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Abstract: Suppose G = (V, E) is a graph and p ≥ 2q are positive integers.
A (p, q)-coloring of G is a mapping φ : V → {0, 1, . . . , p − 1} such that
for any edge xy of G, q ≤ |φ(x) − φ(y)| ≤ p − q. A color-list is a mapping
L : V → P({0, 1, . . . , p − 1}) which assigns to each vertex v a set L(v) of
permissible colors. An L-(p, q)-coloring of G is a (p, q)-coloring φ of G such
that for each vertex v, φ(v) ∈ L(v). We say G is L-(p, q)-colorable if there
exists an L-(p, q)-coloring of G. A color-size-list is a mapping � which assigns
to each vertex v a non-negative integer �(v). We say G is �-(p, q)-colorable if
for every color-list L with |L(v)| = �(v), G is L-(p, q)-colorable. In this article,
we consider list circular coloring of trees and cycles. For any tree T and for
any p ≥ 2q, we present a necessary and sufficient condition for T to be
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�-(p, q)-colorable. For each cycle C and for each positive integer k, we
present a condition on � which is sufficient for C to be �-(2k + 1, k)-colorable,
and the condition is sharp. © 2007 Wiley Periodicals, Inc. J Graph Theory 55: 249–265, 2007

Keywords: circular chromatic number, list circular coloring, circular list chromatic number

1. INTRODUCTION

Suppose G = (V, E) is a graph and p ≥ 2q are positive integers. A (p, q)-coloring
of G is a mapping φ : V → {0, 1, . . . , p − 1} such that for every edge e = xy,
q ≤ |φ(x) − φ(y)| ≤ p − q. The circular chromatic number of G is defined as
χc(G) = inf{p/q : there exists a (p, q)-coloring of G}. It is known [13] that for any
finite graph G, the infimum in the definition is always attained and hence can be
replaced by the minimum. Moreover, for any graph G, χ(G) − 1 < χc(G) ≤ χ(G).
So χc(G) is a refinement of χ(G), and it contains more information about the
structure of G. The concept of the circular chromatic number of a graph was first
introduced by Vince [11] under the name “star chromatic number,” and has been
studied extensively in the past decade. Readers are referred to [13,14] for surveys
on this subject.

In this article, we are interested in the list version of circular coloring. Suppose
G = (V, E) is a graph. A color-list of G is a mapping L which assigns to each
vertex v of G a set of non-negative integers. Suppose p ≥ 2q are positive integers
and p > max

⋃
v∈V L(v). Then an L-(p, q)-coloring of G is a (p, q)-coloring φ

of G such that for each vertex v, φ(v) ∈ L(v). We say G is L-(p, q)-colorable if
such a coloring exists. In case L(v) = {0, 1, . . . , p − 1} for each vertex v, then
an L-(p, q)-coloring is equivalent to a (p, q)-coloring. In the following, when we
write L-(p, q)-coloring, it is implicitly implied that p > max

⋃
v∈V L(v).

A color-size-list is a mapping � which assigns to each vertex v of G a
non-negative integer �(v). Given a color-size-list �, we say G is �-(p, q)-colorable
if for every color-list L with |L(v)| = �(v) and with max

⋃
v∈V L(v) < p, G is

L-(p, q)-colorable.
A color-size-list � is called k-uniform if �(x) = k for some constant k. If for

every k-uniform color-size-list �, G is �-(p, 1)-colorable for every p, then G is
called k-choosable. Suppose t is a real number. If for every k/q ≥ t, for every
p ≥ k and for every k-uniform color-size-list �, G is �-(p, q)-colorable, then we
say G is circular t-choosable. The list chromatic number χl(G) of G is defined as

χl(G) = inf{t : G is t-choosable}.
The circular list chromatic number χc,l(G) of G is defined as

χc,l(G) = inf{t : G is circular t-choosable}.
It is proved in [15] that for any graph G, χc,l(G) > χl(G) − 1. On the other hand,
χc,l(G) could be arbitrarily larger than χl(G).
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In this article, we consider color-size-lists � that are not uniform. Given a graph
G and a pair of integers p, q, the question is for which color-size-lists �, G is
�-(p, q)-colorable. We consider the case that G is either a tree or a cycle. For
each tree T , we present a condition on � which is necessary and sufficient for T

to be �-(p, q)-colorable. For each cycle C, we present a condition on � which is
sufficient for C to be �-(2k + 1, k)-colorable.

List coloring of a graph originally arose from the need in the inductive proofs of
coloring results, and it is a useful tool in the proof of some coloring theorems about
planar graphs, see [9,10]. Circular list coloring is also motivated by the need in the
inductive proofs of circular coloring results. For example, the circular chromatic
number of planar graphs of large odd girth is studied extensively in the literature
[1,2,4,7,12]. A common feature of the proofs in these papers is that one needs to
extend a (2k + 1, k)-coloring of a special subgraph G′ to the entire graph G, where
G′ = G − T , where T is a tree. To extend a (2k + 1, k)-coloring f of G′ to G, it
amounts to find an L-(2k + 1, k)-coloring of T , where L is defined as follows: If
x is a leaf vertex of T , then x is colored already, and hence L(x) = {f (x)}, if x is
not a leaf vertex, then let L(x) = {0, 1, . . . , 2k}. The trees T used in [2] and [7] are
paths, and the trees T used in [1,4,12] are star-like trees. The results obtained so far
concerning the circular chromatic number of planar graphs of large girth is still far
from a conjectured value [3,5,6]. To further improve the above results, it seems that
one inevitably needs to consider how to extend a coloring of G − H to G, where H

is a more complicated subgraph. The result in this article is motivated by the study
of this problem. We hope that the result in this article can be applied to obtain better
results concerning this problem. On the other hand, like the study of list coloring
problems, the study of circular list coloring is an interesting problem by itself.

