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Abstract

Suppose G is a graph, r is a positive real number and S(r) is
a circle of perimeter r. For a positive real number t ≤ r, a (t, r)-
circular consecutive colour-list assignment L is a mapping that assigns
to each vertex v of G an interval L(v) of S(r) of length t. A circular
L-colouring of G is a mapping f : V (G) → S(r) such that for each
vertex v, f(v) ∈ L(v) and for each edge uv, the distance between f(u)
and f(v) in S(r) is at least 1. A graph G is called circular consecutive
t-choosable if for any r ≥ χc(G), for any (t, r)-circular consecutive
colour-list assignment L, G has a circular L-colouring. This paper
proves that every 2-choosable graph is circular consecutive 2-choosable.

1 Introduction

For a positive real number r, let ∼=r be the equivalence relation on IR defined
as x ∼=r y if x− y is a multiple of r. Let S(r) = IR/∼=r, which is viewed as a
circle of perimeter r. Elements of S(r) are equivalence classes of ∼=r. How-
ever, for convenience, any real number x is used to denote the equivalence
class in S(r) containing x. In particular, for x, y ∈ S(r), x+ y and x− y are
defined. For an element of S(r) (which is an equivalence class), we usually
use the unique member in the interval [0, r) of the equivalence class as its
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representative. In this sense, we may also view S(r) as obtained from the
interval [0, r] by identifying 0 and r into a single point.

For x ∈ IR, we denote by [x]r the real number which is the remainder
of x upon division by r. When real numbers stand for elements of S(r),
they are cyclically ordered, but not linearly ordered. However, real numbers
themselves are linearly ordered. In particular, we will frequently need to
compare the magnitude of [x]r with that of another real number. It should
be clear from the context whether a real number stands for an element of
S(r) or not.

For a, b ∈ S(r), [a, b]r is the interval of S(r) from a to b along the
“increasing direction”. To be precise, [a, b]r = {t ∈ S(r) : [t−a]r ≤ [b−a]r}.
For example, if r = 4, then [2, 3]r = [2, 3] and [3, 2]r = [3, 4) ∪ [0, 2]. The
interval (a, b)r is defined similarly. The length of the interval [a, b]r is equal
to [b−a]r. The distance |a− b|r between a and b is the length of the shorter
interval in S(r) connecting a and b, i.e.,

|a− b|r = min{[b− a]r, [a− b]r}.

Suppose G = (V, E) is a graph. A circular r-colouring of G is a mapping
f : V (G) → S(r) such that for any edge uv of G, |f(u) − f(v)|r ≥ 1. The
circular chromatic number χc(G) of G is defined as

χc(G) = inf{r : G has a circular r-colouring}.

The circular chromatic number of a graph is a refinement of the chro-
matic number of a graph. It provides an accurate model for many periodi-
cal scheduling problems, and has been studied extensively in the literature.
Readers are referred to [11, 12] for surveys on this subject.

Given a graph G and a positive real number r, a (?, r)-circular colour-list
assignment for G is a function L that assigns to each vertex v of G a set
L(v) which is the union of disjoint closed intervals of S(r). If for each vertex
v of G, the sum of the lengths of the disjoint intervals of L(v) is equal to
t, then L is called a (t, r)-circular colour-list assignment. Suppose L is a
(?, r)-circular colour-list assignment for a graph G. A circular L-colouring
of G is a circular r-colouring f of G such that f(v) ∈ L(v) for each vertex v

of G. A graph G is called circular t-choosable if for any r and for any (t, r)-
circular colour-list assignment L, G has a circular L-colouring. The circular
choosability chc(G) of G (also called the circular list chromatic number of G
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and denoted by χc,l(G)) is defined in [13] as

chc(G) = inf{t : G is circular t-choosable}.

