, if $a=b$, then $D_{a, a, m}=[1, m-1]-\{a\}$. The chromatic number for $G\left(Z, D_{a, a, m}\right)$ was first studied by Eggleton, Erdős and Skilton [5] and the problem was completely solved in [3]. For the general case $a \leq b$, both the fractional chromatic number and the chromatic number for $G\left(Z, D_{a, b, m}\right)$ were studied by Wu and Lin [23], and by Lam and Lin [14]. Some partial results were obtained. In this article, we completely determine the fractional chromatic number of $G\left(Z, D_{a, b, m}\right)$ for all $1<a \leq b<m-1$.

2 The main result and some preliminaries

For some special cases, the values of $\chi_{f}\left(G\left(Z, D_{a, b, m}\right)\right)$ for the two-interval set $D_{a, b, m}=[1, a-1] \cup[b+1, m-1]$ were solved in [23] and [14]. If $b<2 a$, then $\chi_{f}\left(G\left(Z, D_{a, b, m}\right)\right)$ is determined in [23]. Let $\Delta=m-b$. If $\Delta \leq a$ or $\Delta \geq 2 a$, then $\chi_{f}\left(G\left(Z, D_{a, b, m}\right)\right)$ is determined in [14]. Some other special cases (which cannot be easily described) are discussed in [14].

The main result of this article is the following which completely determines the value of $\chi_{f}\left(G\left(Z, D_{a, b, m}\right)\right)$ for all $1<a \leq b<m-1$.

Theorem 1 For integers $1<a \leq b<m-1$. Suppose $G=G\left(Z, D_{a, b, m}\right)$ where $D_{a, b, m}=[1, a-1] \cup[b+1, m-1]$. Let $\Delta=m-b, s=\lfloor b / a\rfloor$, and $q=\lfloor m / \Delta\rfloor$.

- If $\Delta \geq 2 a$, then $\chi_{f}(G)=(s a+m) /(s+1)$.
- If $\Delta \leq a$, then $\chi_{f}(G)=\max \{a, m /(s+1)\}$.
- If $a<\Delta<2 a$, then

$$
\chi_{f}(G)= \begin{cases}\frac{s a+m}{s+1}, & \text { if } 2 q a \leq m<a+q \Delta \text { or } \\ \frac{m}{q}, & \text { if } m \geq(2 q+1) a ; \\ \frac{(2 q-1) m+a}{2 q^{2}}, & \text { if } q \Delta+a \leq m<(2 q+1) a\end{cases}
$$

The cases for $\Delta \geq 2 a$ and $\Delta \leq a$ were solved in [14]. However, for completeness, we include these cases in the statement and give a short proof for them.

Recall the result in [3] mentioned in Section 1, the fractional chromatic number of G is equal to the reciprocal of $\mu\left(D_{a, b, m}\right)$, which is the maximum density of a $D_{a, b, m}$-sequence. Let $I=\left\{x_{1}, x_{2}, \cdots\right\}$ be a $D_{a, b, m}$-sequence where $x_{i}<x_{i+1}$. Let $\delta_{i}=x_{i+1}-x_{i}$. The sequence $\Omega=\left(\delta_{1}, \delta_{2}, \cdots\right)$ is called the gap sequence of I. In the following, we call a sequence $\left(\delta_{1}, \delta_{2}, \cdots\right)$ a D-gap sequence if it is the gap sequence of a D-sequence. Observe that a sequence $\left(\delta_{1}, \delta_{2}, \cdots\right)$ is a D-gap sequence if and only if for any $j \leq j^{\prime}, \sum_{i=j}^{j^{\prime}} \delta_{i} \notin D$. In particular, the following observation is frequently used, usually implicitly, in our proofs.

- A sequence $\left(\delta_{1}, \delta_{2}, \cdots\right)$ is a $D_{a, b, m}$-gap sequence if and only if
(1) $\delta_{i} \geq$ a for each i; and
(2) for any $j \leq j^{\prime}$, either $\sum_{i=j}^{j^{\prime}} \delta_{i} \leq b$ or $\sum_{i=j}^{j^{\prime}} \delta_{i} \geq m$.

By definition,

$$
\mu\left(D_{a, b, m}\right)=\max \lim _{n \rightarrow \infty} \frac{|I \cap[0, n-1]|}{n},
$$

where the maximum is taken over all $D_{a, b, m}$-sequences I. Hence

$$
\chi_{f}(G)=\frac{1}{\mu\left(D_{a, b, m}\right)}=\min \lim _{n \rightarrow \infty} \frac{n}{|I \cap[0, n-1]|}=\min \lim _{k \rightarrow \infty} \sum_{i=1}^{k} \frac{\delta_{i}}{k} .
$$

Again, the minimum is taken over all $D_{a, b, m}$-sequences I with gap sequence $\left(\delta_{1}, \delta_{2}, \cdots\right)$.

