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Abstract

The circular chromatic index of a graph G, written χ′c(G), is the minimum r per-
mitting a function f : E(G) → [0, r) such that 1 ≤ |f(e)− f(e′)| ≤ r − 1 when-
ever e and e′ are incident. Let G = H2C2m+1, where 2 denotes Cartesian product
and H is an (s − 2)-regular graph of odd order, with s ≡ 0 mod 4 (thus G is s-
regular). We prove that χ′c(G) ≥ s+ bλ(1− 1/s)c−1, where λ is the minimum, over all
bases of the cycle space of H, of the maximum length of a cycle in the basis. When
H = C2k+1 and m is large, the lower bound is sharp. In particular, if m ≥ 3k +1, then
χ′c(C2k+12C2m+1) = 4 + d3k/2e−1, independent of m.

1 Introduction

The chromatic index χ′(G) of a graph G is the minimum number of colors needed to color

the edges so that incident edges receive distinct colors. In the case of a simple graph G (no

loops or multiple edges), the famous theorem of Vizing [10] and Gupta [4] yields ∆(G) ≤
χ′(G) ≤ ∆(G) + 1, where ∆(G) is the maximum vertex degree in G.

With only two values available, it is common to say that a graph G is Class 1 if χ′(G) =

∆(G) and Class 2 otherwise. In this paper we consider a refinement of the chromatic index

called the “circular chromatic index”. It equals χ′(G) when G is Class 1, and otherwise it

lies between ∆(G) and χ′(G). To define it, we first describe a vertex coloring parameter.

Given a graph G and a real number r, an r-coloring of G is a function f : V (G) → [0, r)

such that 1 ≤ |f(x)− f(y)| ≤ r − 1 whenever x and y are adjacent. In essence, the set

of colors form a circle of circumference r, and the colors assigned to adjacent vertices must

differ by at least 1 (in each direction) along the circle.
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The circular chromatic number of G, written χc(G), is the infimum of all r such that

G admits an r-coloring (the infimum can be replaced with minimum). There are many

equivalent formulations of χc(G) (see [12, 13] for surveys and many basic results). The

definition here is not the most common but is useful for our results. Due to the elementary

result that χ(G) − 1 < χc(G) ≤ χ(G) [9], the parameter χc is a refinement of χ, and this

has motivated its extensive study over the past decade.

For a graph G, the line graph L(G) is the graph with vertex set E(G) whose adjacency

relation is the incidence relation for edges in G. The circular chromatic index χ′c(G) is defined

by χ′c(G) = χc(L(G)). That is, we seek the smallest r permitting an r-coloring of the edges

of G. Since χ′(G) = χ(L(G)), we have χ′(G)− 1 < χ′c(G) ≤ χ′(G), and χ′c is a refinement of

χ′. From the definition, χ′c(G) is at least the maximum number of pairwise incident edges.

Thus χ′c(G) = χ′(G) when G is Class 1. Otherwise, ∆(G) < χ′c(G) ≤ ∆(G) + 1.

Several papers have been published about χ′c. It was proved in [2] that all 2-edge-

connected graphs with maximum degree at most 3 have circular chromatic index at most

11/3, except for two small graphs with circular chromatic index 4. In [5], it was proved that

2-edge-connected 3-regular graphs of large girth have circular chromatic index close to 3.

This result was generalized in [6]: for any positive integer d, graphs with maximum degree

d have circular chromatic index arbitrarily close to d if their girth is sufficiently large.

In this paper, we study the behavior of circular chromatic index under a product op-

eration. Given graphs G and H, the Cartesian product G2H is the graph with vertex

set V (G) × V (H) defined by making the pair (u, v) adjacent to the pair (u′, v′) if (1)

u = u′ and vv′ ∈ E(H), or (2) v = v′ and uu′ ∈ E(G). It has long been known that

χ(G2H) = max{χ(G), χ(H)} [1, 8, 11]. The argument holds as well for χc, so the behavior

of χc is trivial under the Cartesian product.

