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Abstract

The circular consecutive choosability chcc(G) of a graph G has been
recently introduced in [2]. In this paper we prove upper bounds on chcc

for series-parallel graphs, planar graphs and k-choosable graphs. Our
bounds are tight for classes of series-parallel graphs and k-choosable
graphs for k ≥ 3. Then we study the circular consecutive choosability
of generalized theta graphs. Lower bounds for the circular consecutive
choosability of certain generalized theta graphs are obtained.

1 Introduction

For a positive real number r, let S(r) denote the circle obtained from the
interval [0, r] by identifying 0 and r into a single point. For a real number
t, denote by [t]r the remainder of t upon division by r. For a, b ∈ S(r), the
distance between a and b is |a−b|r = min{|a−b|, r−|a−b|} and the intervals
[a, b]r and (a, b)r are defined as [a, b]r = {t ∈ S(r) : [t− a]r ≤ [b − a]r} and
(a, b)r = {t ∈ [0, r) : 0 < [t− a]r < [b− a]r}. Suppose G = (V, E) is a graph.
A circular r-colouring of G is a mapping f : V (G) → S(r) such that for any
edge uv of G, |f(u) − f(v)|r ≥ 1. The circular chromatic number χc(G) of
G is defined as

χc(G) = inf{r : G has a circular r-colouring}.
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The circular chromatic number of a graph is a refinement of the chromatic
number of a graph, and has been studied extensively in the literature (see
[7, 8] for surveys on this subject).

Given a graph G and a positive real number r, a (?, r)-circular colour-
list assignment for G is a function L that assigns to each vertex v of G a
set L(v) which is the union of disjoint closed intervals of S(r). If for each
vertex v, the sum of the lengths of the disjoint intervals in L(v) is equal to
t, then L is called a (t, r)-circular colour-list assignment. Suppose L is a
(?, r)-circular colour-list assignment for a graph G. A circular L-colouring
of G is a circular r-colouring f of G such that f(v) ∈ L(v) for each vertex v

of G. A graph G is called circular t-choosable if for any r and for any (t, r)-
circular colour-list assignment L, G has a circular L-colouring. The circular
choosability chc(G) of G (also called the circular list chromatic number of G

and denoted by chc(G)) is defined in [9] as

chc(G) = inf{t : G is circular t-choosable}.

The definition of circular t-choosable graphs given above is slightly dif-
ferent from the one given in [9]. In [9], the set L(v) assigned to a vertex v

by a circular colour-list assignment L is the disjoint union of open intervals.
In this paper, L(v) is the disjoint union of closed intervals, which seems
to be more convenient for us. This change does affect whether a graph is
circular t-choosable or not. However, as the circular choosability of G is by
taking the infimum of those t for which G is circular t-choosable, the circular
choosability of a graph is the same under both definitions.

The circular consecutive choosability of a graph, introduced in [2], is a
variation of circular choosability of a graph and the consecutive choosability
of a graph [6].

A (?, r)-circular consecutive colour-list assignment of G is a mapping L

which assigns to each vertex v of G a closed interval L(v) of S(r). If L(v) has
length t for each vertex v, then L is called a (t, r)-circular consecutive colour-
list assignment of G. We say G is circular consecutive (t, r)-choosable if for
any (t, r)-circular consecutive colour-list assignment L of G, G is circular
L-colourable.

Observe that if r < χc(G), then for any (?, r)-circular colour-list assign-
ment L, G is not circular L-colourable. Therefore, for the definition to be
meaningful, we restrict to real numbers r ≥ χc(G).
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Definition 1. Suppose r ≥ χc(G). The circular consecutive choosability of
G with respect to r is defined as

chr
cc(G) = inf{t : G is circular consecutive (t, r)-choosable}.

The circular consecutive choosability of G is defined as

chcc(G) = sup{chr
cc(G) : r ≥ χc(G)}.

Equivalently, chcc(G) is the infimum of those t such that for any r ≥ χc(G),
G is circular consecutive (t, r)-choosable.

In [2], it was shown that if G is a graph on n vertices, then

χ(G)− 1 ≤ chcc(G) ≤ 2χc(G)(1− 1/n)− 1.

The values of chcc(G) for complete graphs, trees, even cycles and balanced
complete bipartite graphs were determined. Upper and lower bounds for
chcc(G) were given for some other graphs.