For an interval of integers $[a, b]$, we call its cardinality $|[a, b]|$ the length of $[a, b]$. Given a $D_{a, b, m}$-gap sequence $Y=\left(\delta_{1}, \delta_{2}, \delta_{3}, \cdots\right)$, the average gap length of Y is $\lim _{k \rightarrow \infty} \sum_{i=1}^{k} \frac{\delta_{i}}{k}$ (if exists). Thus to determine the fractional chromatic number of $G\left(Z, D_{a, b, m}\right)$, it amounts to determine the minimum average gap length of a $D_{a, b, m}$-gap sequence. Usually, the gap sequences we concern are periodic. For a periodic gap sequence, it suffices to present one period of the sequence. We shall denote by $\left\langle y_{1}, y_{2}, \cdots, y_{k}\right\rangle$ the infinite periodic sequence with period k. That is, $\left\langle y_{1}, y_{2}, \cdots, y_{k}\right\rangle=\left(y_{1}, y_{2}, \cdots, y_{j}, \cdots\right)$ where for $j>k$, $y_{j}=y_{j-k}$. For convenience, we denote by $p \otimes t$, for any integers p and t, the p repetitions of t. For example, $\langle 3 \otimes 5,2 \otimes 7\rangle$ is the periodic sequence $\langle 5,5,5,7,7\rangle=(5,5,5,7,7,5,5,5,7,7, \cdots)$.

We now give a short proof for the cases $\Delta \leq a$ and $\Delta \geq 2 a$. As each gap of a $D_{a, b, m}$-gap sequence is at least a, we have $\chi_{f}(G) \geq a$. If $m \leq(s+1) a$, then $\langle a\rangle$ is a $D_{a, b, m}$-gap sequence with average gap length a. Hence $\chi_{f}(G)=a$. Assume $m>(s+1) a$ and $\Delta \leq a$. Then the sequence $\langle s \otimes a, m-s a\rangle$ is a $D_{a, b, m}$-gap sequence of average gap length $m /(s+1)$. So $\chi_{f}(G) \leq m /(s+1)$. On the other hand, for any $D_{a, b, m}$-gap sequence ($\delta_{1}, \delta_{2}, \cdots$), since $\sum_{i=1}^{s+1} \delta_{i} \geq$ $(s+1) a \geq b+1$, we must have $\sum_{i=1}^{s+1} \delta_{i} \geq m$. Hence the average gap length is at least $m /(s+1)$. So $\chi_{f}(G)=m /(s+1)$.

Assume $\Delta \geq 2 a$. It is easy to verify that the sequence $\langle s \otimes a, m\rangle$ is a $D_{a, b, m^{-}}$ gap sequence with average gap length $(m+s a) /(s+1)$. Hence $\chi_{f}(G) \leq(m+$ $s a) /(s+1)$. On the other hand, if $\chi_{f}(G)=1 / \mu\left(D_{a, b, m}\right)<(m+s a) /(s+1)$, then there is a $D_{a, b, m}$-sequence I with $|[0, s a+m-1] \cap I| \geq s+2$. Without loss of generality, we may assume $0 \in I$. Let $I^{\prime}=\{i: i \in I, i \leq b\} \cup\{i-m+a$: $i \in I, i \geq m-a\}$. It is easy to verify that $|I|=\left|I^{\prime}\right|, I^{\prime} \subseteq[0,(s+1) a-1]$ and for any $x, y \in I^{\prime},|x-y| \geq a$. This is in contrary to the assumption that $|I| \geq s+2$. Therefore we have $\chi_{f}(G)=(m+s a) /(s+1)$.

3 Proof of the upper bound

In the rest of the paper, we assume that $a<\Delta<2 a$, and let

$$
\tau\left(D_{a, b, m}\right)= \begin{cases}\frac{s a+m}{s+1}, & \text { if } 2 q a \leq m<a+q \Delta \text { or } \\ \text { if } m \geq(2 q+1) a ; \\ \frac{m}{q}, & \text { if } m<\min \{q \Delta+a, 2 q a\} \\ \frac{(2 q-1) m+a}{2 q^{2}}, & \text { if } q \Delta+a \leq m<(2 q+1) a\end{cases}
$$

In this section, we prove that $\chi_{f}(G) \leq \tau\left(D_{a, b, m}\right)$. This amounts to present

Lemma 2 Suppose $G=G\left(Z, D_{a, b, m}\right)$. Then $\chi_{f}(G) \leq \tau\left(D_{a, b, m}\right)$.
Proof. First note that the following are two $D_{a, b, m}$-gap sequences:

$$
\langle s \otimes a, m\rangle \quad \text { and } \quad\langle(q-1) \otimes \Delta, m-((q-1) \Delta)\rangle,
$$

where the average gap lengths, respectively, are $(s a+m) /(s+1)$ and m / q. This proves the result for all the cases, except the very last one.

For the last case, $q \Delta+a \leq m<(2 q+1) a$, the gap sequence is more complicated. We shall define some special sequences, then combine them to form the required periodic sequence.

For $i=1,2, \cdots, q-1$, let Y_{i} and Y_{i}^{\prime} and Z be finite sequences of integers defined as follows:

$$
\begin{aligned}
Y_{i} & =(i \otimes \Delta, a,(q-1-i) \otimes \Delta, m-(a+(q-1) \Delta)) \\
Y_{i}^{\prime} & =((i-1) \otimes \Delta, \Delta+a,(q-1-i) \otimes \Delta, m-(a+(q-1) \Delta)) \\
Z & =(a)
\end{aligned}
$$