The behavior of χ′c is more interesting. If G2H is Class 1, then χ′c(G2H) = ∆(G2H),

so we consider only products that are Class 2. The product is Class 1 when G or H is Class 1

[7] or when G and H both have perfect matchings [7]. To avoid Class 1, let G and H be

regular graphs with odd order. The product G2H is then also regular with odd order, and

a regular graph is Class 1 if and only if it has an edge-coloring in which every color class is

a perfect matching, which does not exist in G2H.

In particular, we consider the product of an odd cycle with a regular graph H of odd

order, where the degree of the vertices in H is congruent to 2 modulo 4. We prove that

χ′c(H2C2m+1) ≥ s + bλ(1− 1/s)c−1, where λ is the maximum length of the cycles in some

basis of the cycle space of H (choosing the basis to make λ smallest gives the best lower

bound). We also prove that the bound is sharp when H is an odd cycle and m is large. Indeed,

χ′c(H2C2m+1) always decreases to a limit as m increases. In particular, if m ≥ 3k + 1, then

χ′c(C2k+12C2m+1) = 4 + d3k/2e−1, independent of m.
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2 Properties of r-Colorings

We view the color set [0, r) for a r-coloring of a graph as the set of real numbers modulo r.

Thus we interpret it as a circle Cr of circumference r, by identifying 0 and r. For a, b ∈ Cr,

we write [a, b]r for the set in Cr moving from a to b through increasing values. That is,

[a, b]r = [a, b] when a ≤ b, while [a, b]r = [a, r) ∪ [0, b] when a > b. For convenience, we

extend this notation to all real numbers a and b by letting [a, b]r = [a mod r, b mod r]r, where

a mod r and b mod r are the remainders of a and b upon division by r. The intervals [a, b)r,

(a, b]r and (a, b)r are defined similarly. We use `([a, b]) to denote the length of the interval

[a, b], and we define a measure of distance on the circle as |a− b|r = min{`([a, b]r), `([b, a]r)}.
An s-clique is a set of s pairwise adjacent vertices.

Lemma 2.1 Let G be a graph and f be an r-coloring of G, where r = s + ε with s ∈ N
and ε < 1/2. If Q is an s-clique in G and v ∈ Q, then each set [f(v) + i, f(v) + i + ε]r for

0 ≤ i ≤ s − 1 contains the color of exactly one vertex in Q. If X and Y are intersecting

s-cliques, then for each x ∈ X there is a unique y ∈ Y such that |f(y)− f(x)|r ≤ ε.

Proof. Since the colors on vertices of Q must pairwise differ by at least 1, the ith such color

after f(v) must be at least i units later along the circle. It cannot be more than i + ε units

later, since s− i subsequent colors are encountering in returning to f(v).

Now consider v ∈ X ∩ Y . With x0 = y0 = v, let xi be the ith vertex of X whose color

is encountered moving upward from f(v) around the circle (similarly define yi). By the

preceding paragraph, both f(xi) and f(yi) lie in [f(v) + i, f(v) + i + ε]r, for 1 ≤ i ≤ s − 1.

Hence they differ by at most ε. Furthermore, since ε < 1/2, the distance between two such

intervals is more than ε, so yi is the only vertex of Y whose color is within ε of f(xi).

To facilitate proofs, we interpret vertex colorings as edge-weightings of orientations. Let
~G be an orientation of a graph G. For a weight function w : E(G) → R and a walk W in

G, let w(W ) denote the sum of the weights along W , where the weight of an edge counts

negatively when followed against its direction in ~G.

A tension on ~G is a weight function w such that w(C) = 0 for every cycle C in G. Given

a real number r with r ≥ 2, an r-tension is a tension w such that 1 ≤ |w(uv)| ≤ r − 1 for

every uv ∈ E(G). An r-coloring f of G generates an r-tension w on an orientation ~G by

letting w(uv) = f(v)− f(u) for each uv ∈ E(~G).