2. COLORING THE TREES

First we introduce some notation that will be used throughout the article. Suppose
p is a positive integer. Then for any integer t, [t]p denotes the remainder of t upon
the division by p, that is, [t]p is the unique integer 0 ≤ t′ < p such that t − t′ is a
multiple of p. In (p, q)-colorings of graphs, the color set is Zp = {0, 1, . . . , p − 1}.
The summation in colors are all modulo p, and any integer t for which [t]p = i can
be used to represent the color i. For example, when we say “color a vertex x with
color 2p,” it means to color x with color 0. Moreover, the colors are viewed to
form a circle, that is, the integers 0, 1, . . . , p − 1 are cyclically ordered. If a, b ∈
{0, 1, . . . , p − 1}, then [a, b]p denotes the set of cyclically consecutive elements of
the set {0, 1, . . . , p − 1} from a to b. That is, [a, b]p = {t : [t − a]p ≤ [b − a]p}.
For example, [2, 5]p = {2, 3, 4, 5} and [5, 2]p = {5, 6, . . . , p − 1, 0, 1, 2}. The set
[a, b]p is called an interval of colors. For convenience, for arbitrary integers a, b

(not necessarily between 0 and p), let [a, b]p = [[a]p, [b]p]p. The intervals (a, b)p,
(a, b]p, and [a, b)p are defined similarly. The length �([a, b]p) of an interval [a, b]p is
the number of integers in the interval and is equal to [b − a]p + 1. If the integer p is
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clear from the context, then we may write [a, b] for [a, b]p. When considering (p, q)-
colorings of graphs, we say two colors i, j are adjacent if q ≤ |i − j| ≤ p − q. For
two sets A, B of colors, let A + B = {[a + b]p : a ∈ A, b ∈ B}. Observe that when
considering (p, q)-colorings of graphs, for a set A of colors, A + [q, p − q]p is the
set of colors which is adjacent to at least one color in A. The following Cauchy-
Davenport Theorem is a well-known result in number theory.

Theorem 2.1. If p is a prime number, then for any subsets A, B of Zp, |A + B| ≥
min{|A| + |B| − 1, p}.

For our purpose, p is usually not a prime number. However, most of the time we
work with special sets A, B of colors. For those special sets that we are interested
in, the corresponding conclusion holds for non-prime p.

Lemma 2.2. Suppose B is an interval of colors. For any set A of colors, |A + B| ≥
min{|A| + |B| − 1, p}.

Proof. Suppose A = [a1, b1] ∪ [a2, b2] ∪ · · · ∪ [at, bt] and B = [c, d]. The
intervals (b1, a2), (b2, a3), . . . , (bt, a1) are the “gaps” of A. It is known (see [8])
that

A + B = {0, 1, . . . , p − 1}, or

A + B = [a1 + c, b1 + d] ∪ [a2 + c, b2 + d] ∪ · · · ∪ [at + c, bt + d].

If there is a gap, say (b1, a2), of size at least |B|, then

[a1 + c, b1 + d], [a2 + c, b2 + c], . . . , [at + c, bt + c]

are pair-wise disjoint subsets of A + B. Therefore

|A + B| ≥ |[a1 + c, b1 + d]| + |[a2 + c, b2 + c]| + · · · + |[at + c, bt + c]|
= |A| + |B| − 1.

If each of the gaps of A has size less than B, then it is easy to see that A + B =
{0, 1, . . . , p − 1}, and hence |A + B| = p. �

In this section, we prove the following theorem which characterizes the color-
size-lists � of a tree T for which T is �-(p, q)-colorable.

Theorem 2.3. Suppose T is a tree, p ≥ 2q are positive integers and � : V (T ) →
{0, 1, 2, . . . , p} is a color-size-list. Then T is �-(p, q)-colorable if and only if for
each subtree T ′ of T, ∑

v∈T ′
�(v) ≥ 2(|V (T ′)| − 1)q + 1.

The “only if” part of Theorem 2.3 follows from the following lemma.
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Lemma 2.4. Suppose � is a color-size-list of a tree T = (V, E). If
∑

x∈T �(x) <

2(|V | − 1)q + 1, then there is a color-list L such that L(x) is an interval of colors
with |L(x)| = �(x) for each vertex x, and T is not L-(p, q)-colorable.

Proof. We prove Lemma 2.4 by induction on |V |. If V = {v}, then the condition
says that �(v) = 0, and hence L(v) = ∅ for the only vertex v of T . Then of course,
T is not L-(p, q)-colorable.

Assume |V | ≥ 2. Let v be a leaf of T . Let u be the neighbor of v. If �(u) + �(v) ≤
2q, then let L(v) = [0, �(v) − 1]p and let L(u) = [�(v) + p − q, �(v) + p − q +
�(u) − 1]p, and for x �= u, v, let L(x) be any interval of colors for which |L(x)| =
�(x). Observe that no color in L(u) is adjacent to a color in L(v). So T is not
L-(p, q)-colorable.

Assume �(u) + �(v) ≥ 2q + 1. If �(v) ≥ 2q, then let �′ be the color-size-list of
T − v, defined as �′(x) = �(x) for all x. If �(v) ≤ 2q − 1, then let �′ be the color-
size-list of T − v, defined as �′(x) = �(x) if x �= u, and �′(u) = �(u) + �(v) − 2q.
In any case,

∑
x∈T−v �′(v) ≤ ∑

x∈T �(x) − 2q. Therefore �′ satisfies the condition
of Lemma 2.4. By induction hypothesis, there is a color-list L′ such that L′(x) is an
interval of size �′(x) for each vertex x, and T − v is not L′-(p, q)-colorable. Assume
L′(u) = [c, d].