Circular list colouring of graphs has been studied in [2, 5, 6, 8, 13].
Recall that a graph G is k-choosable if for any colour list assignment L

which assigns to each vertex x of G a set L(x) of k positive integers, there
is a colouring f : V (G) → IN such that f(x) ∈ L(x) for every vertex x, and
f(x) 6= f(y) for every edge xy. The choosability or the list chromatic number
ch(G) of G is the least integer k for which G is k-choosable. It is shown in
[13] that ch(G) ≤ dchc(G)e, and for any ε > 0, there are graphs G for which
chc(G) > 2 ch(G)− ε. However, it is unknown if chc(G) ≤ α ch(G) for some
constant α.

The circular consecutive choosability of a graph is a variation of circular
choosability of a graph, introduced in [3]. A (?, r)-circular colour-list assign-
ment L of G is called a (?, r)-circular consecutive colour-list assignment if
for each vertex v, L(v) consists of a single closed interval of S(r). If L(v)
has length t for each vertex v, then L is called a (t, r)-circular consecutive
colour-list assignment of G (abbreviated as (t, r)-CCCL assignment ). We
say G is circular consecutive (t, r)-choosable if G is circular L-colourable for
any (t, r)-CCCL assignment L of G.

Definition 1. Suppose r ≥ χc(G). The circular consecutive choosability of
G with respect to r is defined as

chr
cc(G) = inf{t : G is circular consecutive (t, r)-choosable}.

The circular consecutive choosability of G is defined as

chcc(G) = sup{chr
cc(G) : r ≥ χc(G)}.

Equivalently, chcc(G) is the infimum of those t such that for any r ≥ χc(G),
G is circular consecutive (t, r)-choosable.

One may view the vertices of G as jobs to be scheduled periodically
with period r. Adjacent vertices represent jobs that cannot be carried out
simultaneously (so the starting time of the two jobs need to be far apart).
Each job x has a time interval L(x) of length t in which it can be started.
To find an schedule for the jobs is then to find an L-colouring of the graph
G.
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Another motivation for the study of circular choosability of graphs is the
application in inductive proofs for upper bounds of the circular chromatic
number of graphs. To prove a graph G is circular r-colourable, one may
find an induced subgraph H of G, find a circular r-colouring f of G − H

(by induction hypothesis), then extend f to a circular r-colouring of H to
obtain a circular r-colouring of G. In the extension, the colours available
to vertices of H are restricted. Thus we are facing with a circular list
colouring problem. Such techniques have been used in the study of the
circular chromatic number of planar graphs of large girth in many papers.
In the inductive proof described above, if a vertex x of H is adjacent to one
coloured vertex in G, the set of available colours to x is an interval of S(r).
In this sense, circular consecutive choosability of graphs may also be used
in certain inductive proofs of the circular colourability of graphs.

Circular consecutive choosability is also a generalization of the consec-
utive choosability of a graph introduced by Waters [10]. A graph G is
defined in [10] to be consecutive t-choosable, if for any L which assigns to
each vertex v of G an interval L(v) of IR of length t, there is a colouring
f : V (G) → IR such that for each vertex v, f(v) ∈ L(v) and for each edge
uv of G, |f(u)− f(v)| ≥ 1. We may view IR as a circle of infinite perimeter.
Thus consecutive t-choosability of a graph is the same a circular consecutive
(t,∞)-choosable. Indeed, it is shown in [3] that if G is an n-vertex graph,
then for r ≥ n2 + 1, then G is consecutive t-choosable if and only if G is
circular consecutive (t, r)-choosable.

The parameter chcc(G) was studied in [3] and [7]. It was shown in [3]
that if G is a graph on n vertices, then

χ(G)− 1 ≤ chcc(G) ≤ 2χc(G)(1− 1/n)− 1.

The value of chcc(G) for complete graphs, trees, even cycles and balanced
complete bipartite graphs are determined there. Upper and lower bounds
for chcc(G) are given for some other graphs. In particular, it was shown in
[7] that for k ≥ 1, k-choosable graphs G have chcc(G) ≤ k + 1 − 1/k and
this upper bound is tight for k ≥ 3.