A modular r-tension on an orientation ~G is a weight function w : E(G) → R such that

(1) w(C) is a multiple of r whenever C is a cycle in G, and (2) the weight on each edge

differs by at least 1 from any multiple of r. Every r-tension is a modular r-tension, so an

r-coloring of G generates a modular r-tension on ~G as above.

Conversely, a modular r-tension w on ~G generates an r-coloring f of G as follows. We

may assume that G is connected (else do this in each component). Fix a vertex x. For each

vertex v, choose an x, v-walk W in G, and choose f(v) ≡ w(W ) mod r with 0 ≤ f(v) < r.
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Since w is a modular r-tension, f(v) does not depend on the choice of W , and the colors on

adjacent vertices differ by at least 1. We call the resulting f an r-coloring generated from

w. We say “an” here because the coloring depends on the choice of x, but only by a cyclic

permutation. We have shown that χc(G) equals the least r such that some orientation ~G

has a modular r-tension.

Our lower bound on χ′c(H2C2m+1) uses an analogue of girth, employing a parameter

obtained from the cycle space of the graph. We obtain a strong lower bound when all the

cycles in some basis of the cycle space are short.

Within the binary vector space of dimension |E(G)| with canonical basis vectors indexed

by the edges, the cycle space of an undirected graph G is the subspace spanned by the

incidence vectors of the cycles. The analogue for an orientation ~G is the real vector space

spanned by the signed incidence vectors of the cycles. For each cycle C in G, followed in a

given direction, the signed incidence vector relative to ~G has 1 or −1 in each position for an

edge of C, using −1 if and only if the edge is followed against its direction in ~G.

For any orientation ~G, the same sets of cycles form bases of its cycle space as form bases of

the cycle space of the underlying graph G. In either context, the number of nonzero positions

in the incidence vector for a cycle is the same. Hence we define the relevant parameter in

terms of G. For a basis B of the cycle space of G, let λ(B) denote the maximum length of

an element of B. Let λ(G) denote the minimum of λ(B) over all bases of the cycle space.

Note that λ(G) may be larger than the girth of G, but never smaller. The smaller the value

of λ(G), the larger the lower bound we will obtain on χc(G).

Before embarking on the technical lemmas, we pause to motivate their hypotheses. Let

F = H2C2m+1. When H is (s− 2)-regular, F is s-regular. Furthermore, the edges incident

to any vertex of F become an s-clique in L(F ). Conversely, any two adjacent vertices of

L(F ) correspond to two incident edges in F and hence lie in an s-clique in L(F ). Therefore,

we can study r-edge-colorings of F by studying r-colorings of L(F ), which we do by studying

r-colorings of graphs in which every edge lies in a complete subgraph of order s.

Lemma 2.2 Let G be a graph such that each edge lies in a complete subgraph of order s.

Let G have an r-coloring f such that

r < s +
1

bλ(G)(1− 1/s)c .

If ~G is an orientation of G, then setting w(xy) = b`[f(x), f(y))rc for all xy ∈ E(~G) defines

a modular s-tension on ~G.

Proof. Let ε = r − s, so ε < bλ(G)(1− 1/s)c−1. For an edge xy, let Q be an s-clique

containing x and y, and let f(Q) = {f(v) : v ∈ Q}. Let t = |f(Q) ∩ [f(x), f(y))r|, so

s− t = |f(Q) ∩ [f(y), f(x))r|. By Lemma 2.1,

t ≤ `([f(x), f(y))r) ≤ t + ε and s− t ≤ `([f(x), f(y))r) ≤ s− t + ε. (1)
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By definition, w(xy) = b`([f(x), f(y))r)c, so

f(y) ∈ [f(x) + w(xy), f(x) + w(xy) + ε]r. (2)

By (1), w(yx) = s−w(xy). Let B be a basis of the cycle space such that λ(B) = λ(G) = k.

To prove that w is a modular s-tension (when restricted to an orientation ~G of G), it suffices

to show that w(C) ≡ 0 mod s for each C whose signed incidence vector lies in B. (Since

w(yx) = s− w(xy), the choice of ~G does not matter.)