If �(v) ≥ 2q, then let L be any extension of L′. Any L-(p, q)-coloring induces an
L′-(p, q)-coloring of T − v. Therefore, T is not L-(p, q)-colorable. If �(v) ≤ 2q −
1, then let L(v) = [c − q, c + �(v) − q − 1], L(u) = [d − �(u) + 1, d] and L(x) =
L′(x) for x �= u, v. Observe that L(v) + [q, p − q] = [c, c + �(v) + p − 2q − 1].
Since |[c, d]| = �(u) + �(v) − 2q, we conclude that

(L(v) + [q, p − q]) ∩ L(u) = [c, d].

Therefore if φ is an L-(p, q)-coloring of T such that φ(x) ∈ L(x) for all x, then
φ(u) ∈ [c, d], that is, the restriction of φ to T − v is an L′-(p, q)-coloring of T − v,
contrary to the assumption that T − v is not L′-(p, q)-colorable. Therefore T is not
L-(p, q)-colorable. �

The “if” part of Theorem 2.3 follows from the following lemma.

Lemma 2.5. Assume L is a color-list of T . If for each subtree T ′ of T ,∑
v∈T ′

|L(v)| ≥ 2(|V (T ′)| − 1)q + 1,

then T is L-(p, q)-colorable.

Proof. We prove Lemma 2.5 by induction on |V (T )|. Assume L is a color-
list of T such that for each subtree T ′ of T ,

∑
v∈T ′ |L(v)| ≥ 2(|V ′| − 1)q + 1. If

|V (T )| = 1, then the condition implies that L(v) �= ∅ for the only vertex v of T .
Hence T is L-(p, q)-colorable. Assume |V (T )| ≥ 2. Let v be a leaf of T . Let u be
the neighbor of v. Consider the edge e = uv, which is a subtree of T . The condition
of Lemma 2.5 implies that |L(u)| + |L(v)| ≥ 2q + 1.
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Similarly as before, L(v) + [q, p − q]p is the set of colors each of which is
adjacent to at least one color of L(v). By Lemma 2.2, |L(v) + [q, p − q]p| ≥
min{|L(v)| + p − 2q, p}. If |L(v) + [q, p − q]p| = p, then let L′ be the restriction
of L to T − v. Any L′-(p, q)-coloring φ of T − v can be extended to an L-
(p, q)-coloring of T . Otherwise |L(v) + [q, p − q]p| ≥ |L(v)| + p − 2q. Let L′

be the color-list of T − v defined as L′(x) = L(x) for x �= u and L′(u) = L(u) ∩
(L(v) + [q, p − q]p). Then |L′(u)| ≥ |L(u)| + |L(v)| − 2q. Straightforward
calculation shows that L′ satisfies the condition of Lemma 2.5. Therefore T − v

has an L′-(p, q)-coloring φ. As φ(u) ∈ L′(u) ⊆ L(v) + [q, p − q]p, so φ(u) is
adjacent to some color in L(v). Hence φ can be extended to an L-(p, q)-coloring
of T . �
Theorem 2.6. Given a tree T , positive integers p ≥ 2q, and a color-size-list � for
T , it can be determined in linear time whether or not T is �-(p, q)-colorable.

Proof. Let v be a leaf vertex of T and let u be the unique neighbor of v. If �(u) +
�(v) ≤ 2q, then T is not �-(p, q)-colorable, by Theorem 2.3. Assume �(u) + �(v) ≥
2q + 1. Delete v, and let �′(u) = �(u) + �(v) − 2q and �′(x) = �(x) for x �= u, v.
It follows from Theorem 2.3 that T is �-(p, q)-colorable if and only if T − v is
�′-(p, q)-colorable. By repeatedly deleting leaf vertices of T , one determines in
linear time whether or not T is �-(p, q)-colorable. �

3. COLORING THE CYCLES

In the remainder of this article, we consider list coloring of cycles. Given a cycle
X = (x0, x1, . . . , xn−1), the vertices are also considered as cyclically ordered. The
additions on the indices of the vertices of the cycle are modulo n. The intervals
[i, j]n, (i, j)n, [i, j)n, (i, j]n are defined in the same way as the intervals of colors.

The following result is the main theorem of this section.

Theorem 3.1. Let k ≥ 1 be an integer, and X = (x0, x1, . . . , xn−1) be a cycle of
length n ≥ 2k + 1. Suppose � : V (X) → {0, 1, 2, . . . , 2k + 1} is a color-size-list
for X. Then X is �-(2k + 1, k)-colorable if the following conditions hold:

1. For each interval [j, j′]n of length m,
∑

t∈[j,j′]n �(xt) ≥ 2(m − 1)k + 1.

2.
∑n−1

t=0 �(xt) ≥ 2nk + 1.

Moreover, Condition (1) is necessary for X to be �-(2k + 1, k)-colorable, and in
case X is an odd cycle, Condition (2) is sharp.

The necessity of Condition 1 follows from Lemma 2.4, because if X is �-(2k +
1, k)-colorable, then each subtree (which is a path) must be �-(2k + 1, k)-colorable.

If X = (x0, x1, . . . , xn−1) is an odd cycle, then Condition (2) is sharp in
the following sense: There is a color-size-list � which satisfies Condition (1)
and

∑n−1
t=0 �(xt) = 2nk, however, X is not �-(2k + 1, k)-colorable. For example,

if L(xi) = [1, 2k] for each i, then �(xi) = |L(xi)| satisfies Condition (1), and
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∑n−1
t=0 �(xt) = 2nk. However, X is not L-(2k + 1, k)-colorable, because an L-(2k +

1, k)-coloring φ of X is equivalent to a homomorphism from X to C2k+1 − {0},
and C2k+1 − {0} is a bipartite graph. However, Condition (2) is not a necessary
condition. There are color-size-lists � which violates Condition (2) and yet X is
�-(2k + 1, k)-colorable. For example, suppose X = (x0, x1, x2, x3, x4) is a 5-cycle.
Let �(x0) = 3, �(x1) = 5, and �(xi) = 4 for i ≥ 2. Then X is �-(5, 2)-colorable,
although Condition (2) is violated.