The question of finding the tight upper bound for chcc(G) for 2-choosable
graphs remained an open problem. The bound that k-choosable graphs have
chcc(G) ≤ k+1−1/k is not tight for k = 2. It was shown in [6] that bipartite
graphs G have chc(G) ≤ mad(G), where mad(G) = max{2|E(H)|/|V (H)| :
H is a subgraph of G}. It follows from the characterization of 2-choosable
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graphs (see Section 2), a connected n-vertex 2-choosable graph G is bipartite
and has mad(G) ≤ 2(n + 1)/n. So if G is a connected 2-choosable n-
vertex graph, then chcc(G) ≤ chc(G) ≤ 2 + 2/n. It is proved in [4] that
the theta graph θ2,2,4 (see definition in Section 2) is circular consecutive 2-
choosable. As a consequence, any 2-choosable graph G on at most 8 vertices
has chcc(G) ≤ 2. This implies that 2-choosable graphs G have chcc(G) ≤
20/9 [4]. It was conjectured in [7] that the tight upper bound should be
2, i.e., 2-choosable graphs G have chcc(G) ≤ 2. This paper confirms this
conjecture. As a consequence, for any 2-choosable graph G, the circular
consecutive choosability chcc(G) of G can be determined in linear time.

2 The theta graphs

Choosability of graphs was first studied in [1], where 2-choosable graphs are
characterized. Given a graph G, the heart of G is the graph H obtained
from G by repeatedly deleting degree 1 vertices. For positive integers a, b, c,
the theta graph θa,b,c is the graph obtained from three disjoint paths P1 =
(x0, x1, . . . , xa), P2 = (y0, y1, . . . , yb) and P3 = (z0, z1, . . . , zc) by identifying
x0, y0, z0 into a single vertex and identifying xa, yb, zc into a single vertex.
The following result was proved in [1].

Theorem 2. A connected graph G is 2-choosable if and only if the heart of
G is K1 or an even cycle or θ2,2,2n for some n ≥ 1.

It was conjectured in [7] that every 2-choosable graph is circular consec-
utive 2-choosable. We shall confirm this conjecture.

Theorem 3. If G is 2-choosable, then chcc(G) ≤ 2.

It is easy to see that a graph G is circular consecutive 2-choosable if and
only if the heart of G is circular consecutive 2-choosable. The graphs K1

and even cycles are known [3] to be circular consecutive 2-choosable. To
prove Theorem 3, it remains to show that for any positive integer n, the
graph θ2,2,2n is consecutive circular 2-choosable.

Theorem 4. Let G = θ2,2,2n with V (G) = {u, v, x1, x2, · · · , x2n+1} and
E(G) = {x1u, x1v, x2n+1u, x2n+1v} ∪ {xjxj+1 : j = 1, 2, · · · , 2n}. Let r ≥ 2
and l : V (G) → S(r) be an arbitrary mapping and let L(x) = [l(x), l(x)+2]r.
Then G is circular L-colourable.
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It is known [3] that if G contains a cycle, then chcc(G) ≥ 2. If G is an n-
vertex tree, then chcc(T ) = 2(1− 1

n). Thus for a connected 2-choosable graph
G, to determine chcc(G), it is sufficient to know if G has a cycle (if G has a
cycle, then chcc(G) = 2), and in case G has no cycle, we need to know the
number of vertices (if G has no cycle and n vertices, then chcc(G) = 2− 2

n).
Thus chcc(G) can be determined in linear time.

The remaining of the paper is devoted to the proof of Theorem 4.

3 Circular list colouring of paths

To prove Theorem 4, we need to find possible colours assigned to x1 and
x2n+1 in a circular L-colouring of the long path (x1, x2, · · · , x2n+1). In this
section, we present a result concerning consecutive circular list colouring of
a path, which will be crucial for our proof of Theorem 4.