Let x0, . . . , xl−1 be the vertices of C in order, and let xl = x0; note that l ≤ k. Let

ei = xixi+1. In testing whether w(C) ≡ 0 mod s, the orientation of the edges along C does

not matter; all orientations yield the same congruence class for w(C). Since the same sets of

cycles yield bases under each orientation, in studying C we may assume an orientation with

each ei directed from xi to xi+1. Now w(C) ≡ ∑l−1
i=0 w(ei) mod s.

Since each edge lies in a complete subgraph of order s, (2) applies to each edge, so

f(xi+1) ∈ [f(xi) + w(ei), f(xi) + w(ei) + ε]r for 0 ≤ i ≤ l − 1. Combining the allowed

variations in the intervals for all edges of C yields

f(x0) ∈ [f(x0) + w(C), f(x0) + w(C) + lε]r. (3)

By symmetry, we may choose f(x0) = 0, which reduces (3) to 0 ∈ [w(C), w(C) + lε]r.

Since 1 ≤ w(ei) ≤ s − 1, we have l ≤ w(C) ≤ (s − 1)l. Since w(C) is an integer, by

choosing q to be dw(C)/se or bw(C)/sc we can write w(C) = qs + j for integers q and j

such that dl/se ≤ q ≤ bl(1− 1/s)c and |j| ≤ s− 1. Now

[w(C), w(C) + lε]r = [j + qr − qε, j + qr + (l − q)ε]r = [j − qε, j + (l − q)ε]r.

Since q ≤ bl(1− 1/s)c, we have qε ≤ bl(1− 1/s)c ε ≤ bk(1− 1/s)c ε < 1. Similarly, q ≥
dl/se yields (l − q)ε ≤ bl(1− 1/s)c ε < 1. Since 0 ∈ [w(C), w(C) + lε]r ⊆ (j − 1, j + 1)r, we

thus have j = 0. That is, w(C) ≡ 0 mod s. Thus w is a modular s-tension on ~G.

The conclusion of Lemma 2.2 states that G is s-colorable. This is impossible if G is

s-regular with odd order, so the lemma implies that χc(G) ≥ s + bλ(G)(1− 1/s)c−1. With

G = L(H2C2m+1), we obtain a lower bound for χ′c(H2C2m+1), but it is not the lower bound

we seek. The cycle space for G contains copies of the cycle space for H, but it is larger, and it

may be that λ(G) > λ(H), so the bound may be weaker than desired. To improve the bound,

we will study subgraphs of G where we can control the value of λ. Before introducing these

subgraphs, we prove a technical lemma about the color classes of the colorings generated

from the modular s-tension produced by Lemma 2.2.

Lemma 2.3 Let G be a graph such that each edge lies in a complete subgraph of order s.

Suppose that G has an r-coloring f such that

r < s +
1

bλ(G)(1− 1/s)c .
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For a fixed vertex v∗ ∈ V (G) and any x ∈ V (G), let g(x) = b`([f(v∗), f(x))r)c. This function

g is a proper (integer) s-coloring of G that satisfies the following property: g(x) = g(x′) if

and only if G has a vertex list (x, . . . , x′) in which any consecutive entries v and v′ satisfy

dG(v, v′) = 2 and |f(v)− f(v′)|r < 1/2.

Proof. Call a list (x, . . . , x′) with the specified properties an x, x′-skiplist.
Let ~G be an orientation of G. By Lemma 2.2, setting w(xy) = b`([f(x), f(y))r)c for

all xy ∈ E(~G) defines a modular s-tension w on ~G, and g is an s-coloring of G generated

from w. Since the values of w are integers in {0, . . . , s − 1}, in fact g is a proper (integer)

s-coloring of G.

Vertices y and y′ with |f(y)−f(y′)|r < 1/2 must be nonadjacent. If they have a common

neighbor z, then

f(z) ∈ [f(y) + w(yz), f(y) + w(yz) + ε]r ∩ [f(y′) + w(y′z), f(y′) + w(y′z) + ε]r.