In this paper, we explore the relation between chcc(G) and the choosabil-
ity ch(G) of G. We prove that if G is a k-choosable graph, then chcc(G) ≤
k + 1 − 1/k, and if k ≥ 3 then this upper bound is tight. A tight up-
per bound on chcc(G) for series-parallel graphs is also presented, namely,
chcc(G) ≤ 11/3 for every series-parallel graph G. We show that if G is a
planar graph, then chcc(G) ≤ 5.8 and for each ε > 0, there is a planar graph
G with chcc(G) > 4.7 − ε. The upper bound chcc(G) ≤ k + 1 − 1/k for
k-choosable graphs is not tight for k = 2. It is conjectured that chcc(G) ≤ 2
for 2-choosable graphs. To prove the conjecture, it amounts to show that
the theta graphs θ2,2,2k have circular consecutive choosability 2. More gen-
erally, one might attempt to characterize graphs with circular consecutive
choosability 2. A natural class of graphs that one can study to gain intu-
ition about this question is the class of generalized theta graphs. Suppose
P1, P2, · · · , Pn are paths of lengths k1, k2, · · · , kn respectively. The general-
ized theta graph θk1,k2,··· ,kn is the graph obtained from the disjoint union
of P1, P2, · · · , Pn by identifying their initial vertices into a single vertex and
their terminal vertices into a single vertex. It is proved that for any integer
n ≥ 2, chcc(θ2, 2, · · · , 2︸ ︷︷ ︸

n

) = 2. However, for n 6= 2, 4, 6, chcc(θ2,2,2,n) > 2.
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2 k-list colourable graphs

A graph G is called k-choosable if for any mapping L which assigns to each
vertex v of G a set L(v) of k integers, there is a mapping f : V (G) → Z such
that f(v) ∈ L(v) for each v ∈ V (G) and f(u) 6= f(v) for each edge uv of
G. Our first lemma bounds circular consecutive choosability of k-choosable
graphs with respect to given r.

Lemma 2. Let k ≥ 2 be an integer and let G be a graph with ch(G) = k

then chr
cc(G) ≤ k + (k − 1)(r − brc)/brc for every r ≥ χc(G).

Proof. Let s = k+(k−1)(r−brc)/brc, and let L be an s-circular consecutive
list assignment of G with respect to r. For l = 0, 1, . . . brc − 1 let Il =
[lr/brc, (l + 1)r/brc − 1]r be an interval in S(r). For every v ∈ V (G) let
S(v) = {j | Ij ∩ L(v) 6= ∅}, then |S(v)| ≥ k. As ch(G) = k it is possible
to choose k(v) ∈ S(v) for every v ∈ V (G) so that k(v) 6= k(w) for every
vw ∈ E(G). By the choice of S(v) we can choose f(v) ∈ Ik(v)∩L(v) for every
v ∈ V (G). It remains to note that for every i, j ∈ {0, 1, . . . , brc − 1}, i 6= j

and every x ∈ Ii y ∈ Ij we have |x−y|r ≥ 1 and therefore |f(v)−f(w)|r ≥ 1
for every vw ∈ E(G).

Corollary 3. Let k ≥ 2 be an integer. If a graph G has list chromatic
number k, then chcc(G) ≤ k + 1− 1/k.

Proof. If χc(G) ≤ r ≤ k then chr
cc(G) ≤ r ≤ k. If r ≥ k then chr

cc(G) ≤
k + (k − 1)(r − brc)/brc < k + (k − 1)/k by Lemma 2.

We shall show that for k ≥ 3, the upper bound given in Corollary 3 is
tight. For this purpose, we need an alternate definition of chcc(G) given in
[2].

Given positive integers p ≥ 2q, a (p, q)-colouring of a graph G is a
mapping f : V (G) → {0, 1, · · · , p − 1} such that for any edge xy of G,
q ≤ |f(x)− f(y)| ≤ p− q. For any integer a, [a]p denotes the remainder of a

divided by p. For a, b ∈ {0, 1, · · · , p− 1}, the circular integral interval [a, b]p
is defined as

[a, b]p = {a, a + 1, a + 2, · · · , b},
where the additions are modulo p. Suppose G is a graph and p, q are positive
integers such that p/q ≥ χc(G), and s is a positive integer. Let l : V (G) →
{0, 1, · · · , p− 1} be a mapping. A (p, q)-colouring f of G is compatible with
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(l, s) if for any vertex x, f(x) ∈ [l(x), l(x) + s − 1]p. We say a graph G

is circular consecutive (p, q)-s-choosable if for any mapping l : V (G) →
{0, 1, · · · , p− 1}, G has a (p, q)-colouring f which is compatible with (l, s).
We define the consecutive (p, q)-choosability of G as

chp,q(G) = min{s : G is circular consecutive (p, q)-s-choosable}.