Let

$$
Y_{q}^{\prime}=((q-1) \otimes \Delta, m-(q-1) \Delta) .
$$

For finite sequences $A=\left(a_{1}, a_{2}, \cdots, a_{s}\right)$ and $B=\left(b_{1}, b_{2}, \cdots, b_{t}\right)$, the concatenation of A and B, denoted by $A B$, is the sequence

$$
A B=\left(a_{1}, a_{2}, \cdots, a_{s}, b_{1}, b_{2}, \cdots, b_{t}\right)
$$

The concatenation of sequences is associative. Thus for finite sequences $A_{1}, A_{2}, \cdots, A_{t}$, the sequence $A_{1} A_{2} \cdots A_{t}$ is well-defined. Define the periodic gap sequence as

$$
\left\langle Y_{q}^{\prime} Y_{q-1} Y_{q-1}^{\prime} Y_{q-2} Y_{q-2}^{\prime} \cdots Y_{1} Y_{1}^{\prime} Z\right\rangle
$$

Now we show that this sequence is indeed a $D_{a, b, m}$-gap sequence. Since

$$
m-(a+(q-1) \Delta)=m-q \Delta-a+\Delta \geq \Delta>a
$$

each entry of the sequence is at least a. It remains to show that the sum of any number of consecutive entries of the sequence is either at most b or at least m. Observe that the sum of the entries in each Y_{i} or Y_{i}^{\prime} is equal to m. Consider the sum of any t consecutive entries in the sequence. Straightforward calculation shows that if $t \geq q+1$, then the sum is at least m; if $t \leq q-1$, then the sum is at most b; if $t=q$, then the sum is either equal to m or at most b. (Here we use the condition that $(q-1) \Delta+a \leq(q-1) \Delta+m-q \Delta=b$.) Thus the sequence defined above is a $D_{a, b, m}$-gap sequence.

Straightforward calculation shows that this gap sequence has average gap length $\frac{(2 q-1) m+a}{2 q^{2}}$.

4 Proof of the lower bound

To complete the proof of Theorem 1, it remains to show that $\chi_{f}(G) \geq$ $\tau\left(D_{a, b, m}\right)$. To this end, we need some more definitions.

In the following, we assume that $I=\left\{x_{1}, x_{2}, \cdots\right\}$ is a $D_{a, b, m}$-sequence, i.e., an independent set in $G=G\left(Z, D_{a, b, m}\right)$. We shall prove that the gap sequence of I has average gap length at least $\tau\left(D_{a, b, m}\right)$.

Let

$$
L=\left\{i: x_{i+1}-x_{i} \geq \Delta\right\} .
$$

For each $x_{i} \in I$, we associate it with a set X_{i} of integers as follows.

$$
X_{i}= \begin{cases}{\left[x_{i}, x_{i}+\Delta-1\right],} & \text { if } i \in L ; \\ {\left[x_{i}, x_{i}+a-1\right] \cup\left[x_{i}+m, x_{i}+m+a-1\right],} & \text { if } i \notin L .\end{cases}
$$

Lemma 3 If $i \neq j$, then $X_{i} \cap X_{j}=\emptyset$.

Proof. Assume $i<j$. If $i \in L$, then $X_{i}=\left[x_{i}, x_{i}+\Delta-1\right]$ and by definition, $x_{j} \geq x_{i}+\Delta$. As $t \in X_{j}$ implies that $t \geq x_{j}$, we have $X_{i} \cap X_{j}=\varnothing$. Assume $i \notin L$. Then $X_{i}=\left[x_{i}, x_{i}+a-1\right] \cup\left[x_{i}+m, x_{i}+m+a-1\right]$. As $x_{j} \geq x_{i}+a$, we know that $X_{j} \cap\left[x_{i}, x_{i}+a-1\right]=\varnothing$. Assume $X_{j} \cap\left[x_{i}+m, x_{i}+m+a-1\right] \neq \varnothing$. Then by the definition of X_{j}, we have either $x_{j} \in\left[x_{i}+m-\Delta+1, x_{i}+m-1\right]$ or $x_{j} \in\left[x_{i}+m, x_{i}+m+a-1\right]$. The former case implies $b+1 \leq x_{j}-x_{i} \leq m-1$; and the latter case implies $b+1 \leq x_{j}-x_{i+1} \leq m-1$ (since $i \notin L$, we have $\left.a \leq x_{i+1}-x_{i}<\Delta\right)$. For both cases, it contradicts the assumption that I is a $D_{a, b, m}$-sequence.

We call intervals of the form $\left[x_{i}+m, x_{i}+m+a-1\right]$ for $i \notin L$ Type- B I-intervals. Intervals of the form $\left[x_{i}, x_{i}+\Delta-1\right]$ for $i \in L$, and intervals of the form $\left[x_{i}, x_{i}+a-1\right]$ for $i \notin L$ are called Type-A I-intervals. Both Type-A and Type-B I-intervals are referred as I-intervals. The length of an I-interval is either Δ or a, and they are called, respectively, long or short I-intervals.

Lemma 4 If $T=\left[x_{i}, x_{i}+a-1\right]$ is a short Type-A I-interval, then the first I-interval $T^{\prime}=[u, v]$ with $u \geq x_{i}+a$ is Type-A.

Proof. Assume to the contrary that $T^{\prime}=[u, v]=\left[x_{j}+m, x_{j}+m+a-1\right]$ for some j. As $x_{j}+m \geq x_{i}+a$, which implies $x_{i}-x_{j} \leq m-a$, we have $x_{i}-x_{j} \leq b$. So $x_{j}+m \geq x_{i}+\Delta$. In addition, since T is a short Type-A I-interval, $x_{i+1}<x_{i}+\Delta$. Hence, $x_{i+1}<x_{j}+m$, contradicting the choice of T^{\prime}.

Lemma 5 There are at most short consecutive I-intervals that are of the same type.