The following lemma concerning circular list colouring of trees is proved
in [8] (the formulation is different from the one stated in [8]).

Lemma 5. Let r ≥ 2. Suppose T is a tree and L is a circular colour-list
assignment with respect to r that assigns to each vertex x of T a union of
closed intervals of S(r) of total length `(x). If for each subtree T ′ of T ,∑

x∈V (T ′) `(x) ≥ 2(|V (T ′)| − 1) (and a single vertex is assigned at least one
point, which is an interval of length 0), then T has a circular L-colouring.

In particular, we have the following corollary.

Corollary 6. Suppose P = (p0, p1, · · · , pk) is a path and r ≥ 2 is a real
number. Suppose each vertex pj is assigned a closed interval L(pj) of S(r).
If for each j = 1, 2, · · · , k − 1, L(pj) is an interval of length 2, and the
sum of the lengths of L(p0) and L(pk) is at least 2, then P has a circular
L-colouring.

Corollary 6 is used in our proofs. However, in many cases, we need to
know more about possible colours that can be assigned to p0 and pk in a
circular L-colouring of P . It turns out that if the colour list assignment L

satisfies certain requirements (which will shown to be true in our case), we
can say more about the possible colours assigned to p0 and pk in a circular
L-colouring of P .
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Theorem 7. Suppose 2 < r < 4 and k ≥ d2/(r−2)e and Pk = (p0, p1, · · · , pk)
is a path of length k. Let l : Pk → S(r) be any mapping such that |l(pi) −
l(pi+1)|r ≥ 1 for 0 ≤ i ≤ k − 1. Let L(pi) = [l(pi), l(pi) + 2]r. Then the
following hold:

1. There exists a point t ∈ L(p0) such that for any t′ ∈ L(pk) there is a
circular L-coloring f of Pk with f(p0) = t and f(pk) = t′.

2. For any 0 < ` < 2, there exist an interval X ⊆ L(p0) of length ` and
an interval Y ⊆ L(pk) of length 2 − `, such that for any t ∈ X and
for any t′ ∈ Y there is a circular L-coloring f with f(p0) = t and
f(pk) = t′.

By taking ` to be real number approaching 0, we can view statement
(1) as a limit case of statement (2), where a single colour is viewed as an
colour interval of length 0. Nevertheless, we shall prove the two statements
separately.

To prove Theorem 7, we first define some notation and present two lem-
mas. We say two colours t, t′ ∈ S(r) are adjacent if |t−t′|r ≥ 1. For t ∈ S(r),
denote by N(t) the set of colours adjacent to t, namely N(t) = [t+1, t−1]r.
For a subset A of S(r), let N(A) = ∪t∈AN(t).

Lemma 8. Suppose I = [a, b]r is an interval of S(r) of length ` = [b− a]r.
If ` ≥ 2, then N(I) = S(r). Otherwise N(I) = [a + 1, b− 1]r.

The proof of Lemma 8 is trivial and omitted.

Lemma 9. Suppose 2 < r < 4, a, b ∈ S(r) and |a − b|r ≥ 1. If I =
[s, s + `]r ⊆ [b, b + 2]r, then the following hold.

1. If ` ≥ r− 2, then there is an interval I ′ of length `− (r− 2) such that
I ⊆ [a, a + 2]r and I = N(I ′).

2. If ` ≤ r − 2, then there is a colour t′ ∈ [a, a + 2]r such that I ⊆ N(t′).

Proof. First we observe that if ` = r− 2, then by (1), there is an interval I ′

of [a, a + 2]r of length 0 such that I = N(I ′). Here by an interval of length
0 we mean a single point. So in this case, the conclusions in (1) and (2)
coincide.