The following lemma is proved in [2].

Lemma 4. For any graph G and for any r = p/q ≥ χc(G),

chp,q(G) = bchr
cc(G)qc+ 1.

Now we prove a technical lemma which is later used to lower bound
maximum circular consecutive choosability of graphs of fixed treewidth.

A graph G is called a k-tree if the vertices of G can be ordered as
v1, v2, · · · , vn in such a way that {v1, v2, · · · , vk} induces a Kk, and for each
j ≥ k+1, the set N+(vj) = {vi : i < j, vi ∼ vj} induces a Kk. The treewidth
of a graph G is the minimum k such that G is a subgraph of a k-tree.

Lemma 5. Let k ≥ 2, p and q be positive integers such that p/q ≥ k, and
let s be a positive integer. Suppose that every graph G with treewidth at
most k − 1 is circular consecutive (p, q)-s-choosable. Then there exists a
non-empty family S of k-element subsets of {0, 1, . . . , p − 1} such that for
every S ∈ S the following conditions hold

1. for every distinct x1, x2 ∈ S we have q ≤ |x1 − x2| ≤ p− q,

2. for every X ⊂ S with |X| = k− 1 and every i ∈ {0, 1, . . . , p− 1} there
exists S′ ∈ S such that S′ = X ∪ {x0} and x0 ∈ [i, i + s− 1]p.

Proof. For a graph H and a (p, q)-colouring f of H let S(H, f) denote the
family of sets of colours of cliques of size k in H. Choose a graph G of
treewidth at most k − 1 and a map l : V (G) → {0, 1, . . . , p− 1} so that the
minimum of |S(G, f)| over all (p, q)-colourings f of G compatible with (l, s) is
maximum. Construct the graph G′ and a map l′ : V (G′) → {0, 1, . . . , p− 1}
as follows: For every clique W ⊆ V (G) with |W | = k − 1 and every i ∈
{0, 1, . . . , p − 1} create a vertex vi

W of degree k − 1 of G′ that is joined by
edges to vertices of W and set l′(vi

W ) = i. Let l′ be identical to l on V (G).
Then G′ has treewidth at most k−1. By the choice of G there exists a (p, q)-
colouring f ′ of G′ compatible with (l′, s) such that S(G′, f ′) = S(G, f ′).
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We claim that S = S(G, f ′) satisfies the requirements of the lemma.
Clearly S is non-empty. For every S ∈ S there exists a clique U ⊆ V (G)
such that S = f ′(U). Therefore the first requirement is satisfied by the
definition of (p, q)-colouring. Similarly, for every X ⊂ S with |X| = k − 1
there exists a clique W ⊂ U such that |W | = k − 1 and X = f ′(W ) then
S′ = f ′(W ∪ {vi

W }) satisfies the second requirement.

Theorem 6. For every k ≥ 3 and ε > 0 there exists a graph Gk,ε such that
Gk,ε has treewidth at most k − 1 and chcc(Gk,ε) > k + 1− 1/k − ε.

Proof. We will show that for every positive integer n and every integer
k ≥ 3 there exists a graph Gk,n of treewidth at most k − 1 that is not
circular consecutive (p, q)-s-choosable, where p = nk(k + 1)− 2, q = nk and
s = nk(k + 1) − n − 2. By Lemma 4, for r = k + 1 − 2/nk, chcc(Gk,n) ≥
chr

cc(Gk,n) > (p− 1)/q = (nk(k +1)−n− 2− 1)/nk = k +(k− 1)/k− 3/nk.
As graphs of treewidth k−1 are k-choosable, this implies the required lower
bound on chcc(G) for k-choosable graphs.

Suppose, on the contrary, that for some n and some k ≥ 3 every graph
of treewidth at most k − 1 is circular consecutive (p, q)-s-choosable. By
Lemma 5 then there exists a family S of k-element subsets of {0, 1, . . . , p−1}
satisfying the requirements of that lemma.

Choose S = {a1, . . . , ak} ∈ S so that a1, . . . , ak appear in {0, 1, . . . , p−1}
in circular order and ([a2− a1]p, [a3− a2]p, . . . , [ak − ak−1]p) is lexicographi-
cally maximum. Let ak+1 = a1, by convention.