Given a color-list L for X, let F (i) = {0, 1, . . . , 2k} − L(xi). So F (i) is the set
of forbidden colors for xi. It seems to be more convenient for us to work with
the forbidden colors for each vertex. Thus we restate the main result in terms of
forbidden colors. Formally, we define a forbidden color assignment, abbreviated
as FCA, as a pair (X, F ) such that X = (x0, x1, . . . , xn−1) is a cycle and F is a
mapping which assigns to each index i a set F (i) of forbidden colors for xi. A FCA
is valid if

1. For any interval [j, j′]n of length m,
∑

s∈[j,j′]n |F (s)| ≤ 2k + m − 1.

2.
∑n−1

i=0 |F (i)| ≤ n − 1.

Given a FCA (X, F ), we say a (2k + 1, k)-coloring φ of X is good for (X, F ) if
for any i, φ(xi) �∈ F (i). Our main result can be stated as follows:

Theorem 3.2. If (X, F ) is a valid FCA, then there is a good (2k + 1, k)-coloring
for (X, F ).

In the remainder of this article, we shall be only considering (2k + 1, k)-colorings
of graphs. For simplicity, we refer a (2k + 1, k)-coloring simply as a coloring.

Given a FCA (X, F ), let

�F = {(i, j) : 0 ≤ i ≤ n − 1, 0 ≤ j ≤ 2k, j ∈ F (i)}.
Given a coloring φ of X, let

�φ = {(i, j) : 0 ≤ i ≤ n − 1, 0 ≤ j ≤ 2k, j = φ(xi)}.
To prove Theorem 3.2, we need to find a coloring φ such that �φ ∩ �F = ∅.

It is helpful to have a picture for the understanding of the proof below: We
construct a graph G whose vertex set is partitioned into n columns Bi = {(i, j) :
0 ≤ j ≤ 2k}, for i = 0, 1, . . . , n − 1. Each vertex (i, j) in Bi is connected to two
vertices in Bi+1, namely (i + 1, j + k) and (i + 1, j + k + 1), where the summation
in the first coordinate is modulo n, and the summation in the second coordinate is
modulo 2k + 1. A coloring φ corresponds to a cycle of G which intersects each
column Bi exactly once. We call such a cycle of G a coloring cycle. The set �F is the
set of forbidden vertices in G. We need to find a “coloring cycle” which avoids the
forbidden vertices �F . Figure 1 below is an example of the graph G with k = 3 and
n = 11. There are edges between vertices in B10 and B0, however, for simplicity,
these edges are not shown in the figure. The thick edge indicates a coloring cycle.
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Figure 1. An example graph G.

(The two ends should meet, i.e., the vertex 6 in Column B10 is adjacent to the vertex
3 in Column B0.) Circled vertices indicate vertices in F , that is,

F0 = {1, 2, 3}, F2 = {3}, F3 = {5}, F5 = {5, 6}, F7 = {6},
F8 = {2}, F9 = {6}, F1 = F4 = F6 = F10 = ∅.

Observe that the coloring cycle indicated by the thick edges in Figure 1 intersects
the “forbidden vertices.” So this coloring is not a good coloring.

We need to define some notation so that we can talk about the “shape” of the set
of forbidden vertices.

Suppose (X, F ) is a valid FCA, where X = (x0, x1, . . . , xn−1). We say a column
Bi is infected if Bi contains at least one forbidden vertex, that is, F (i) �= ∅. We say
a column Bi is seriously infected if Bi contains at least two forbidden vertices, that
is, |F (i)| ≥ 2.

Let JF be the set of indices of the infected columns, and let IF be the set of
indices of the seriously infected columns, that is,

JF = {0 ≤ i ≤ n − 1 : F (i) �= ∅},
IF = {i : |F (i)| ≥ 2}.

Let |F | = ∑2k
i=0 |F (i)|.

For i ∈ JF , let qF
i be the smallest positive integer such that i + qF

i ∈ JF . For
i ∈ IF , let pF

i be the smallest positive integer such that i + pF
i ∈ IF .

We shall prove that for a counterexample, IF �= ∅ (Lemma 4.4). Assume i ∈ IF

and [
i, i + pF

i

] ∩ JF = {
βi

0, β
i
1, . . . , β

i
ti

}
,

where βi
0 = i, βi

ti
= i + pF

i and for 1 ≤ j ≤ ti − 1, βi
j ∈ (βi

j−1, β
i
j+1)n. Let

sF
i =

ti−1∑
j=0

j × �
(
[βi

j, β
i
j+1)n

)
.
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For the example in Figure 1, the corresponding parameters for this FCA are

JF = {0, 2, 3, 5, 7, 8, 9}, IF = {0, 5},
qF

0 = 2, qF
2 = qF

3 = 1, qF
5 = 2, qF

7 = qF
8 = 1, qF

9 = 2, pF
0 = 5, pF

5 = 6,

β0
0 = 0, β0

1 = 2, β0
2 = 3, β0

3 = 5; β5
0 = 5, β5

1 = 7, β5
2 = 8, β5

3 = 9, β5
4 = 0,

sF
0 = 0 × 2 + 1 × 1 + 2 × 2 = 5, sF

5 = 0 × 2 + 1 × 1 + 2 × 1 + 3 × 2 = 9.

A sketch of the proof of Theorem 3.2. Assume Theorem 3.2 is not true, and
assume that (X, F ) is a counterexample to Theorem 3.2 such that among all the
counterexamples,

(a) : |X| = n is minimum.
(b) : Subject to (a), |F | is minimum.
(c) : Subject to (a) and (b),

∑
i∈IF

|F (i)| is minimum.
(d) : Subject to (a), (b), and (c),

∑
i∈IF

sF
i is minimum.

We call such a counterexample a minimum counterexample. The key step in
proving Theorem 3.2 is to show that if (X, F ) is a minimum counterexample, then
|F (i)| ≥ qF

i for all i ∈ JF . This implies that

n =
∑
i∈JF

qF
i ≤

n−1∑
j=0

|F (j)|,

which is in contrary to our assumption that F is a valid FCA.