(1): Assume ` ≥ r − 2. Let s′ = s− 1 and I ′ = [s′, s′ + `− (r − 2)]r. By
Lemma 8, N(I ′) = I = [s′ + 1, s′ + ` + 2− r − 1]r = [s, s + `]r = I. Now we
show that I ′ ⊆ [a, a + 2]r.
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First we show that

I ′ = [s− 1, s− 1 + `− (r − 2)]r ⊆ [b− 1, b + 3]r.

Assume t ∈ [s− 1, s− 1 + `− (r− 2)]r. Then [t− (s− 1)]r ≤ `− (r− 2). We
need to show that [t− (b− 1)]r ≤ [b + 3− (b− 1)]r = 4− r. Observe that

[t− (b− 1)]r = [t− (s− 1) + s− b]r = [[t− s + 1]r + [s− b]r]r.

Because [s, s + `]r ⊆ [b, b + 2]r, we conclude that [s− b]r ≤ 2− `. Hence

[[t− s + 1]r + [s− b]r]r = [t− s + 1]r + [s− b]r ≤ `− (r− 2) + 2− ` = 4− r.

It remains to show that [b−1, b+3]r ⊆ [a, a+2]r. If t ∈ [b−1, b+3]r, then
[t− b+1]r ≤ 4− r. Because 1 ≤ [b−a]r ≤ r−1, we have [b−1−a]r ≤ r−2.
It follows that

[t− a]r = [t− b + 1 + b− 1− a]r

= [[t− b + 1]r + [b− 1− a]r]r ≤ 4− r + r − 2 = 2.

Therefore t ∈ [a, a + 2]r.
(2): Assume ` ≤ r − 2. Let I ′′ be an interval contained in [b, b + 2]r of

length r−2 such that I ⊆ I ′′. Apply (1) to I ′′, we conclude that there exists
t ∈ [a, a + 2]r such that I ′′ = N(t). Hence I ⊆ N(t).

Proof of Theorem 7 We first consider the case that k = d2/(r − 2)e.
(1): Let Ik = L(pk). By repeatedly applying Lemma 9, we conclude that

there are intervals Ik−1, Ik−2, · · · , I1 such that

• Ij is contained in L(pj).

• Ij has length 2− (k − j)(r − 2).

• Ij+1 = N(Ij).

Since I1 has length 2− (k − 1)(r − 2) ≤ r − 2, apply Lemma 9 again, there
is a colour t ∈ L(p0) such that I1 ⊆ N(t).

For any t′ ∈ L(pk) = Ik, there are colours cj ∈ Ij for j = k−1, k−2, · · · , 1
such that t′ ∈ N(ck−1) and cj+1 ∈ N(cj) for j = k − 2, k − 3, · · · , 1 and
c1 ∈ N(t). Let f(p0) = t, f(pk) = t′ and f(pj) = cj for j = 1, 2, · · · , k − 1.
Then f is a circular L-colouring of Pk satisfying the requirements of the
theorem. This completes the proof of (1).

(2) Let q = d`/(r − 2)e. Similarly as in the proof of (1), by repeatedly
applying Lemma 9, we have the following:
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• For j = k, k − 1, k − 2, · · · , q, there are intervals Ij ⊆ L(pj) of length
2− (k − j)(r − 2) and Ij+1 = N(Ij) for j = k − 1, k − 2, · · · , q.

• For j = 0, 1, 2, · · · , q, there are intervals Jj ⊆ L(pj) of length 2−j(r−2)
with N(Jj) = Jj−1 for j = 1, 2, · · · , q.

Let
δ = q(r − 2)− ` and ε = (k − q)(r − 2) + `− 2.

Let J ′q be a closed interval contained in L(pq) of length 2 − q(r − 2) + δ

containing Jq, and let I ′q be a closed interval contained in L(pq) of length
2− (k − q)(r − 2) + ε containing Iq. As the sum of the lengths of J ′q and I ′q
is equal to 2 and both are contained in L(pq) which is an interval of length
2, I ′q ∩ J ′q 6= ∅.