Consider X = S − {a2} and i = a1 + d([a3 − a1]p + n)/2e. Then by
condition 2 in Lemma 5 there exists S′ ∈ S such that S′ = X ∪ {a′2} and
a′2 ∈ [i, i + s − 1]. Note that a′2 ∈ [a1, a3]p. Otherwise a′2 ∈ [al, al+1]p for
some l ≥ 3, and we obtain contradiction as follows,

p =
l−1∑

j=1

[aj+1 − aj ]p + [a′2 − al]p + [al+1 − a′2]p +
k∑

j=l+1

[aj+1 − aj ]p

≥ q(l − 1 + 2 + k − l) = q(k + 1) = p + 2.

Since a′2 6∈ [i− n, i− 1], it follows that

|[a3 − a′2]p − [a′2 − a1]p| ≥ n− 1.

Hence

max{[a3−a′2]p, [a
′
2−a1]p} ≥ ([a3−a′2]p+[a′2−a1]p+n−1)/2 = ([a3−a1]p+n−1)/2.
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By the choice of S, we have

[a2 − a1]p ≥ max{[a′2 − a1]p, [a3 − a′2]p}
≥ ([a3 − a1]p + n− 1)/2 = ([a3 − a2]p + [a2 − a1]p + n− 1)/2.

Consequently,
[a2 − a1]p ≥ [a3 − a2]p + n− 1.

By considering X = S−{al} for l ∈ {3, . . . , k} and i = al−1 + q +n, and
using an argument similar to the above, we deduce [al − al−1]p ≥ q + n. A
contradiction follows:

p =
k∑

j=1

[aj+1 − aj ]p ≥ [a2 − a1]p + (q + n)(k − 2) + [a1 − ak]p

≥ q + n + n− 1 + (q + n)(k − 2) + q = (q + n)k − 1 = p + 1.

Since graphs of treewidth at most (k − 1) are k-choosable, Theorem 6
shows that the bound of Corollary 3 is tight.

Corollary 7. If G is a series-parallel graph, then chcc(G) ≤ 11/3. For any
ε > 0, there is a series-parallel graph G with chcc(G) > 11/3− ε.

3 Planar graphs

In this section we study bounds on circular consecutive choosability of planar
graphs.

Theorem 8. For every planar graph G we have chcc(G) ≤ 5.8. For every
ε > 0 there exists a planar graph Gε such that chcc(Gε) > 4.7− ε.

Proof. The upper bound follows from Theorem 6 and 5-choosability of pla-
nar graphs [5].

To obtain the lower bound it suffices to construct, for each positive
integer n, a graph Gn that is not circular consecutive (p, q)-s-choosable,
where p = 200n− 1, q = 40n and s = 188n− 1.

Let K4 be a complete graph on vertex set {a, b, c, d}. For each edge xy of
K4, we add 6n(200n− 1) paths of length 4 (i.e., paths with 5 vertices) with
every vertex in these paths joined by an edge to x and to y. The resulting
graph is denoted by Hn. It is obvious that Hn is planar.
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For each edge e = xy of K4, the 6n(200n− 1) paths in Hn joined to x, y

are indexed as Pk,m,e, where k, m ∈ {0, 1, . . . , p− 1} and 50n ≤ [m− k]p <

56n.

Claim 1. There is a map l : V (Hn) → {0, 1, . . . , p − 1} such that if f is a
(p, q)-colouring of Hn compatible with (l, s), then there is an edge uv of Hn

such that 56n ≤ |f(u)− f(v)|p ≤ 80n− 1.

Proof. The map l is defined as follows: Suppose Pk,m,e = (v1, v2, v3, v4, v5).
Then let l(v1) = l(v4) = [k + m + 56n]p, l(v2) = l(v5) = [k + 156n]p. Let
l(v3) be arbitrary. Let l(x) be arbitrary for x ∈ {a, b, c, d}.

Assume to the contrary of the claim, there is a (p, q)-colouring f of Hn

compatible with (l, s) for which there is no edge uv with 56n ≤ |f(u) −
f(v)|p ≤ 80n − 1. It is obvious that there exist an edge e = xy with
x, y ∈ {a, b, c, d} and 50n ≤ [f(x) − f(y)]p ≤ 80n − 1. By our assumption,
this implies that 50n ≤ [f(x)− f(y)]p ≤ 56n− 1.