Definition 3.3. Suppose (X, F ) and (X′, F ′) are two FCA’s. If the existence of a
good coloring for (X′, F ′) implies the existence of a good coloring for (X, F ), then
we say (X′, F ′) dominates (X, F ).

We shall prove that if for some i ∈ JF , |F (i)| < qF
i , then there is a valid FCA

(X′, F ′) dominating (X, F ) such that one of the following is true:

� |X′| < |X|.
� |X′| = |X| and |F ′| < |F |.
� |X′| = |X|, |F ′| = |F | and

∑
i∈IF

|F ′(i)| <
∑

i∈IF
|F (i)|.

� |X′| = |X|, |F ′| = |F | and
∑

i∈IF
|F ′(i)| = ∑

i∈IF
|F (i)| and

∑
i∈IF ′ s

F ′
i <∑

i∈IF
sF
i .

This will be in contrary to the assumption that (X, F ) is a minimum counterexample.

Journal of Graph Theory DOI 10.1002/jgt



258 JOURNAL OF GRAPH THEORY

4. SOME SPECIAL CASES OF THEOREM 3.2

This Section proves Theorem 3.2 for n = 2k + 1, n = 2k + 2 and for the case that
IF = ∅.

Lemma 4.1. If n = 2k + 1, then the conclusion of Theorem 3.2 holds.

Proof. Let φ be any coloring of X (which obviously exists). For i =
0, 1, . . . , 2k, let φi be the coloring of X defined as φi(x) = φ(x) + i. Then
�φi

∩ �φj
= ∅ if i �= j. As |�F | ≤ 2k, at least one of the 2k + 1 colorings φi satisfies

�φi
∩ �F = ∅. �

Lemma 4.2. If n = 2k + 2, then the conclusion of Theorem 3.2 holds.

Proof. Without loss of generality, we assume that 0 �∈ F (0) and 1 ∈ F (0). Let
φ be the coloring defined as φ(xi) = 1 if i is even and φ(xi) = k + 1 if i is odd. If
�F ∩ �φ = {(0, 1)}, then let φ′(xi) = φ(xi) for i �= 0 and φ′(x0) = 0. As 0 �∈ F (0),
φ′ is a good coloring.

Assume |�F ∩ �φ| ≥ 2. For i = 0, 1, . . . , 2k, let φi be the coloring of X defined
as φi(x) = φ(x) + i.

Since |�F ∩ �φ| ≥ 2 and |�F | ≤ 2k + 1, there is an index i such that
�φi

∩ �F = ∅. �

Lemma 4.3. Suppose for some index i, F (i) = {u} and F (i + 1) = {v}. Assume
that u and v are not adjacent. Let X′ = {x′

0, x
′
1, . . . , x

′
n−3} be a cycle of length n − 2,

and let F ′ be a FCA for X′ defined as F ′(j) = F (τ(j)), where τ : {0, 1, . . . , n −
3} → {0, 1, . . . , n − 1} is defined as

τ(j) =
{

j, if j ≤ i − 1

j + 2, if j ≥ i

Then (X′, F ′) is a valid FCA and dominates (X, F ).

Proof. First we show that (X′, F ′) is valid. Consider an interval [j, j′]n−2 of
length m. If i �∈ [j, j′]n−2 or i − 1 �∈ [j, j′]n−2, then [τ(j), τ(j′)]n also has length m,
and ∑

s∈[j,j′]n−2

|F ′(s)| =
∑

s∈[τ(j),τ(j′)]n

|F (s)| ≤ 2k + m − 1.

If i − 1, i ∈ [j, j′]n−2, then [τ(j), τ(j′)]n has length m + 2, and∑
s∈[j,j′]n−2

|F ′(s)| =
∑

s∈[τ(j),τ(j′)]n

|F (s)| − 2 ≤ 2k + m + 2 − 1 − 2 = 2k + m − 1.

Moreover,
∑n−3

s=0 |F ′(s)| = ∑n−1
s=0 |F (s)| − 2 ≤ n − 1 − 2 = n − 3. Therefore

(X′, F ′) is valid.
Next we show that (X′, F ′) dominates (X, F ). Let φ′ be a good coloring for

(X′, F ′). Recall that F (i) = {u} and F (i + 1) = {v}. As u is not adjacent to v, and
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φ′(x′
i−1) is adjacent to φ′(x′

i), we conclude that either φ′(x′
i−1) �= v or φ′(x′

i) �= u. If
φ′(x′

i−1) �= v, then let t ∈ {φ′(x′
i−1) + k, φ′(x′

i−1) + k + 1} \ {u}, and let

φ(xj) =




φ′(x′
j), if j ≤ i − 1,

t, if j = i,

φ′(x′
j−2), if j ≥ i + 1.

Then φ is a good coloring for F . If φ′(xi) �= u, then let t ∈ {φ′(x′
i) + k, φ′(x′

i) + k +
1} \ {v}, and let

φ(xj) =




φ′(x′
j), if j ≤ i,

t, if j = i + 1,

φ′(x′
j−2), if j ≥ i + 2.

Then φ is a good coloring for F . �
Lemma 4.4. Suppose (X, F ) is a FCA. If IF = ∅, then there is a good coloring
for (X, F ).

Proof. The proof is by induction on |X|. If |X| = 3, then it is trivial. Assume
|X| = n ≥ 4 and the lemma is true for smaller cycles X′. Since

∑n−1
i=0 |F (i)| ≤

n − 1, we may assume (by adding more forbidden colors if necessary) that
|F (i)| = 1 for i = 0, 1, . . . , n − 2 and F (n − 1) = ∅. If there is an index i such that
F (i) = {u}, F (i + 1) = {v} and u is not adjacent to v, then the conclusion follows
from Lemma 4.3 and the induction hypothesis. Assume for i = 0, 1, . . . , n − 3, the
unique color in F (i) is adjacent to the unique color in F (i + 1).