Proof. First we show that there are at most s short consecutive Type-A I intervals. Assume $T_{1}=\left[u_{1}, v_{1}\right], T_{2}=\left[u_{2}, v_{2}\right], \cdots, T_{j}=\left[u_{j}, v_{j}\right]$ are consecutive I-intervals and $T_{1}, T_{2}, \cdots, T_{j-1}$ are short and Type-A. By Lemma $4, T_{j}$ is also Type-A. So $u_{1}, u_{2}, \cdots, u_{j} \in I$. We prove by induction on i that $u_{i} \leq u_{1}+b$ for $i=1,2, \cdots, j$. It is trivial for $i=1$. Assume $i<j$ and $u_{i} \leq u_{1}+b$. By definition of I-intervals, $u_{i+1}-u_{i}<\Delta$. Hence $u_{i+1}<u_{i}+\Delta \leq u_{1}+m$. As $u_{1}, u_{i+1} \in I$, it follows that $u_{i+1} \leq u_{1}+b$.

Because $s=\lfloor b / a\rfloor$ and $\left|T_{i}\right| \geq a$, we conclude that there are at most s consecutive short Type-A I-intervals. By definition, consecutive Type-B I intervals correspond to consecutive short Type-A I-intervals. So the result follows.

Suppose T is an I-interval. Define the weight of T by

$$
w(T)= \begin{cases}1, & \text { if } T \text { is long; } \\ 1 / 2, & \text { if } T \text { is short }\end{cases}
$$

For any interval of integers $[u, v]$, let

$$
w([u, v])=\sum_{T \text { is an } I \text {-interval and } T \subseteq[u, v]} w(T) .
$$

By definition, every integer in I creates either a long interval of weight 1 or two short intervals of weight $1 / 2$ each. By Lemma 3, all these intervals are disjoint, and by definition the two short intervals induced by an integer in I are of distance $m-a$ apart. Hence, by Lemma 5 , for any n,

$$
w([0, n-1])-s / 2 \leq|I \cap[0, n-1]| \leq w([0, n-1])+s / 2 .
$$

Thus to prove that $\lim _{n \rightarrow \infty} \frac{n}{|I n[0, n-1]|} \geq \tau\left(D_{a, b, m}\right)$, it suffices to show that $\lim _{n \rightarrow \infty} \frac{n}{w([0, n-1])} \geq \tau\left(D_{a, b, m}\right)$.

An interval $W=[x, y]$ of integers is called neat if every I-interval is either contained in W or disjoint from W. Suppose W is a neat interval. We define the X-ratio of W to be

$$
r(W)=\frac{|W|}{w(W)} .
$$

To prove that $\lim _{n \rightarrow \infty} \frac{n}{|I \cap[0, n-1]|} \geq \tau\left(D_{a, b, m}\right)$, it suffices to find integers $a_{1}<a_{2}<$ \cdots such that for any $i, R_{i}=\left[a_{i}, a_{i+1}-1\right]$ is a neat interval and $r\left(R_{i}\right) \geq$ $\tau\left(D_{a, b, m}\right)$.

We say an integer p has property $\left({ }^{*}\right)$ if
(*) for the first Type-B I-interval $[u, u+a-1]$ with $u \geq p$, we have $u \geq$ $p+\Delta$.

Lemma 6 Each $x_{i} \in I$ has property (*). Moreover, if $i \in L$, then $x_{i}+m$ also has property $\left(^{*}\right)$ and $\left[x_{i}, x_{i}+m-1\right]$ is neat.

Proof. If $i \notin L$, by Lemma $4, x_{i}$ has property (*). Assume $i \in L$. By definition, x_{i} has property $\left({ }^{*}\right)$. Suppose $x_{i}+m$ does not have property (${ }^{*}$). Then, there exists some u with $x_{i}+m \leq u<x_{i}+m+\Delta$ such that $[u, u+a-1]$ is a Type-B I-interval. By definition, $u-m \in I$ and $[u-m, u-m+a-1]$ is Type- A. This is impossible as $x_{i} \leq u-m<x_{i}+\Delta \leq x_{i+1}$ but $i \in L$. Hence, $x_{i}+m$ has property (*).

Now, assume to the contrary that $\left[x_{i}, x_{i}+m-1\right]$ is not neat. Let $T=[u, v]$ be an I-interval that $T \cap\left[x_{i}, x_{i}+m-1\right] \neq \varnothing$ and $T \nsubseteq\left[x_{i}, x_{i}+m-1\right]$. By definition and as $i \in L, T$ must be Type-A. Hence, $u \in I$. Let $u=x_{t}$ for some t. Then $x_{i}+m-\Delta+1 \leq x_{t} \leq x_{i}+m-1$. This implies $b+1 \leq x_{t}-x_{i} \leq m-1$, a contradiction.

To complete the proof of Theorem 1, it suffices to find an infinite sequence of integers $a_{1}<a_{2}<\cdots$ such that the following hold for all i :
(1) a_{i} has property $\left({ }^{*}\right)$,
(2) $R_{i}=\left[a_{i}, a_{i+1}-1\right]$ is neat, and
(3) $r\left(R_{i}\right) \geq \tau\left(D_{a, b, m}\right)$.

We shall construct such a sequence of integers $a_{1}<a_{2}<\cdots$ inductively. Initially, set $a_{1}=x_{1}$. By Lemma $6, a_{1}$ has property $\left({ }^{*}\right)$. Assume we have determined $a_{1}, a_{2}, \cdots, a_{i}$, where $(1-3)$ in the above are satisfied. We shall determine a_{i+1} so that (1-3) still hold.