Without loss of generality, we assume that f(y) = 0 and 50n ≤ f(x) =
m ≤ 56n−1. Then we consider the path P0,m,e = (v1, v2, v3, v4, v5). Because
the five vertices of the path are adjacent to both x and y, it follows that for
each vj , f(vj) ∈ [m + 40n,m + 56n− 1]p ∪ [144n, 160n− 1]p. By symmetry,
we may assume that f(v3) ∈ [144n, 160n − 1]p. As v4 is adjacent to v3, we
have f(v4) ∈ [m + 40n,m + 56n − 1]p. Because f is compatible with (l, s)
and l(v4) = [m + 56n]p, we conclude that

f(v4) ∈ [m + 40n,m + 44n− 1]p.

Since v4v5 is an edge, f(v5) ∈ [144n, 160n − 1]p. As f is compatible with
(l, s) and l(v5) = [156n]p, we conclude that

f(v5) ∈ [156n, 160n− 1]p.

Because 50n ≤ m ≤ 56n− 1, this implies that

56n + 2 ≤ [f(v5)− f(v4)]p ≤ 70n− 1.

This completes the proof of the claim.

For each edge e = xy of Hn, we add p paths of length 4 with every
vertex in these paths joined by an edge to x and to y. The resulting graph
is denoted by Gn. Obviously, Gn is planar.
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For an edge e = xy of Hn, the paths in Gn joined to x, y are indexed
as Pk,e, where k ∈ {0, 1, . . . , p − 1}. Now we extend the map l of Hn to
Gn. For each edge e = xy of Hn, the images of l for vertices of the path
Pk,e = (v1, v2, v3, v4, v5) are defined as follows: l(v1) = l(v4) = [k + 108n]p
and l(v2) = l(v5) = [k + 160n]p, and l(v3) is arbitrary.

Now we claim that there is no (p, q)-colouring of Gn which is compat-
ible with (l, s). Assume to the contrary that f is a (p, q)-colouring of Gn

compatible with (l, s). By Claim 1, there is an edge e = xy of Hn such that
56n ≤ [f(x)− f(y)]p ≤ 80n− 1. Without loss of generality, we assume that
f(y) = 0 and f(x) = m and 56n ≤ m ≤ 80n− 1. Consider the restriction of
f to the path P0,e of Gn. Because the five vertices of the path are adjacent
to both x and y, it follows that for each vj , f(vj) ∈ [96n, 160n − 1]p. By
symmetry, we may assume that f(v3) ∈ [128n, 160n − 1]p. As v3v4 is an
edge, this forces f(v4) ∈ [96n, 120n− 1]. Because f is compatible with (l, s)
and l(v4) = 108n, we conclude that f(v4) ∈ [108n, 120n − 1]p. This forces
f(v5) ∈ [148n, 160n− 1]p (as v4v5 is an edge). But then f is not compatible
with (l, s) (as l(v5) = 160n).

4 Generalized theta graphs

If k = 2, then the upper bound in Theorem 6 is not tight. The so called
theta graphs are used in characterizing 2-choosable graphs. For positive
integers a, b, c, the theta graph θa,b,c is the graph obtained from three disjoint
paths P1 = (x0, x1, . . . , xa), P2 = (y0, y1, . . . , yb) and P3 = (z0, z1, . . . , zc) by
identifying x0, y0, z0 into a single vertex and identifying xa, yb, zc into a single
vertex. Given a graph G, the heart of G is the graph H obtained from G by
repeatedly deleting degree 1 vertices.

It is proved in [1] that a connected graph G is 2-choosable if and only
if the heart of G is K1 or an even cycle or θ2,2,2k for some k ≥ 1. Given a
graph G, let

mad(G) = max{2|E(H)|/|V (H)| : H is a subgraph of G}.

The following result was proved in [4].

Theorem 9. If G is a bipartite graph, then

chc(G) ≤ mad(G).
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Since chcc(G) ≤ chc(G), for any bipartite graph G, we have chcc(G) ≤
mad(G). As a consequence, if the heart of G is K1 or an even cycle, then
chcc(G) ≤ 2; if the heart of G is θ2,2,2k for some k ≥ 1, then chcc(G) ≤
(4k+8)/(2k+3). It was proved in [4] that chc(K2,3) = 2. As K2,3 = θ2,2,2, we
have chcc(θ2,2,2) ≤ chc(θ2,2,2) = 2. It was proved in [3] that chcc(θ2,2,4) = 2.
Combine these results with Theorem 9, we have the following corollary,
which gives a better upper bound on chcc(G) for 2-choosable graphs G than
that given in Theorem 6.