Let φ(xi) be the unique color in F (i), for i = 0, 1, . . . , n − 2k. Let

P = ((0, φ(x0)), (1, φ(x1)), . . . , (n − 2k, φ(xn−2k)).

Then P is a path in G connecting (0, φ(x0)) and (n − 2k, φ(xn−2k)). This path
can be extended to a coloring cycle in G. To see this, we say a vertex (j, s) in
Bj is reachable from (n − 2k, φ(xn−2k)) if there is a path P ′ in G connecting
(n − 2k, φ(xn−2k)) and (j, s) such that |P ′ ∩ Bt| = 1 for t ∈ [n − 2k, j]n. Then
Bn−2k+1 contains two vertices that are reachable from (n − 2k, φ(xn−2k)), namely
(n − 2k + 1, φ(xn−2k) + k) and (n − 2k + 1, φ(xn−2k) + k + 1). Inductively, it is
easy to show that for s = 1, 2, . . . , 2k, Bn−2k+s contains s + 1 vertices that are
reachable from (n − 2k, φ(xn−2k)). In particular, every vertex of B0 is reachable
from (n − 2k, φ(xn−2k)). Let P ′ be a path in G connecting (n − 2k, φ(xn−2k)) and
(0, φ(x0)) such that |P ′ ∩ Bt| = 1 for t ∈ [n − 2k, 0]n. Then P ∪ P ′ is a coloring
cycle in G. Let φ be the coloring of X corresponding to this coloring cycle. Then
|�φ ∩ �F | ≥ n − 2k + 1.

For i = 0, 1, . . . , 2k, let φi be the coloring of X defined as φi(x) = φ(x) + i.
Since |�F | ≤ n − 1, there is an index i such that �φi

∩ �F = ∅. �
A maximal color interval ofF (i) is an interval [j, j′]2k+1 ⊂ F (i) such that j − 1 �∈

F (i) and j′ + 1 �∈ F (i).
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Lemma 4.5. Suppose (X, F ) is a counterexample to Theorem 3.2 with |X|
minimum. Then for each i, F (i) is either empty or consists of one maximal color
interval.

Proof. Assume to the contrary that F (n − 2) consists of maximal color intervals
I1 = [a1, b1]2k+1, . . . , Is = [as, bs]2k+1, where s ≥ 2. For i = 1, 2, . . . , s, if ai =
bi, then let Ji = ∅. Otherwise, let Ji = [ai − k, bi − k − 1]2k+1. Note that |Ji| =
|Ii| − 1.

Let X′ = (x′
0, x

′
1, . . . , x

′
n−3) be a cycle of length n − 2. Define F ′ as

follows: F ′(i) = F (i) for i = 0, 1, . . . , n − 4, F ′(n − 3) = F (n − 3) ∪ J1 ∪ · · · ∪
Js ∪ F (n − 1).

Similarly as the proof of Lemma 4.3, one can prove that (X′, F ′) is a valid FCA.
Now we derive a contradiction by showing that (X′, F ′) dominates (X, F ). Let φ′ be
a good coloring for (X′, F ′). As φ′(x′

n−3) �∈ F ′(n − 3), it follows from the definition
of F ′(n − 3) that there is a color t �∈ F (n − 2) which is adjacent to φ′(x′

n−3). Let φ

be defined by

φ(xi) =




φ′(x′
i), if 0 ≤ i ≤ n − 3;

φ′(x′
n−3), if i = n − 1;

t, if i = n − 2.

Then it is straightforward to verify that φ is a good coloring for (X, F ). �

5. THE PROOF OF THEOREM 3.2

In the remainder of the article, (X, F ) is a minimum counterexample to Theorem 3.2.
By Lemmas 4.1 and 4.2, |X| = n ≥ 2k + 3. Recall from the sketch of the proof of
Theorem 3.2, we need to prove that |F (i)| ≥ qF

i for all i ∈ JF . First we consider
the case that i ∈ IF (recall that by Lemma 4.4, IF �= ∅), and prove that in this case
we have |F (i)| ≥ qF

i + 1.
Suppose i ∈ IF and F (i) = [a, a + t]2k+1 for some t ≥ 1. Assume |F (i)| ≤ qF

i .
Let F ′ be defined as follows:

F ′(j) =




F (j), if j �= i − 1, i, i + t,

F (i − 1) ∪ [a + k + 1, a + t + k]2k+1, if j = i − 1,

∅, if j = i,

F (i + t) ∪ {a + t(k + 1)}, if j = i + t.

We say F ′ is obtained from F by breaking F (i). Let F be the FCA in Figure 1, then
Figure 2 below is the FCA F ′ obtained from F by breaking F (5). The FCA F ′ is
obtained from F by removing the vertices in dotted circles and adding the vertices
in squares.

Lemma 5.1. Suppose i ∈ IF , |F (i)| ≤ qF
i and F ′ is obtained from F by breaking

F (i). Then (X, F ′) is a valid FCA and dominates (X, F ).
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Figure 2. F′ is obtained from F (in Fig. 1) by breaking F(5).

Proof. It is straightforward to verify that (X, F ′) is a valid FCA. We prove that
F ′ dominates F . Let φ′ be a good coloring of F ′. If φ′(xi) �∈ F (i), then φ′ is also
good for F .

Assume φ′(xi) ∈ F (i). Since φ′(xi−1) �∈ F ′(i − 1), and φ′(xi−1) is adjacent to
φ′(xi), it follows from the definition of F ′ that φ′(xi) = a or a + t. Without loss of
generality, assume that φ′(xi) = a. Then φ′(xi−1) = a + k (as a + k + 1 ∈ F ′(i −
1)). For j = 1, 2, . . . , t,

φ′(xi+j) ∈ {φ′(xi+j−1) + k, φ′(xi+j−1) + k + 1}.
If for all j = 1, 2, . . . , t, φ′(xi+j) = φ′(xi+j−1) + k + 1, then we would have
φ′(xi+t) = a + tk + t ∈ F ′(i + t), in contrary to the assumption that φ′ is a good
coloring for (X, F ′). Therefore there is an index j ∈ 1, 2, . . . , t such that φ′(xi+j) =
φ′(xi+j−1) + k. Let

φ(xs) =
{

φ′(xs) − 1, if i ≤ s ≤ i + j − 1

φ′(xs), otherwise.