If |w(y′z) − w(yz)| ≥ 1, then the intervals on the right are disjoint, since ε < 1/2 and

|f(y) − f(y′)|r < 1/2. Therefore w(yz) = w(y′z), which yields g(y) = g(y′). Therefore, all

vertices in an x, x′-skiplist have the same color under g; in particular, g(x) = g(x′).
Conversely, suppose that g(x) = g(x′). Let v0, . . . , vt be the vertices along an x, x′-path

in G, with x = v0 and x′ = vt. For 0 ≤ i ≤ t−1, let Xi be an s-clique of G containing vi and

vi+1. Select auxiliary vertices x0, . . . , xt as follows. Having selected x0, . . . , xi−1 (starting

with x0 = v0 = x), observe that vi ∈ Xi−1 ∩ Xi. By Lemma 2.1, there is a unique vertex

xi ∈ Xi with |f(xi)−f(xi−1)|r ≤ ε < 1/2. Applying the preceding paragraph with y = xi and

y′ = xi−1 yields g(xi) = g(xi−1). Finally, xt = x′, since xt, x
′ ∈ Xt and g(xt) = g(x) = g(x′).

Now (x0, . . . , xt) is an x, x′-skiplist.

The crucial consequence of Lemma 2.3 is that the partition of G into color classes under

g does not depend on the choice of v∗.

3 A Lower Bound on χ′c(H2C2m+1)

We specialize again to the study of χ′c(H2C2m+1). When H is (s − 2)-regular with odd

order, the product H2C2m+1 is s-regular with odd order and hence is Class 2. Thus

χ′c(H2C2m+1) > s. We improve this lower bound when s is divisible by 4.

Let V (C2m+1) = {v0, . . . , v2m}, indexed in order; treat subscripts modulo 2m + 1. The ith

layer Hi of H2C2m+1 is the subgraph induced by V (H)×{vi}. Each layer Hi is isomorphic

to H. For e ∈ E(H) and x ∈ V (H), let ei and xi denote the copies of e and x in Hi. We

call
⋃2m

i=0 E(Hi) the horizontal edges of H2C2m+1.

For x ∈ V (H), let lix denote the edge xixi+1 in H2C2m+1. Let Li = {lix : x ∈ V (H)}; we

call Li the ith link of H2C2m+1 and call
⋃2m

i=0 Li the vertical edges of H2C2m+1.
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In a graph G whose vertices all have degree s or 1, any two incident edges are incident

at a vertex of degree s. Therefore, in L(G) every edge lies in a complete subgraph of order

s. We will be applying the results of Section 2 to subgraphs of H2C2m+1 having the form

Li−1∪Hi∪Li, where every vertex has degree s or 1. We also need the following observation.

Lemma 3.1 For any graph G, the equality λ(L(G)) = λ(G) holds.

Proof. Since cycles in G turn into cycles in L(G) and must be spanned by any basis for

L(G), we have λ(L(G)) ≥ λ(G). Also, a basis for the cycle space of G (indexed by edges)

can be augmented to a basis for the cycle space of L(G) (indexed by vertices) by adding

the incidence vectors of triangles in L(G) consisting of three edges in G having a common

endpoint. The added vectors have weight 3, so λ(L(G)) ≤ λ(G).

Theorem 3.2 If H is an (s− 2)-regular graph of odd order, where 4 | s, then

χ′c(H2C2m+1) ≥ s +
1

bλ(H)(1− 1/s)c .

Proof. If not, then H2C2m+1 has an (s + ε)-edge-coloring f , where ε < bλ(H)(1− 1/s)c−1.

Let Gi be the subgraph of L(H2C2m+1) induced by Li−1∪E(Hi)∪Li (as defined above).

Each edge of Gi lies in a complete subgraph of order s. Let T be the set of triangles in Gi.

If B is a basis of the cycle space of L(Hi), then B ∪ T contains a basis of the cycle space of

Gi. Thus λ(Gi) = λ(L(Hi)) = λ(L(H)) = λ(H), using Hi
∼= H and Lemma 3.1.