Corollary 10. If G is 2-choosable, then chcc(G) ≤ 20/9.

A natural question is to find the tight upper bound on chcc(G) for 2-
choosable graphs G. It was conjectured in [4] that if G is 2-choosable, then
chc(G) ≤ 2. The following is a weaker conjecture:

Conjecture 11. If G is 2-choosable, then chcc(G) ≤ 2.

To prove Conjecture 11, it suffices to show that chcc(θ2,2,2k) = 2 for every
k ≥ 1. For k ≥ 3, the question is open. However, even if Conjecture 11 is
confirmed, it does not answer the following question:

Question 12. Which graphs G have chcc(G) ≤ 2?

If G has a vertex x of degree 1, then chcc(G) ≤ 2 if and only if chcc(G−
x) ≤ 2. So a graph G is circular consecutive 2-choosable if and only if the
heart of G is circular consecutive 2-choosable. There are graphs G that are
not 2-choosable but are circular consecutive 2-choosable. For example, it is
shown in [3] that for any odd cycle Cn, chcc(Cn) = 2.

Also it is easy to show that for any integer n ≥ 2, chcc(K2,n) = 2.
Assume 2 ≤ r < 4, V (K2,n) = {u, v}∪{x1, x2, . . . , xn}, and L is a 2-circular
consecutive colour-list assignment of G with respect to r. Then L(u)∩L(v) 6=
∅. Let f(u) = f(v) = t ∈ L(u) ∩L(v), and let f(xi) ∈ L(xi) \ (t− 1, t + 1)r.
Then f is a circular L-colouring of K2,n.

Observe that K2,3 is θ2,2,2. By finding the “theta graph” for K2,n, we can
define generalized theta graphs as follows. Let n ≥ 2 and k1, k2, · · · , kn ≥ 1
be integers and let Pi (for i = 1, 2, · · · , n) be a path of length ki. We denote
by θk1,k2,··· ,kn the graph obtained from the disjoint union of P1, P2, · · · , Pn

by identifying their initial vertices into a single vertex x and their terminal
vertices into a single vertex y. So θa,b is a cycle of length a + b and θa,b,c is
the theta graph defined above. As mentioned above, we conjecture that for
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any positive integer n, the graph θ2,2,2n is circular consecutive 2-choosable.
On the other hand, θ2, 2, · · · , 2︸ ︷︷ ︸

n

is simply the graph K2,n and hence is also

circular consecutive 2-choosable.

Question 13. For which positive integers k1, k2, · · · , kn, the generalized
theta graph θk1,k2,··· ,kn is circular consecutive 2-choosable?

In the following, we provide some partial answer to this question. First
we consider circular L-colourings of the graph θ2,2,2 for some special colour-
list assignment L.

Let the three paths of length 2 in θ2,2,2 be (x, z1, x
′), (x, z2, x

′) and
(x, z3, x

′). Assume 0 < ε ≤ 1/2. Let 0 < δ ≤ (1 − ε)/3 and r = 4 − ε. Let
l : V (θ2,2,2) → [0, 4− ε) be defined as

l(v) =





0, if v = x,

2 + 2δ, if v = x′,

r − 1− δ, if v = z1,

r − 1 + 3δ + ε, if v = z2,

1 + δ, if v = z3,

Lemma 14. Let l : V (θ2,2,2) → [0, 4 − ε) be defined as above. Let L(v) =
(l(v), l(v)+2+δ)r for v ∈ θ2,2,2. If f is a circular L-colouring of θ2,2,2, then

f(x) ∈ (0, 4δ + ε)r and f(x′) ∈ (r − δ, 3δ + ε)r.

Proof. Assume the lemma is not true and f is a circular L-colouring of θ2,2,2

for which f(x) 6∈ (0, 4δ + ε)r or f(x′) 6∈ (r − δ, 3δ + ε)r.
First we consider the case that f(x) 6∈ (0, 4δ+ε)r. Then f(x) ∈ [4δ+ε, 2+

δ)r. (Refer to Figure 1 for the positions of the intervals L(x), L(x′), L(z1),
L(z2) and L(z3).)