Then it is easy to verify that φ is a good coloring for (X, F ).
In Figure 2, the thick edges is a good coloring for F ′. The thick broken part

indicates the modification of this good coloring to obtain a good coloring of F . �
Corollary 5.2. For any i ∈ IF , |F (i)| ≥ qF

i + 1.

Proof. Assume to the contrary that i ∈ IF and |F (i)| ≤ qF
i . Let F1 be obtained

from F by breaking F (i). By Lemma 5.1, F1 is a counterexample to Theorem 3.2.
It follows from definition that |F1| ≤ |F | and | ∑j∈IF1

|F1(j)| ≤ | ∑j∈IF
|F (j)|.

Moreover,
∑

j∈IF1
|F1(j)| = ∑

j∈IF
|F (j)| only if |F (i − 1)| = 1. By the minimality

of (X, F ), we conclude that |F (i − 1)| = 1. Then |F1(i − 1)| = |F (i)|, and easy
calculation shows that q

F1
i−1 = |F1(i − 1)|. Therefore we can break F1(i − 1) to

obtain F2. The same argument shows that |F1(i − 2)| = 1. But F1(i − 2) = F (i −
2). Repeat this argument, we conclude that |F (i − j)| = 1 for all j (recall the
calculation is modulo n), which is an obvious contradiction. �

It remains to prove that if |F (j)| = 1, then qF
j = 1, that is, F (j + 1) �= ∅. For

this purpose, we need to consider those i ∈ IF which are close to j.
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Lemma 5.3. Suppose i ∈ IF , F (i) = [a, a + t] and F (i + qF
i ) = {b}. Then either

b = a + t + 1 + qF
i k or b = a − 1 + qF

i (k + 1).

Proof. Assume to the contrary that b �= a + t + 1 + qF
i k and b �= a − 1 +

qF
i (k + 1).
Let X′ = (x′

0, x
′
1, . . . , x

′
n−3) be a cycle of length n − 2. Let F ′ be defined as

F ′(j) =




F (j) if j ≤ i − 2

F (j) ∪ [a + (k + 1), a + t + k]2k+1 if j = i − 1

∅ if i ≤ j ≤ i + qF
i − 2

F (j + 2) if i + qF
i − 1 ≤ j ≤ n − 3.

It is easy to show that (X′, F ′) is a valid FCA of X′.
We shall show that (X′, F ′) dominates (X, F ). Assume φ′ is a good coloring

for (X′, F ′). Since φ′(x′
i−1) �∈ [a + k + 1, a + k + t]2k+1, we conclude that φ′(x′

i) �∈
[a + 1, a + t − 1]2k+1.

If φ′(x′
i) �∈ {a, a + t}, then φ′(x′

i) �∈ F (i). Let s �∈ F (i + qF
i ) be a color which is

adjacent to φ′(x′
i+qF

i −1
) (as |F (i + qF

i )| = 1, the color s exists). Let

φ(xj) =




φ′(x′
j) if j ≤ i + qF

i − 1

s if j = i + qF
i

φ′(x′
j−2) if i + qF

i + 1 ≤ j ≤ n − 1.

Then it is straightforward to verify that φ is a good coloring for F . Thus we assume
φ′(x′

i) ∈ {a, a + t}. Without loss of generality, assume φ′(x′
i) = a + t. Since a +

t + k ∈ F ′(i − 1), we have φ′(x′
i−1) = a + t + k + 1.

A similar argument as above shows that φ′(x′
i+qF

i −2
) = b.

If there is an index 1 ≤ j ≤ qF
i − 2 such that φ′(xi+j) = φ′(x′

i+j−1) + k + 1, then
let φ′′ be defined as

φ′′(x′
s) =

{
φ′(x′

s) + 1, if i ≤ s ≤ i + j − 1

φ′(x′
s), otherwise.

Then φ′′ is a good coloring for (X′, F ′) for which φ′′(x′
i) �∈ F (i), which is a

case discussed already. Thus we assume that φ′(x′
i+j) = φ′(x′

i+j−1) + k for 1 ≤ j ≤
qF

i − 2. In particular, b = φ′(x′
i+qF

i −2
) = a + t + (qF

i − 2)k = a + t + qF
i k − 2k =

a + t + 1 + qF
i k (recall colors are modulo 2k + 1).

In Figure 3, X′ is obtained from X by removing two columns, namely B5 and
B6, and F ′ is obtained from F by removing the vertices in dotted circle, and adding
vertices in squares. The solid thick edges form the coloring cycle corresponding
to φ′. The broken thick edges are the modified part of φ′ to obtain φ′′. The dotted
edges indicate modifications to obtain the coloring cycle for φ. �

Suppose i ∈ IF and pF
i > qF

i . Assume

[i, i + pF
i ] ∩ JF = {βi

0, β
i
1, . . . , β

i
ti
},
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Figure 3. An illustration of the proof of Lemma 5.3.

where ti ≥ 2 and i + qF
i = βi

1. Assume F (i) = [a, a + t] and for j = 1, 2, . . . , ti −
1, F (βi

j) = {bj}. By Lemma 5.3, either b1 = a + t + 1 + qF
i k or b1 = a − 1 +

qF
i (k + 1). Without loss of generality, assume that b1 = a + t + 1 + qF

i k.

Lemma 5.4. For j = 1, 2, . . . , ti − 1, βi
j+1 = βi

j + 1. Moreover, for j =
1, 2, . . . , ti − 2, bj+1 = bj + k + 1.