For each Gi, Lemma 2.3 states that the function gi defined by fixing v∗ ∈ V (Gi) and

setting gi(x) = b`([f(v∗), f(x))r)c for all x ∈ V (Gi) is a proper (integer) s-coloring of Gi.

Since this gi depends only on the global r-coloring f and the choice of v∗, the restrictions to

Li of the partitions of V (Gi) and V (Gi+1) into color classes under gi and gi+1 are the same

when v∗ is chosen to be an element of Li.

Furthermore, Lemma 2.3 implies that the partition of V (Gi) into color classes does not

depend on the choice of v∗; it is determined only by values of f and distances between

vertices in Gi. We conclude that no matter how v∗i and v∗i+1 are chosen in specifying gi and

gi+1, the resulting partitions of Li into color classes are the same.

Each vertex xi of the product has two incident vertical edges, namely lix and li−1
x . We say

that a color j is a vertical color at xi if some vertical edge incident to xi has color j under gi.

For each xi ∈ V (Hi), the s incident edges of Gi have distinct colors. Therefore a color j is a

vertical color at xi if and only if no edge of Hi incident to xi has color j under gi. Since H

has odd order, and the number of vertices of Hi incident to edges of Hi with color j is even,

we conclude that j is a vertical color at an odd number of vertices of Hi. In other words, in

the partition of Li−1 ∪ Li formed by the color classes under gi, each class has odd size.

Let C+
i [respectively, C−

i ] be the set of colors used by gi on an odd number of edges of

Li [respectively, Li−1]. Since each class under gi has odd size in Li ∪ Li−1, we conclude that

j ∈ C−
i if and only if j /∈ C+

i .
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Since |Li| and |Li−1| are odd, it follows that
∣∣C+

i

∣∣ and
∣∣C−

i

∣∣ are also odd. Since
∣∣C+

i

∣∣ +∣∣C−
i

∣∣ = s and s is divisible by 4, it follows that
∣∣C+

i

∣∣ 6=
∣∣C−

i

∣∣. Since gi and gi+1 induce the

same partitions of Li, it follows that
∣∣C−

i+1

∣∣ =
∣∣C+

i

∣∣, and hence also
∣∣C+

i+1

∣∣ =
∣∣C−

i

∣∣. Now

the values of
∣∣C+

i

∣∣ must alternate between two distinct values as i runs through all 2m + 1

subscripts, which is impossible since 2m + 1 is odd.

4 An Upper Bound on χ′c(H2C2m+1)

In this section, we obtain an upper bound on χ′c(H2C2m+1) for some H. As a consequence,

we show that χ′c(H2C2m+1) − ∆(H2C2m+1) can be bounded above by a number that is

arbitrarily close to χ′c(H)−∆(H) by making m sufficiently large.

We show first that increasing m cannot increase the circular chromatic index. We simply

use the coloring of one layer on three consecutive layers in the larger graph and re-use the

colorings on its neighboring links.

Lemma 4.1 If m′ ≥ m, then χ′c(H2C2m′+1) ≤ χ′c(H2C2m+1).

Proof. It suffices to prove that χ′c(H2Ch+2) ≤ χ′c(H2Ch) for all h. Let f be an r-

edge-coloring of H2Ch). Form an r-edge-coloring of H2Ch as follows. Color the layers

H0, . . . , Hh−1 and links L0, . . . , Lh−1 as under f . Color the layers Hh and Hh+1 the same

as Hh−1. Color the links Lh and Lh+1 the same as Lh−2 and Lh−1, respectively. Now the

colors on any two incident edges of H2Ch+2 under f ′ are also colors on two incident edges

of L(H2Ch) under f . Thus f ′ is also an r-edge-coloring.

The colors on any two adjacent vertices of L(H2C2m+3) under f ′ are also colors on two

adjacent vertices of L(H2C2m+1) under f . Thus f ′ is also an r-coloring.