Let s ∈ I ′q ∩ J ′q. Since Iq ⊆ I ′q and Iq has length 2− q(r − 2), there is a
colour s′ ∈ Iq such that |s−s′|r ≤ ε. Thus N(s) is an interval which is a shift
of the interval N(s′) by a distance |s− s′|r ≤ ε. Since N(s′)∩ Iq+1 = N(s′),
which is an interval of length r − 2, it follows that I ′q+1 = N(s) ∩ Iq+1 is an
interval of length at least r−2−ε. For j = q+2, q+3, · · · , k, let I ′j = N(I ′j−1),
then I ′j ⊆ Ij ⊆ L(pj) and has length at least (j− q)(r−2)− ε. In particular,
I ′k ⊆ L(pk) has length at least (k − q)(r − 2) − ε = 2 − `. Similarly, let
J ′q−1 = N(s) ∩ Jq−1 for j = q − 2, q − 3, · · · , 1, let J ′j = N(J ′j+1). We have
J ′j ⊆ L(pj) and J ′0 has length q(r − 2)− δ = `.

Let X = J ′0 and Y = I ′k. For t ∈ X and t′ ∈ Y , there are colours cj ∈ I ′j
for j = k−1, k−2, · · · , q+1 such that t′ ∈ N(ck−1) and cj ∈ N(cj−1) for j =
k−1, k−2, · · · , q+1. Similarly, there are colours cj ∈ J ′j for j = 1, 2, · · · , q−1
such that t ∈ N(c1) and cj+1 ∈ N(cj) for j = 1, 2, · · · , q − 2. Then f(pk) =
t′, f(p0) = t, f(pq) = s and f(pj) = cj for j = 1, 2, · · · , q− 1, q +1, · · · , k− 1
is a circular L-coloring f with f(p0) = t and f(pk) = t′.

Assume Theorem 7 holds for k. To prove that it also holds for Pk+1 =
(p0, p1, · · · , pk, pk+1), we apply the theorem to the path (p0, p1, · · · , pk) to
obtain the required sets X and Y , and then let Y ′ = Y + l(pk+1)− l(pk) =
{t + l(pk+1)− l(pk) : t ∈ Y }. Then X, Y ′ are the required sets for statement
(2). Statement (1) is proved in the same way.

4 Proof of Theorem 4

Assume Theorem 4 is not true. Let n be the smallest integer for which there
is a real number r ≥ 2, a (2, r)-CCCL assignment L of G, such that G is not
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circular L-colourable. We shall derive some properties of the list assignment
L that eventually lead to a contradiction.

It is known [3] that we only need to consider those 2 ≤ r < 4. Also it
is known [7] that θ2,2,2 is circular consecutive 2-choosable. In the following,
we assume that 2 ≤ r < 4 and n ≥ 2.

If r ≤ 2 + 2/n, then L(x1) ∩ L(x3) ∩ · · · ∩ L(x2n+1) 6= ∅. Let t ∈
L(x1) ∩ L(x3) ∩ · · ·L(x2n+1). Let f(x2j+1) = t for j = 0, 1, · · · , n. For
w ∈ {u, v, x2, x4, · · · , x2n}, let f(w) be any colour from the nonempty set
L(w) − (t − 1, t + 1)r. Then f is an L-colouring of G. In the following, we
assume that r > 2 + 2/n.

Lemma 10. For any j ∈ {2, 3, · · · , 2n− 1}, l(xj) and l(xj+1) are adjacent,
i.e., |l(xj)− l(xj+1)|r ≥ 1.

Proof. Assume to the contrary that there exists an index j ∈ {2, 3, · · · , 2n−
1} such that |l(xj)− l(xj+1)|r < 1. Delete two vertices xj , xj+1 and add an
edge xj−1xj+2. The resulting graph G′ is θ2,2,2(n−1). By the minimality of
G, there exists a circular L-coloring f for G′. We shall extend f to a circular
L-colouring of G, by finding appropriate colours for xj and xj+1.

