Bounds on circular consecutive choosability

Serguei Norine * Zhishi Pan ${ }^{\dagger} \quad$ Xuding Zhu ${ }^{\ddagger}$

February 27, 2008

Abstract

The circular consecutive choosability $c h_{c c}(G)$ of a graph G has been recently introduced in [2]. In this paper we prove upper bounds on $c h_{c c}$ for series-parallel graphs, planar graphs and k-choosable graphs. Our bounds are tight for classes of series-parallel graphs and k-choosable graphs for $k \geq 3$. Then we study the circular consecutive choosability of generalized theta graphs. Lower bounds for the circular consecutive choosability of certain generalized theta graphs are obtained.

1 Introduction

For a positive real number r, let $S(r)$ denote the circle obtained from the interval $[0, r]$ by identifying 0 and r into a single point. For a real number t, denote by $[t]_{r}$ the remainder of t upon division by r. For $a, b \in S(r)$, the distance between a and b is $|a-b|_{r}=\min \{|a-b|, r-|a-b|\}$ and the intervals $[a, b]_{r}$ and $(a, b)_{r}$ are defined as $[a, b]_{r}=\left\{t \in S(r):[t-a]_{r} \leq[b-a]_{r}\right\}$ and $(a, b)_{r}=\left\{t \in[0, r): 0<[t-a]_{r}<[b-a]_{r}\right\}$. Suppose $G=(V, E)$ is a graph. A circular r-colouring of G is a mapping $f: V(G) \rightarrow S(r)$ such that for any edge $u v$ of $G,|f(u)-f(v)|_{r} \geq 1$. The circular chromatic number $\chi_{c}(G)$ of G is defined as

$$
\chi_{c}(G)=\inf \{r: G \text { has a circular } r \text {-colouring }\} .
$$

[^0]The circular chromatic number of a graph is a refinement of the chromatic number of a graph, and has been studied extensively in the literature (see $[7,8]$ for surveys on this subject).

Given a graph G and a positive real number r, a (\star, r)-circular colourlist assignment for G is a function L that assigns to each vertex v of G a set $L(v)$ which is the union of disjoint closed intervals of $S(r)$. If for each vertex v, the sum of the lengths of the disjoint intervals in $L(v)$ is equal to t, then L is called a (t, r)-circular colour-list assignment. Suppose L is a (\star, r)-circular colour-list assignment for a graph G. A circular L-colouring of G is a circular r-colouring f of G such that $f(v) \in L(v)$ for each vertex v of G. A graph G is called circular t-choosable if for any r and for any (t, r) circular colour-list assignment L, G has a circular L-colouring. The circular choosability $c h_{c}(G)$ of G (also called the circular list chromatic number of G and denoted by $\left.c h_{c}(G)\right)$ is defined in [9] as

$$
c h_{c}(G)=\inf \{t: G \text { is circular } t \text {-choosable }\}
$$

The definition of circular t-choosable graphs given above is slightly different from the one given in [9]. In [9], the set $L(v)$ assigned to a vertex v by a circular colour-list assignment L is the disjoint union of open intervals. In this paper, $L(v)$ is the disjoint union of closed intervals, which seems to be more convenient for us. This change does affect whether a graph is circular t-choosable or not. However, as the circular choosability of G is by taking the infimum of those t for which G is circular t-choosable, the circular choosability of a graph is the same under both definitions.

The circular consecutive choosability of a graph, introduced in [2], is a variation of circular choosability of a graph and the consecutive choosability of a graph [6].

A (\star, r)-circular consecutive colour-list assignment of G is a mapping L which assigns to each vertex v of G a closed interval $L(v)$ of $S(r)$. If $L(v)$ has length t for each vertex v, then L is called a (t, r)-circular consecutive colourlist assignment of G. We say G is circular consecutive (t, r)-choosable if for any (t, r)-circular consecutive colour-list assignment L of G, G is circular L-colourable.

Observe that if $r<\chi_{c}(G)$, then for any (\star, r)-circular colour-list assignment L, G is not circular L-colourable. Therefore, for the definition to be meaningful, we restrict to real numbers $r \geq \chi_{c}(G)$.

Definition 1. Suppose $r \geq \chi_{c}(G)$. The circular consecutive choosability of G with respect to r is defined as

$$
c h_{c c}^{r}(G)=\inf \{t: G \text { is circular consecutive }(t, r) \text {-choosable }\} .
$$

The circular consecutive choosability of G is defined as

$$
c h_{c c}(G)=\sup \left\{c h_{c c}^{r}(G): r \geq \chi_{c}(G)\right\}
$$

Equivalently, $c_{c c}(G)$ is the infimum of those t such that for any $r \geq \chi_{c}(G)$, G is circular consecutive (t, r)-choosable.

In [2], it was shown that if G is a graph on n vertices, then

$$
\chi(G)-1 \leq c h_{c c}(G) \leq 2 \chi_{c}(G)(1-1 / n)-1
$$

The values of $c h_{c c}(G)$ for complete graphs, trees, even cycles and balanced complete bipartite graphs were determined. Upper and lower bounds for $c h_{c c}(G)$ were given for some other graphs.