Since χ′c(H2C2m+1) ≥ ∆(H2C2m+1) = ∆(H) + 2 for all m, Lemma 4.1 implies that

χ′c(H2C2m+1) has a limit as m →∞. In Section 5 we show that this limit is attained when

H is an odd cycle, and we compute its value.

To prove the upper bound, we need a standard result about circular coloring.

Lemma 4.2 (See [13]) If a graph G has a r-coloring f with r = p/q where p, q ∈ N, then

it has an r-coloring f ′ such that the colors under f ′ are multiples of 1/q, and such that if

xy ∈ E(G), then |f ′(x)− f ′(y)|r differs by less than 1/q from |f(x)− f(y)|r.

Proof. Let f ′(x) = bqf(x)c /q (such multiplication arguments were used as early as [3]).

Note that f ′(x) is the largest multiple of 1/q that does not exceed f(x). Under this trans-

formation, |f ′(x)− f ′(y)|r equals |f(x)− f(y)| if the latter is a multiple of 1/q. Otherwise,

the difference shifts to the next larger or next smaller multiple of 1/q.
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In particular, if the colors assigned to two vertices differ by at least a/q before the

transformation, for some positive integer a (such as a = q), then they also differ by at least

a/q after the transformation. Thus f ′ is an r-coloring.

Given an r-edge-coloring of a graph H, a color gap for a vertex x of H is a maximal open

interval on the circle Cr that contains no color used on an edge incident to x.

Theorem 4.3 Let H be a graph having a p/q-edge-coloring f such that every vertex x of H

has a color gap of length at least 3. If p is odd and 2m + 1 ≥ p, then χ′c(H2C2m+1) ≤ p/q.

Proof. By Lemma 4.1, it suffices to prove this when 2m + 1 = p. By Lemma4.2 (applied

to L(H)), we may assume that each f(e) is a multiple of 1/q, still with each vertex having

a color gap of length at least 3 (using a = 3q in that argument). For each x ∈ V (H), let

(ax, bx)p/q be a color gap under f with length at least 3.

We produce a p/q-edge-coloring φ for H2C2m+1. We use the same coloring f in each layer,

except that the colors in each layer increase by one unit from the colors on the corresponding

edges in the previous layer. Since 2m = p− 1 = q(p/q)− 1, the colors on layer H0 are also

one unit (modulo p/q) above the corresponding colors on H2m. This is achieved by letting

φ(ei) = f(e) + i mod p/q for each e ∈ E(H) and 0 ≤ i ≤ 2m.

It now suffices to use the color gaps to fit in colors for the vertical edges. Specifically,

we set φ(lix) = ax + 2 + i mod p/q for each x ∈ V (H) and 0 ≤ i ≤ 2m. Since no horizontal

edge at xi receives a color in (ax + i, ax + i + 3), the colors ax + i + 1 and ax + i + 2 are

available for li−1
x and lix, respectively, when viewed from xi. Furthermore, φ achieves this

assignment simultaneously for the vertical edges at all xj. Hence for all incident edges, the

assigned colors differ by at least 1.

For any graph G, let ∂(G) = χ′c(G)−∆(G). Thus G is Class 1 if and only if ∂(G) = 0,

and otherwise 0 < ∂(G) ≤ 1.

Corollary 4.4 For any graph H, limm→∞ ∂(H2C2m+1) ≤ ∂(H).

Proof. The limit exists, using ∆(H2C2m+1) ≥ ∆(H) + 2 and Lemma 4.1. It suffices to

show, given ε > 0, that ∂(H2C2m+1) ≤ ∂(H) + ε when m is sufficiently large.

Choose p, q ∈ N with p odd such that χ′c(H) ≤ p/q ≤ χ′c(H) + ε. Let f be a p/q-edge-

coloring of H. Also f can be viewed as a (p/q + 2)-edge-coloring of H. For x ∈ V (H),

let bx and ax be the minimum and maximum colors in [0, p/q) used on edges incident to x,

respectively. Since `((ax, bx)p/q) ≥ 1, also `((ax, bx)p/q+2) ≥ 3. Relative to f as a (p/q + 2)-

edge-coloring, each vertex of H thus has a color gap of length at least 3. By Theorem 4.3,

χ′c(H2C2m+1) ≤ p/q + 2 ≤ ∆(H2C2m+1) + ε when 2m + 1 ≥ p.