Let a = f(xj−1) and b = f(xj+2). If b ∈ L(xj), then let f(xj) = b and
let f(xj+1) be any colour from the non-empty set L(xj+1)− (b− 1, b + 1)r.
Then f is a circular L-coloring of G. Thus we may assume that b 6∈ L(xj).
Similarly, we may assume that a 6∈ L(xj+1).

Since r < 4, either a + 1 ∈ L(xj) or a − 1 ∈ L(xj). By symmetry, we
may assume that a + 1 ∈ L(xj). Similarly, either b + 1 ∈ L(xj+1) or b− 1 ∈
L(xj+1). If b+1 ∈ L(xj+1), then let f(xj) = a+1 and f(xj+1) = b+1. Then
f is a circular L-colouring of G. Thus we may assume that b + 1 /∈ L(xj+1)
and hence b−1 ∈ L(xj+1). Moreover, we may also assume that a−1 /∈ L(xj),
for otherwise, by letting f(xj) = a − 1 and f(xj+1) = b − 1 we obtain a
circular L-colouring of G. Let f(xj) = l(xj) + 2 and f(xj+1) = l(xj) + 1.
We shall show that f is a circular L-colouring of G.

Since a + 1 ∈ L(xj) and a − 1 /∈ L(xj), it follows that [a − 1, a]r ⊆
[l(xj)+2, a]r and [a, a+1]r ⊆ [a, l(xj)+2]r. Hence [a− (l(xj)+2)]r ≥ 1 and
[l(xj)+2−a]r ≥ 1. I.e., |f(xj)− f(xj−1)|r ≥ 1. Since |l(xj)− l(xj+1)|r < 1,
it follows that l(xj) + 1 ∈ L(xj+1). I.e., f(xj+1) ∈ L(xj+1). By definition,
|f(xj)− f(xj+1)|r = 1. Since b /∈ L(xj), we have |b− (l(xj) + 1)|r ≥ 1. I.e.,
|f(xj+1)−f(xj+2)|r ≥ 1. This proves that f is indeed a circular L-colouring
of G.
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Let l(x1) = a, l(x2n+1) = b, l(u) = c and l(v) = d. Without loss of
generality, we may assume that

c ∈ L(v) = [d, d + 2]r.

Lemma 11. Under assumption as above, we have d /∈ [c, c + 2]r.

Proof. Assume to the contrary that c ∈ [d, d + 2]r and d ∈ [c, c + 2]r. By
our assumption, r ≥ 2 + 2/n. By Theorem 7, there is a colour t ∈ L(x2)
such that for any t′ ∈ L(x2n), there is a circular L-colouring f of the path
(x2, x3, · · · , x2n) with f(x2) = t and f(x2n) = t′.

We construct a circular L-colouring c of G as follows: Let c(x2) = t,
and let c(x1) ∈ L(x1) be any colour adjacent to t. Since c ∈ [d, d + 2]r and
d ∈ [c, c + 2]r, we have

[c, c + 2]r ∩ [d, d + 2]r = [c, d + 2]r ∪ [d, c + 2]r.

As N([c, d+2]r) = [c−1, d+3]r and N([d, c+2]r) = [d−1, c+3]r, it implies
that

N([c, d + 2]r ∪ [d, c + 2]r) = S(r).

In particular, c(x1) ∈ N([c, c+2]r ∩ [d, d+2]r). Let s ∈ [c, c+2]r ∩ [d, d+2]r
be a colour adjacent to t and let t∗ ∈ L(x2n+1) be any colour adjacent to s.
Let c(u) = c(v) = s and let c(x2n+1) = t∗. Let t′ ∈ L(x2n) be any colour
adjacent to t∗. By the previous paragraph, c can be extended to a circular
L-colouring of the path (x2, x3, · · · , x2n).

Lemma 12. N([c, d + 2]r) ∪ (N(c + 2) ∩N(d)) = S(r).