Let $[u, v]$ be the first I-interval with $u \geq a_{i}$. If $[u, v]$ is Type- B , then as a_{i} has property $\left(^{*}\right), u \geq a_{i}+\Delta$. Let $a_{i+1}=x_{t}$, where x_{t} is the smallest element of I for which $x_{t}>a_{i}$. Then all the I-intervals contained in $R_{i}=\left[a_{i}, a_{i+1}-1\right]$ are Type- B , and R_{i} is neat. Assume R_{i} contains j Type- $\mathrm{B} I$-intervals. By Lemma $5, j \leq s$. Since $w\left(R_{i}\right)=j / 2$ and $\left|R_{i}\right| \geq \Delta+j a$, it follows that

$$
r\left(R_{i}\right) \geq \frac{2(\Delta+j a)}{j} \geq 2 a+\frac{2 \Delta}{s} \geq \tau\left(D_{a, b, m}\right)
$$

(Observe that $\frac{s a+m}{s+1}<a+\frac{b}{s+1}+\frac{\Delta}{s+1}<2 a+\frac{\Delta}{s+1}$. If $m<2 q a$, then $\frac{m}{q}<2 a$. If $m<(2 q+1) a$, then $\frac{(2 q-1) m+a}{2 q^{2}}<2 a$.) Moreover, by Lemma 6, $a_{i+1}=x_{t}$ has property $\left(^{*}\right)$. Thus ($1-3$) in the above are satisfied.

In the following, assume $[u, v]$ is Type-A. Then $u \in I$. Let x_{h} be the first element of I such that $x_{h} \geq u$ and $h \in L$. Let $a_{i+1}=x_{h}+m$. By Lemma 6 , $R_{i}=\left[a_{i}, a_{i+1}-1\right]$ is neat and a_{i+1} has property $\left(^{*}\right)$.

It remains to show (3). Assume the interval $\left[u, x_{h}-1\right]$ contains $j I$ intervals for some $j \geq 0$. By Lemma 4, all the I-intervals contained in [$\left.u, x_{h}-1\right]$ are Type-A and short.

Since an I-interval of weight 1 has length Δ and an I-interval of weight $1 / 2$ has length $a>\Delta / 2$, so for any interval T of length m, we have

$$
w(T) \leq \begin{cases}q, & \text { if } m<q \Delta+a ; \\ q+\frac{1}{2}, & \text { if } m \geq q \Delta+a\end{cases}
$$

Because $R_{i}=\left[a_{i}, x_{h}-1\right] \cup\left[x_{h}, x_{h}+m-1\right]$, it follows that

$$
w\left(R_{i}\right) \leq \begin{cases}q+\frac{j}{2}, & \text { if } m<q \Delta+a ; \\ q+\frac{j+1}{2}, & \text { if } m \geq q \Delta+a\end{cases}
$$

Now we consider three cases.
Case $1 m<q \Delta+a$. As $\left|R_{i}\right| \geq j a+m$, by the above discussion, $r\left(R_{i}\right) \geq$ $\frac{j a+m}{q+j / 2}$. Observe that $\frac{j a+m}{q+j / 2}$ is a function of j which is increasing if $m \leq 2 q a$ and decreasing if $m \geq 2 q a$. Hence, as $j \leq s$, we have

- if $m \geq 2 q a$, then $r\left(R_{i}\right) \geq \frac{s a+m}{q+\frac{s}{2}} \geq \frac{s a+m}{s+1}$;
- if $m<2 q a$, then $r\left(R_{i}\right) \geq \frac{0 a+m}{q+0} \geq \frac{m}{q}$.

Hence, (3) holds.
Case 2 $m \geq(2 q+1) a$. Similar to Case 1, we have $r\left(R_{i}\right) \geq \frac{j a+m}{q+(j+1) / 2}$. Because $m \geq(2 q+1) a$, which implies that $\frac{j a+m}{q+(j+1) / 2}$ is a decreasing function of j, we conclude that $r\left(R_{i}\right) \geq \frac{s a+m}{q+(s+1) / 2}$. As $\frac{b}{a}=\frac{m}{a}-\frac{\Delta}{a} \geq 2 q+1-2$, we
have $s=\lfloor b / a\rfloor \geq 2 q-1$, i.e., $q \leq(s+1) / 2$. Hence $r\left(R_{i}\right) \geq(s a+m) /(s+1)$, so (3) holds.

Case 3 $a+q \Delta \leq m<(2 q+1) a$. Then $r\left(R_{i}\right) \geq \frac{j a+m}{q+(j+1) / 2}$. Because $m<(2 q+1) a, \frac{j a+m}{q+(j+1) / 2}$ is an increasing function of j. If $j \geq 1$, then $r\left(R_{i}\right) \geq$ $\frac{a+m}{q+1}>\frac{(2 q-1) m+a}{2 q^{2}}$. If $j=0$ and $w\left(R_{i}\right) \leq q$, then $r\left(R_{i}\right) \geq \frac{m}{q}>\frac{(2 q-1) m+a}{2 q^{2}}$, and we are done.