Since L(z2) = (r − 1 + 3δ + ε, 1 + 4δ + ε)r, this forces f(z2) ∈ (r −
1 + 3δ + ε, f(x) − 1]r. As L(x′) = (2 + 2δ, 3δ + ε)r, we must have f(x′) ∈
(2+2δ, f(z2)−1]r. On the other hand, we have f(z3) ∈ [f(x)+1, f(x′)−1]r.
The four colours f(x), f(z2), f(x′), f(z3) occur in the circle S(r) in this cyclic
order, and every two consecutive colours have distance at least 1. This is a
contradiction, because S(r) has length r = 4− ε < 4.

If f(x′) 6∈ (r − δ, 3δ + ε)r, then f(x′) ∈ (2 + 2δ, r − δ]r. This forces
f(z1) ∈ [f(x′) + 1, 1)r, which in turn forces f(x) ∈ [f(z1) + 1, 2 + δ)r. As
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Figure 1: The intervals L(x), L(x′), L(z1), L(z2), L(z3)

f(z3) ∈ [f(x) + 1, f(x′)− 1]r the four colours f(x′), f(z1), f(x), f(z3) occur
in S(r) in this cyclic order, and every two consecutive colours have distance
at least 1, which leads to the same contradiction.

In the following, we use Lemma 14 to prove that θ2,2,2,n has circular con-
secutive choosability greater than 2, provided that n 6= 2, 4, 6, and θ2,2,2,2,n

has circular consecutive choosability greater than 2 if n 6= 2, 6.

Theorem 15. Suppose n ≥ 0 is an integer. Then

1. chcc(θ2,2,2,2n+1) ≥ 2 + 1/(n + 5).

2. chcc(θ2,2,2,2n+8) ≥ 2 + 2/(4n + 21).

Proof. Let the graph θ2,2,2,k be obtained from the graph θ2,2,2, with vertices
labeled as in Lemma 14, by adding the path (x, y1, y2, · · · , yk−1, x

′).
First we show that chcc(θ2,2,2,2n+1) ≥ 2 + 1/(n + 5) for any n ≥ 0. It

suffices to show that for any 0 < ε ≤ 1/2, for r = 4 − ε and for δ =
(1 − ε)/(n + 5), there is a list assignment L which assigns to each vertex
v an open interval of length 2 + δ of S(r), for which there is no circular
L-colouring of θ2,2,2,2n+1.

Let l : V (θ2,2,2,2n+1) → [0, 4 − ε) be defined so that the restriction to
θ2,2,2 is the same as in Lemma 14, and

l(yj) =





r + (4 + t)δ + ε− 1, if j = 2t + 1,

r − tδ, if j = 2t.
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We shall show that there is no circular L-colouring of θ2,2,2,2n+1. Assume
to the contrary that there is a circular L-colouring f of θ2,2,2,2n+1. By
Lemma 14, f(x) ∈ (0, 4δ + ε)r and f(x′) ∈ (r − δ, 3δ + ε)r.

Since L(y1) = (r + 4δ + ε − 1, 1 + 5δ + ε)r and |f(x) − f(y1)|r ≥ 1,
we conclude that f(y1) ∈ (1, 1 + 5δ + ε)r. Since L(y2) = (r − δ, 2)r and
|f(y1) − f(y2)|r ≥ 1, we have f(y2) ∈ (r − δ, 5δ + ε)r. Inductively, one can
show that

f(y2j+1) ∈ (1− jδ, 1 + (j + 5)δ + ε)r

f(y2j) ∈ (r − jδ, (j + 4)δ + ε)r.

In particular, f(y2n) ∈ (r−nδ, (n+4)δ + ε)r. As f(x′) ∈ (r− δ, 3δ + ε)r and
(n + 5)δ + ε < 1, we conclude that |f(x′)− f(y2n)|r < 1, in contrary to the
assumption that f is a circular L-colouring of θ2,2,2,2n+1. This completes
the proof of (1).

Next we prove that chcc(θ2,2,2,2n+8) ≥ 2 + 2/(4n + 21) for any n ≥ 0.
Let ε = 2n+6

4n+21 , r = 4− ε and δ = 2
4n+21 . Let l : V (θ2,2,2,2n+8) → [0, 4− ε)

be defined so that the restriction of l to θ2,2,2 is as defined in Lemma 14 and

l(yj) =





j − 2 + (3 + j)δ + ε, if 1 ≤ j ≤ 7,

6 + (7 + t)δ + ε, if j = 2t ≥ 8,

7− (t− 3)δ, if j = 2t + 1 ≥ 9.