Recall that H2H ′ is Class 1 when H or H ′ is Class 1. That is, ∂(H) = 0 or ∂(H ′) = 0

implies ∂(H2H ′) = 0. It is natural to ask if ∂(H2H ′) ≤ min{∂(H), ∂(H ′)} always holds.
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It does not, by the following example. Let H = C2k+1 and H ′ = C2m+1. Since χ′c(C2m+1) =

2 + 1/m, we can make ∂(H ′) arbitarily small. However, λ(H) = 2k + 1, so Theorem 3.2

yields ∂(H2H ′) ≥ b(6k + 3)/4c−1 = d3k/2e−1, independent of m.

On the other hand, d3k/2e−1 < k−1 = ∂(C2k+1). Based on this and Theorem 4.3 and

other examples, we propose the following conjecture.

Conjecture 4.5 For any graphs H and H ′, ∂(H2H ′) ≤ max{∂(H), ∂(H ′)}.

5 Tightness of the lower bound

As noted above, Theorem 3.2 implies that χ′c(C2k+12C2m+1) ≥ 4 + d3k/2e−1 for all m. In

this section, we prove that the bound is sharp when m ≥ 3k +1. This proves Conjecture 4.5

for products of two odd cycles when one is at least three times as long as the other.

Lemma 5.1 If there exist integers α, β, q with 0 < q ≤ m/2 such that |α| + |β| = 2k + 1

and αq + β(q + 1) ≡ 0 mod 4q + 1, then χ′c(C2k+12C2m+1) ≤ 4 + 1/q.

Proof. By Theorem 4.3 with p = 4q +1, it suffices to produce a (4+1/q)-edge-coloring f of

C2k+1 such that every vertex x of C2k+1 has a color gap of length at least 3. Since C2k+1 is

2-regular, and we use a color circle of length 4 + 1/q, the condition on f becomes “If e and

e′ are incident edges in C2k+1, then 1 ≤ |f(e′)−f(e)|(4+1/q) ≤ 1+1/q.” Multiplying by q, we

further transform this to seeking integers z1, . . . , z2k+1 modulo 4q + 1 such that neighboring

integers differ by q or q + 1.

In the hypothesis, we may assume by symmetry that α ≥ 0. We construct the first α

and last |β| integers as separate arithmetic progressions, with common difference q for the

first α and q + 1 for the last |β|. For 1 ≤ i ≤ α, let zi = iq (this portion is empty if α = 0).

For 1 ≤ i ≤ |β|, let zα+i = αq + εi(q + 1), where ε = 1 if β > 0 and ε = −1 if β < 0.

The construction enforces the needed differences until just before the end; we need only

compare z2k+1 and z1. Since z2k+1 = αq + β(q + 1) ≡ 0 mod 4q + 1, indeed z2k+1 and z1

differ by q.

Theorem 5.2 If m ≥ 3k + 1, then χ′c(C2k+12C2m+1) = 4 + d3k/2e−1.

Proof. We have noted that Theorem 3.2 gives the lower bound. It suffices to find integers

α, β, q satisfying the hypotheses of Lemma 5.1 with q = d3k/2e = b(6k + 3)/4c.
Let r = b(k − 1)/2c, so k = 2r + s with 1 ≤ s ≤ 2. Now q = 3r + s + 1. Let α = s − 1

and β = −(4r + s + 2). We have |α|+ |β| = (4r + 2s + 1) = 2k + 1 and

αq + β(q + 1) = (s− 1)q − (4r + s + 2)(q + 1) = −(4q + 1)(r + 1),

where the last computation uses q = 3r + s + 1. Thus αq + β(q + 1) ≡ 0 mod (4q + 1), and

Lemma 5.1 applies.
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