Assume $j=0$ and $w\left(R_{i}\right)=q+1 / 2$. Then $u=x_{h}$ and $r\left(R_{i}\right) \geq m /(q+$ $1 / 2)$. As $\frac{m}{q+1 / 2}<\frac{(2 q-1) m+a}{2 q^{2}}=\tau\left(D_{a, b, m}\right)$, this " a_{i+1} " does not satisfy our requirement. We need to find a different a_{i+1} so that $(1-3)$ are satisfied. In the following, we re-name the interval $[u, u+m-1]$ just obtained by R_{i}^{1}. (The correct R_{i} is not found yet.)

Since $w\left(R_{i}^{1}\right)=q+1 / 2, R_{i}^{1}$ contains a short I-interval. Let $p_{1} \leq q$ be the total weight of I-intervals preceding the last short I-interval in R_{i}^{1}. As $w\left(R_{i}^{1}\right)=q+1 / 2$ and the first I-interval of R_{i}^{1} is long, we know that $p_{1} \geq 1$ is an integer.

Before reaching the correct interval R_{i}, we may need a (finite) sequence of intervals R_{i}^{j}, where R_{i}^{1} is just the first one of them. In the following, we describe the inductive step of finding R_{i}^{j}.

Suppose z is an integer, $1 \leq z \leq 2 q-1$, and for $j=1,2, \cdots, z$, we have obtained $R_{i}^{j}=\left[x_{i_{j}}, x_{i_{j}}+m-1\right]$ with the following properties:

- $x_{i_{j}} \in I$ and $i_{j} \in L$, and for $j \geq 2, x_{i_{j-1}}+m \leq x_{i_{j}}<x_{i_{j-1}}+m+a$.
- $w\left(R_{i}^{j}\right)=q+1 / 2$.

Observe that if $w\left(R_{i}^{j}\right)=q+1 / 2$, the I-intervals in R_{i}^{j} must be "tightly packed". Namely, if a neat sub-interval H of R_{i}^{j} has length $\geq \alpha \Delta+\beta a$, where α, β are non-negative integers, then $w(H) \geq \alpha+\beta / 2$. For otherwise, $w\left(R_{i}^{j}\right)$ will be less than $q+1 / 2$.

Let p_{j} be the total weight of I-intervals preceding the last short I-interval in R_{i}^{j}. Since $w\left(R_{i}^{j}\right)=q+1 / 2, R_{i}^{j}$ does contain a short I-interval. Since the first interval of R_{i}^{j} is a long interval, we have $p_{j} \geq 1$.

Let $\left[x_{s^{\prime}}, x_{s^{\prime}}+\Delta-1\right]$ be the first long I-interval with $x_{s^{\prime}} \geq x_{i_{z}}+m$. If $x_{s^{\prime}} \geq x_{i_{z}}+m+a$, let $a_{i+1}=x_{s^{\prime}}$. Then $R_{i}=\left[a_{i}, a_{i+1}-1\right]$ is neat, $\left|R_{i}\right| \geq z m+j a$ for some $j \geq 1$, and $w\left(R_{i}\right) \leq z(q+1 / 2)+j / 2$. Hence

$$
r\left(R_{i}\right) \geq \frac{z m+j a}{z\left(q+\frac{1}{2}\right)}+\frac{j}{2} \geq \frac{z m+a}{z\left(q+\frac{1}{2}\right)}+\frac{1}{2} \geq \frac{(2 q-1) m+a}{2 q^{2}} .
$$

Note, all the I-intervals contained in $\left[x_{i_{z}}+m, x_{s^{\prime}}-1\right]$, if any, are short. The last inequality in the above holds since $z \leq 2 q-1$ and $\frac{z m+a}{z\left(q+\frac{1}{2}\right)}$ is a decreasing function of z. As $a_{i+1} \in I$ has property $\left(^{*}\right)$, we are done for this case.

Assume $x_{s^{\prime}} \leq x_{i_{z}}+m+a-1$. Let $R_{i}^{z+1}=\left[x_{s^{\prime}}, x_{s^{\prime}}+m-1\right]$. If $w\left(R_{i}^{z+1}\right) \leq q$, then let $a_{i+1}=x_{s^{\prime}}+m$. By Lemma 6, $R_{i}=\left[a_{i}, a_{i+1}-1\right]$ is neat and a_{i+1} has property $\left({ }^{*}\right)$. To verify (3), we note that $w\left(R_{i}\right) \leq(z+1) q+z / 2$ and

$$
r\left(R_{i}\right) \geq \frac{(z+1) m}{(z+1) q+\frac{z}{2}} \geq \frac{2 q m}{2 q^{2}+q-\frac{1}{2}} \geq \frac{(2 q-1) m+a}{2 q^{2}} .
$$

The second inequality in the above holds because $\frac{(z+1) m}{(z+1) q+z / 2}$ is a decreasing function of z. The third inequality holds because $m \geq a(q+1)$. Thus we assume that $w\left(R_{i}^{z+1}\right)=q+1 / 2$.