Proof. By definition, N([c, d + 2]r) = [c + 1, d + 1]r. Since d /∈ [c, c + 2]r, we
have N(c + 2) ∩N(d) = [c + 3, c + 1]r ∩ [d + 1, d− 1]r = [d + 1, c + 1]r.

Proof of Theorem 4 Assume first that b /∈ (c + 1, d − 1)r. By Theorem
7, there is a colour t ∈ L(x1) such that for any t′ ∈ L(x2n+1), there is
a circular L-colouring f of the path (x1, x2, x3, · · · , x2n+1) with f(x1) = t

and f(x2n+1) = t′. We construct a circular L-colouring c of G as follows:
Let c(x1) = t. If [c, d + 2]r ∩ N(t) 6= ∅ then let c(u) = c(v) = s for
some s ∈ [c, d + 2]r ∩ N(t), let c(x2n+1) = t′, where t′ ∈ L(x2n+1) is any
colour adjacent to s. By the choice of t, c can be extended to a circular
L-colouring of the path (x1, x2, x3, · · · , x2n+1). If [c, d+2]r ∩N(t) = ∅, then
t /∈ N([c, d + 2]r). By Lemma 12, t is adjacent to both c + 2 and d. In this
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case, let c(u) = c + 2, c(v) = d. Since b /∈ (c + 1, d − 1)r, it follows that
[b, b + 2]r ∩ [d + 1, c + 1]r 6= ∅. Let t′ ∈ [b, b + 2]r ∩ [d + 1, c + 1]r. Thent′ is
adjacent to both c + 2 and d. Let c(x2n+1) = t′. By the choice of t, c can
be extended to a circular L-colouring of the path (x1, x2, x3, · · · , x2n+1).

Assume next that b ∈ (c+1, d−1)r. Then [b, b+2]r ∩ (d+1, c+1)r = ∅.
This implies that for any t ∈ [b, b + 2]r, N(t) ∩ [c, d + 2]r 6= ∅. By Theorem
7, there is a colour t ∈ L(x2n+1) such that for any t′ ∈ L(x1), there is a
circular L-colouring f of the path (x1, x2, x3, · · · , x2n) with f(x1) = t′ and
f(x2n+1) = t.

Let s ∈ [c, d + 2]r ∩ N(t) be a colour adjacent to t and let t′ ∈ L(x1)
be any colour adjacent to s. Let c(u) = c(v) = s and let c(x1) = t′ and
c(x2n+1) = t. Then c can be extended to a circular L-colouring of the path
(x1, x2, x3, · · · , x2n+1). This completes the proof of Theorem 4.

5 An open question

It is known [3, 4, 7] that there are graphs G that are not 2-choosable but
have chcc(G) = 2. Odd cycles and K2,n (for n ≥ 4) are such examples.
The question of characterizing circular consecutive 2-choosable graphs was
asked in [7] and remains open. As an attempt to answer this question,
the authors studied in [7] the circular consecutive choosability of general-
ized theta graphs θk1,k2,··· ,kn (the graph obtained from n paths of lengths
k1, k2, · · · , kn by identifying their initial ends into a single vertex, and iden-
tifying their terminal ends into a single vertex). It was proved that for n ≥ 0,
chcc(θ2,2,2,2n+1) ≥ 2 + 1/(n + 5) and chcc(θ2,2,2,2n+8) ≥ 2 + 2/(4n + 21) and
chcc(θ2,2,2,2,4) ≥ 2+1/8. However, the question that which generalized theta
graphs G have chcc(G) = 2 remains largely open. In particular, the circular
consecutive choosability of theta graphs θ2,2,2n+1 remains an open question.
We can show that chcc(θ2,2,1) = 2. This particular case seems too weak
to support a conjecture that chcc(θ2,2,2n+1) = 2 for all n. We pose it as a
question:

Question 13. Is it true that for any positive integer n, the theta graph
θ2,2,2n+1 is circular consecutive 2-choosable?
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