Now we shall prove that θ2,2,2,2n+8 has no circular L-colouring. Assume
to the contrary that f is a circular L-colouring of θ2,2,2,2n+8. By Lemma 14,
f(x) ∈ (0, 4δ + ε)r and f(x′) ∈ (r − δ, 3δ + ε)r.

Similarly as in the proof of (1), we can prove by induction that for
j = 1, 2, · · · , 7,

f(yj) ∈ (j, j + (j + 4)δ + ε)r.

For j = 2t ≥ 8,

f(yj) ∈ (8− (t− 4)δ, 8 + (t + 8)δ + ε)r.

For j = 2t + 1 ≥ 9,

f(yj) ∈ (7− (t− 3)δ, 7 + (t + 8)δ + ε)r.

In particular,
f(y2n+7) ∈ (7− nδ, 7 + (n + 11)δ + ε)r.

13



However, it is straightforward to verify that for any a ∈ (r − δ, 3δ + ε)r, for
any b ∈ (7− nδ, 7 + (n + 11)δ + ε)r, |a− b|r < 1. This is in contrary to our
assumption that f is a circular L-colouring of θ2,2,2,2n+8. This completes
the proof of (2).

We do not know whether chcc(θ2,2,2,2n) > 2 for n = 2, 3. The next lemma
shows that chcc(θ2,2,2,2,4) > 2.

Theorem 16. chcc(θ2,2,2,2,4) ≥ 2 + 1/8.

Proof. Similar to Lemma 14, we first consider circular L-colourings of θ2,2,2,2,
which is obtained from the graph θ2,2,2 in Lemma 14 by adding the path
(x, z4, x

′). Let l : V (θ2,2,2,2) → [0, 4− ε) be defined such that the restriction
of l to θ2,2,2,2\{z4} is the same as in Lemma 14, and let l(z4) = r−1+δ+ε/2.

Claim 2. If f is a circular L-colouring of θ2,2,2,2 then either

f(x) ∈ (0, 2δ + ε/2)r, and f(x′) ∈ (−δ, 2δ + ε/2)r

or
f(x) ∈ (δ + ε/2, 4δ + ε)r, and f(x′) ∈ (δ + ε/2, 3δ + ε)r.

Proof. If the claim is not true, then by using Lemma 14, we conclude that
one of f(x), f(x′) lies in the interval (−δ, δ + ε/2]r and the other lies in the
interval [2δ + ε/2, 4δ + ε)r. Since z4 is adjacent to both x and x′, there is no
legal colour for z4 in the interval L(z4). This proves the claim.

Let l : V (θ2,2,2,2,4) → [0, 4 − ε) be defined so that the restriction of l to
θ2,2,2,2 is as in Claim 2 and for j = 1, 2, 3, l(yj) = j − 2 + (3 + j)δ + ε. We
shall show that, for appropriate ε and δ, θ2,2,2,4 has no circular L-colouring.
Assume to the contrary that f is a circular L-colouring of θ2,2,2,2,4.

Let ε = 1/2 and let δ = 1/8. By Claim 2, we have two cases.
Case 1

f(x) ∈ (0, 2δ + ε/2)r, and f(x′) ∈ (−δ, 2δ + ε/2)r.

By using the proof of Theorem 15, we can show that f(y3) ∈ (3, 3+7δ +
ε)r. Since ε = 1/2 and δ = 1/8, straightforward calculation shows that for
any a ∈ (−δ, 2δ + ε/2)r, for any b ∈ (3, 3 + 7δ + ε)r, we have |a− b|r < 1, in
contrary to our assumption that f is a circular L-colouring of θ2,2,2,2,4.
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Case 2

f(x) ∈ (δ + ε/2, 4δ + ε)r, and f(x′) ∈ (δ + ε/2, 3δ + ε)r.

Observe that, in comparison with Case 1, the possible colour of f(x) is
“shifted to the right” by a distance of δ + ε/2. By using the argument as in
the proof of Theorem 15, we can show that f(y3) ∈ (3+ δ + ε/2, 3+7δ + ε)r.
Again, straightforward calculation shows that for any a ∈ (δ + ε/2, 3δ + ε)r,
for any b ∈ (3+ δ + ε/2, 3+7δ + ε)r, we have |a− b|r < 1, in contrary to our
assumption that f is a circular L-colouring of θ2,2,2,2,4.
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