Claim: $p_{z+1} \leq p_{z}$. Moreover, if $p_{z+1}=p_{z}$, then the last short I-interval contained in R_{i}^{z} is Type-A, and the last short I-interval in R_{i}^{z+1} is Type-B.
Proof of Claim. Let $T=[u, u+a-1]$ and $T^{\prime}=\left[u^{\prime}, u^{\prime}+a-1\right]$ be the last short I-interval in R_{i}^{z} and R_{i}^{z+1}, respectively. If T^{\prime} is Type- B , then $T^{\prime \prime}=\left[u^{\prime}-m, u^{\prime}-m+a-1\right]$ is a short Type-A I-interval contained in R_{i}^{z}. Note, as $\left|\left[u^{\prime}-m, x_{i_{s^{\prime}}}-1\right]\right|=\left|\left[u^{\prime}, x_{i_{s^{\prime}}}+m-1\right]\right|$ and $x_{i_{s^{\prime}}} \geq x_{i_{z}}+m$, we have $\left|\left[x_{i_{z}}, u^{\prime}-m-1\right]\right| \geq\left|\left[x_{i_{s^{\prime}}}, u^{\prime}-1\right]\right|$. Hence, $\left[x_{i_{z}}, u^{\prime}-m-1\right]$ is capable of containing I-intervals of total weight at least p_{z+1}. As the I-intervals in R_{i}^{z} are "tightly packed," the I-intervals contained in $\left[x_{i_{z}}, u^{\prime}-m-1\right]$ has total weight at least p_{z+1}. Therefore $p_{z} \geq p_{z+1}$, and if the equality holds then the last short I-interval in R_{i}^{z} is of Type A.

Assume T^{\prime} is Type-A. Thus $u^{\prime}=x_{i^{*}} \in I$ for some i^{*}. Since T^{\prime} is short, $x_{i^{*}+1} \leq x_{i^{*}}+\Delta-1$. Note, as $s^{\prime} \in L$ and $x_{i^{*}}, x_{i^{*}+1} \in I$, we have $x_{i^{*}+1} \leq x_{s^{\prime}}+b$ and $\left[x_{i^{*}}-m+1, x_{i^{*}+1}-b-1\right] \cap I=\emptyset$.

Consider the interval $\left[x_{i_{z}}, x_{i^{*}+1}-b-1\right]$. If this is a sub-interval of R_{i}^{z},
then since

$$
\left|\left[x_{i_{z}}, x_{i^{*}+1}-b-1\right]\right| \geq\left|\left[x_{i_{s^{\prime}}}, x_{i^{*}+1}-1\right]\right|+\Delta,
$$

and the interval $\left[x_{i_{z}}, x_{i^{*}+1}-b-1\right]$ is tightly packed, we conclude that the total weight of the I-intervals that intersect with $\left[x_{i_{z}}, x_{i^{*}+1}-b-1\right]$ is at least $p_{z+1}+1+1 / 2$. Moreover, since $\left|\left[x_{i^{*}}-m+1, x_{i^{*}+1}-b-1\right]\right| \geq \Delta+a-1$ and $\left[x_{i^{*}}-m+1, x_{i^{*}+1}-b-1\right] \cap I=\emptyset$, we conclude that the last I-interval intersecting with $\left[x_{i_{z}}, x_{i^{*}+1}-b-1\right]$ is Type-B. The total weight of the I intervals of R_{i}^{z} preceding this Type-B I-interval is at least $p_{z+1}+1$. Therefore, $p_{z+1}<p_{z}$.

Assume $\left[x_{i_{z}}, x_{i^{*}+1}-b-1\right]$ is not a sub-interval of R_{i}^{z}. Then $x_{i^{*}+1}-b-1 \geq$ $x_{i_{z}}+m$. Since $x_{i_{z}} \geq x_{s^{\prime}}-m-a+1$, we have $x_{i^{*}+1} \geq x_{s^{\prime}}+b-a+3$. This implies that $\left[x_{i^{*}+1}+1, x_{s^{\prime}}+m\right] \cap I=\emptyset$, and $\left[x_{i^{*}+1}, x_{i^{*}+1}+\Delta-1\right]$ is the last I-interval contained in R_{i}^{z+1}. Hence $p_{z+1}=q-1$. If $p_{z} \leq q-2$, then the conclusion follows.

Assume $p_{z}=q-1$. Then the last I-interval in R_{i}^{z} is a long interval. Since $\left[x_{i^{*}}-m+1, x_{i_{z}}+m-1\right] \cap I=\emptyset$, the last integer of I in R_{i}^{z} is not greater than $x_{i^{*}}-m$, implying the last short I-interval in R_{i}^{z} is contained in $\left[x_{i_{z}}, x_{i^{*}}-m-1\right]$. Therefore, the interval $\left[x_{i_{z}}, x_{i^{*}}-m-1\right]$ has length at least $(q-1) \Delta+a$. Moreover, since

$$
\left|\left[x_{i^{*}}-m, x_{s^{\prime}}-1\right]\right| \geq\left|\left[x_{i^{*}}-m, x_{i^{*}+1}-b-1\right]\right| \geq \Delta+a,
$$

we conclude, $\left[x_{i_{z}}, x_{s^{\prime}}-1\right]$ has length at least $q \Delta+2 a$. Let $a_{i+1}=x_{s^{\prime}}$. Then

$$
r\left(R_{i}\right) \geq \frac{(z-1) m+q \Delta+2 a}{z\left(q+\frac{1}{2}\right)} \geq \frac{(2 q-2) m+q \Delta+2 a}{(2 q-1)\left(q+\frac{1}{2}\right)} .
$$

The second inequality holds because the formula is a decreasing function on z and $z \geq 2 q-1$. To complete the proof of the Claim, it suffices to show

$$
\frac{(2 q-2) m+q \Delta+2 a}{(2 q-1)\left(q+\frac{1}{2}\right)} \geq \frac{(2 q-1) m+a}{2 q^{2}} .
$$