Proof. Assume the lemma is false. Let t ≥ 1 be the smallest index such that
either

t ≤ ti − 1 and βi
t+1 �= βi

t + 1

or

t ≤ ti − 2, βi
t+1 = βi

t + 1 but bt+1 �= bt + k + 1.

Case 1. βi
t+1 �= βi

t + 1. Then F (βi
t + 1) = ∅. Let F ′ be the FCA defined as

follows:

F ′(j) =




F (j) if j �= βi
t, β

i
t + 1

∅ if j = βi
t

{bt + k} if j = βi
t + 1

It is easy to verify that F ′ is a valid FCA. We shall prove that (X, F ′) dominates
(X, F ). Let φ′ be a good coloring for (X, F ′). If φ′(xβi

t
) �= bt , then φ′ is a good

coloring for F , we are done.
Assume φ′(xβi

t
) = bt . Since F ′(βi

t + 1) = {bt + k}, and φ′(xβi
t+1) �∈ F ′(βi

t + 1),
it follows that φ′(xβi

t+1) = bt + k + 1.
If t ≥ 2, then by the minimality of t, we have βi

t−1 = βi
t − 1 and bt = bt−1 + k +

1, that is, bt−1 = bt + k. This implies that φ′(xβi
t−1) = bt + k + 1.

If t = 1, then since F (i) = [a, a + t] and t ≥ qF
i (by Corollary 5.2) and

b1 = a + t + 1 + qF
i k, straightforward calculation shows that φ′(xβi

1−1) = bt + k

would imply that φ′(xi) ∈ F (i), which is a contradiction. Therefore we also have
φ′(xβi

1−1) = bt + k + 1.

Journal of Graph Theory DOI 10.1002/jgt



264 JOURNAL OF GRAPH THEORY

Let

φ(xj) =
{

φ′(xj) if j �= βi
t

φ′(xβi
t
) + 1 = bt + 1 if j = βi

t.

Then φ is a good coloring for (X, F ). This proves that (X, F ′) dominates (X, F ).
However, |F | = |F ′|, ∑

i∈IF
|F (i)| = ∑

i∈IF ′ |F ′(i)| and
∑

i∈IF ′ qi = ∑
i∈IF

qi − 1.
This is in contrary to the minimality of (X, F ).

Case 2. t ≤ ti − 2 and βi
t+1 = βi

t + 1 but bt+1 �= bt + k + 1.
If bt+1 = bt + k, then let F ′ be the FCA defined as follows:

F ′(j) =
{

F (j) if j �= βi
t + 1

∅ if j = βi
t + 1

It is routine to verify that F ′ is a valid FCA, Now we show that (X, F ′) dominates
(X, F ). Let φ′ be a good coloring for (X, F ′). If φ′(xβi

t+1) �= bt+1, then φ′ is a
good coloring for (X, F ), we are done. Assume φ′(xβi

t+1) = bt+1 = bt + k. By
the minimality of t, we know that bj+1 = bj + k + 1 for j = 1, 2, . . . , t − 1.
This implies that φ′(xβi

j
) = bj − 1 for j = 1, 2, . . . , t − 1. In particular, φ′(xβi

1
) =

b1 − 1. This is a contradiction, because straightforward calculation shows that
φ′(xβi

1
) = b1 − 1 implies that φ′(xi) ∈ F (i) (using the fact that |F (i)| ≥ qF

i + 1).
This proves that (X, F ′) dominates (X, F ). As |F ′| < |F |, this is in contrary to the
minimality of (X, F ).

If bt+1 �= bt + k, then bt+1 is not adjacent to bt . Let X′ = (x′
0, x

′
1, . . . , x

′
n−3) be a

cycle of length n − 2. Define an FCA F ′ of X′ as

F ′(j) =
{

F (j) if j ≤ βi
t − 1

F (j + 2) if βi
t + 1 ≤ j ≤ n − 3

Then the same argument as the proof of Lemma 4.3 shows that (X′, F ′) is a valid
FCA which dominates (X, F ). �

Combining Corollary 5.2 and Lemma 5.4, we have proved that |F (i)| ≥ qF
i for all

i, which implies that n = ∑n−1
i=0 qF

i ≤ ∑n−1
i=0 |F (i)|, in contrary to our assumption.

This completes the proof of Theorem 3.2.
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graphs with prescribed girth, manuscript (2001).

[5] F. Jaeger, On circular flows in graphs, Finite and Infinite Sets (Eger, 1981),
Colloquia Mathematica Societatis János Bolyai 37, North Holland (1984),
391–402.

[6] F. Jaeger, “Nowhere-zero flow problems,” Selected Topics in Graph Theory 3
(L. W. Beineke and R. J. Wilson, editors), Academic Press, London 1988, pp.
71–95.

[7] W. Klostermeyer and C. Q. Zhang, (2 + ε)-coloring of planar graphs with large
odd girth, J Graph Theory 33 (2000), 109–119.

[8] Z. Pan and X. Zhu, Density of the circular chromatic numbers of series-parallel
graphs, J Graph Theory 46 (2004), 57–68.

[9] C. Thomassen, Every planar graph is 5-choosable, J Combin Theory Ser B 62
(1994), 180–181.

[10] C. Thomassen, 3-list-coloring planar graphs of girth at least 5, J Combin
Theory Ser B 64 (1995), 101–107.

[11] A. Vince, Star chromatic number, J Graph Theory 12 (1988), 551–559.
[12] X. Zhu, The circular chromatic number of planar graphs of large odd girth,

Electronic J Combin (2001), #R25.
[13] X. Zhu, Circular chromatic number: A survey, Discrete Math 229(1–3) (2001),

371–410.
[14] X. Zhu, “Recent developments in circular coloring of graphs,” Topics in

Discrete Mathematics (M. Kazar, J.Kratochvil, M. Loeble, J. Matoušek, R.
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