Write $m=q \Delta+2 a-\lambda$, where $0<\lambda \leq a$. The above inequality is equivalent to

$$
2 q^{2} \lambda-\left(2 q^{2}-1 / 2\right) a-m(1 / 2-q) \geq 0 .
$$

By definition, we have:
(1) $\lambda \geq 2 a-\Delta+1($ since $q=\lfloor m / \Delta\rfloor)$
(2) $\Delta \leq 2 a-1($ since $2 a>\Delta)$

Therefore,

$$
\begin{array}{rll}
& 2 q^{2} \lambda-\left(2 q^{2}-1 / 2\right) a-m(1 / 2-q) & \\
= & \left(2 q^{2}-q+1 / 2\right) \lambda-a\left(2 q^{2}-2 q+1 / 2\right)-\Delta\left(q / 2-q^{2}\right) & \\
\geq & a\left(2 q^{2}+1 / 2\right)-\Delta\left(q^{2}-q / 2+1 / 2\right)+\left(2 q^{2}-q+1 / 2\right) & \text { (by (1)) } \\
\geq & a(q-1 / 2)+3 q^{2}-(3 q) / 2+1 & \text { (by (2)) } \\
\geq & 0 & \text { (since } q \geq 1)
\end{array}
$$

This completes the proof of the Claim.
Since $p_{i} \geq 1$, so $p_{2 q}$ does not exist. Thus the procedure above terminates at the k-th step for some $k \leq 2 q$, when the valid a_{i+1} is obtained. This completes the proof of Theorem 1.

Acknowledgment

The authors wish to thank the anonymous referees for their comments which resulted in a better presentation of the article. Daphne also wishes to thank Professor Ko-Wei Lih and the Institute of Mathematics, Academia Sinica, Taiwan, for their hospitality during her visit in 2005, when part of the work was done.

References

[1] D. G. Cantor and B. Gordon, Sequences of integers with missing differences, J. Combin. Th. (A), 14 (1973), 281-287.
[2] G. J. Chang, L. Huang and X. Zhu, The circular chromatic numbers and the fractional chromatic numbers of distance graphs, Europ. J. of Combin., 19 (1998), 423-431.
[3] G. Chang, D. Liu and X. Zhu, Distance graphs and T-coloring, J. Combin. Th. (B), 75 (1999), 159-169.
[4] J. Chen, G. J. Chang and K. Huang, Integral distance graphs, J. Graph Theory, 25 (1997), 287-294.
[5] R. B. Eggleton, P. Erdős and D. K. Skilton, Colouring the real line, J. Combin. Theory (B), 39 (1985), 86-100.
[6] R. B. Eggleton, P. Erdős and D. K. Skilton, Research problem 77, Disc. Math., 58 (1986), 323.
[7] R. B. Eggleton, P. Erdős and D. K. Skilton, Update information on research problem 77, Disc. Math., 69 (1988), 105.
[8] R. B. Eggleton, P. Erdős and D. K. Skilton, Colouring prime distance graphs, Graphs and Combinatorics, 6 (1990), 17-32.
[9] J. Griggs and D. Liu, The channel assignment problem for mutually adjacent sites, J. Combin. Th. (A), 68 (1994), 169-183.
[10] N. M. Haralambis, Sets of integers with missing differences, J. Combin. Th. (A), 23 (1977), 22-33.
[11] A. Kemnitz and H. Kolberg, Coloring of integer distance graphs, Disc. Math., 191 (1998), 113-123.
[12] A. Kemnitz and M. Marangio, Colorings and list colorings of integer distance graphs, Congr. Numer., 151 (2001), 75-84.
[13] A. Kemnitz and M. Marangio, Chromatic numbers of integer distance graphs, Disc. Math., 233 (2001), 239-246.
[14] P. Lam and W. Lin, Coloring distance graphs with intervals as distance sets, European J. of Combin., 26 (2005), 1216-1229.
[15] W. Lin, P. Lam and Z. Song, Circular chromatic numbers of some distance graphs, Disc. Math., 292 (2005), 119-130.
[16] D. Liu, T-coloring and chromatic number of distance graphs, Ars Combin., 56 (2000), 65-80.
[17] D. Liu and X. Zhu, Distance graphs with missing multiples in the distance sets, J. Graph Theory, 30 (1999), 245-159.
[18] D. Liu and X. Zhu, Fractional chromatic number and circular chromatic number for distance graphs with large clique size, J. Graph Theory, 47 (2004), 129-146.
[19] J. Rabinowitz and V. Proulx, An asymptotic approach to the channel assignment problem, SIAM J. Alg. Disc. Methods, 6 (1985), 507-518.
[20] M. Voigt, Colouring of distance graphs, Ars Combinatoria, 52 (1999), 3-12.
[21] M. Voigt and H. Walther, Chromatic number of prime distance graphs, Discrete Appl. Math., 51 (1994), 197-209.
[22] H. Walther, Über eine spezielle Klasse unendlicher Graphen, in Graphentheorie II, BI Wissenschaftsverlag, by K. Wagner und R. Bodendiek (Hrsg.), 1990, 268-295.
[23] J. Wu and W. Lin, Circular chromatic numbers and fractional chromatic numbers of distance graphs with distance sets missing an interval, Ars Comb., 70 (2004), 161-168.
[24] X. Zhu, The circular chromatic number of distance graphs with distance sets of cardinality 3, J. Graph Theory, 41 (2002), 195-207.
[25] X. Zhu, The circular chromatic number of a class of distance graphs, Disc. Math., 265/1-3 (2003), 337-350.