In this paper, we explore the relation between $c h_{c c}(G)$ and the choosability $\operatorname{ch}(G)$ of G. We prove that if G is a k-choosable graph, then $c h_{c c}(G) \leq$ $k+1-1 / k$, and if $k \geq 3$ then this upper bound is tight. A tight upper bound on $c h_{c c}(G)$ for series-parallel graphs is also presented, namely, $\operatorname{ch}_{c c}(G) \leq 11 / 3$ for every series-parallel graph G. We show that if G is a planar graph, then $c h_{c c}(G) \leq 5.8$ and for each $\epsilon>0$, there is a planar graph G with $c h_{c c}(G)>4.7-\epsilon$. The upper bound $c h_{c c}(G) \leq k+1-1 / k$ for k-choosable graphs is not tight for $k=2$. It is conjectured that $c h_{c c}(G) \leq 2$ for 2-choosable graphs. To prove the conjecture, it amounts to show that the theta graphs $\theta_{2,2,2 k}$ have circular consecutive choosability 2. More generally, one might attempt to characterize graphs with circular consecutive choosability 2. A natural class of graphs that one can study to gain intuition about this question is the class of generalized theta graphs. Suppose $P_{1}, P_{2}, \cdots, P_{n}$ are paths of lengths $k_{1}, k_{2}, \cdots, k_{n}$ respectively. The generalized theta graph $\theta_{k_{1}, k_{2}, \cdots, k_{n}}$ is the graph obtained from the disjoint union of $P_{1}, P_{2}, \cdots, P_{n}$ by identifying their initial vertices into a single vertex and their terminal vertices into a single vertex. It is proved that for any integer $n \geq 2, c h_{c c}(\underbrace{\theta_{2,2, \cdots, 2}^{2, \cdots}}_{n})=2$. However, for $n \neq 2,4,6, c h_{c c}\left(\theta_{2,2,2, n}\right)>2$.

$2 k$-list colourable graphs

A graph G is called k-choosable if for any mapping L which assigns to each vertex v of G a set $L(v)$ of k integers, there is a mapping $f: V(G) \rightarrow \mathbb{Z}$ such that $f(v) \in L(v)$ for each $v \in V(G)$ and $f(u) \neq f(v)$ for each edge $u v$ of G. Our first lemma bounds circular consecutive choosability of k-choosable graphs with respect to given r.

Lemma 2. Let $k \geq 2$ be an integer and let G be a graph with $\operatorname{ch}(G)=k$ then $c h_{c c}^{r}(G) \leq k+(k-1)(r-\lfloor r\rfloor) /\lfloor r\rfloor$ for every $r \geq \chi_{c}(G)$.

Proof. Let $s=k+(k-1)(r-\lfloor r\rfloor) /\lfloor r\rfloor$, and let L be an s-circular consecutive list assignment of G with respect to r. For $l=0,1, \ldots\lfloor r\rfloor-1$ let $I_{l}=$ $[l r /\lfloor r\rfloor,(l+1) r /\lfloor r\rfloor-1]_{r}$ be an interval in $S(r)$. For every $v \in V(G)$ let $S(v)=\left\{j \mid I_{j} \cap L(v) \neq \emptyset\right\}$, then $|S(v)| \geq k$. As $c h(G)=k$ it is possible to choose $k(v) \in S(v)$ for every $v \in V(G)$ so that $k(v) \neq k(w)$ for every $v w \in E(G)$. By the choice of $S(v)$ we can choose $f(v) \in I_{k(v)} \cap L(v)$ for every $v \in V(G)$. It remains to note that for every $i, j \in\{0,1, \ldots,\lfloor r\rfloor-1\}, i \neq j$ and every $x \in I_{i} y \in I_{j}$ we have $|x-y|_{r} \geq 1$ and therefore $|f(v)-f(w)|_{r} \geq 1$ for every $v w \in E(G)$.

Corollary 3. Let $k \geq 2$ be an integer. If a graph G has list chromatic number k, then $\operatorname{ch}_{c c}(G) \leq k+1-1 / k$.

Proof. If $\chi_{c}(G) \leq r \leq k$ then $c h_{c c}^{r}(G) \leq r \leq k$. If $r \geq k$ then $c h_{c c}^{r}(G) \leq$ $k+(k-1)(r-\lfloor r\rfloor) /\lfloor r\rfloor<k+(k-1) / k$ by Lemma 2.

We shall show that for $k \geq 3$, the upper bound given in Corollary 3 is tight. For this purpose, we need an alternate definition of $c h_{c c}(G)$ given in [2].

Given positive integers $p \geq 2 q$, a (p, q)-colouring of a graph G is a mapping $f: V(G) \rightarrow\{0,1, \cdots, p-1\}$ such that for any edge $x y$ of G, $q \leq|f(x)-f(y)| \leq p-q$. For any integer $a,[a]_{p}$ denotes the remainder of a divided by p. For $a, b \in\{0,1, \cdots, p-1\}$, the circular integral interval $[a, b]_{p}$ is defined as

$$
[a, b]_{p}=\{a, a+1, a+2, \cdots, b\}
$$

where the additions are modulo p. Suppose G is a graph and p, q are positive integers such that $p / q \geq \chi_{c}(G)$, and s is a positive integer. Let $l: V(G) \rightarrow$ $\{0,1, \cdots, p-1\}$ be a mapping. A (p, q)-colouring f of G is compatible with
(l, s) if for any vertex $x, f(x) \in[l(x), l(x)+s-1]_{p}$. We say a graph G is circular consecutive (p, q)-s-choosable if for any mapping $l: V(G) \rightarrow$ $\{0,1, \cdots, p-1\}, G$ has a (p, q)-colouring f which is compatible with (l, s). We define the consecutive (p, q)-choosability of G as

$$
c h_{p, q}(G)=\min \{s: G \text { is circular consecutive }(p, q)-s \text {-choosable }\} .
$$

The following lemma is proved in [2].
Lemma 4. For any graph G and for any $r=p / q \geq \chi_{c}(G)$,

$$
c h_{p, q}(G)=\left\lfloor c h_{c c}^{r}(G) q\right\rfloor+1 .
$$

Now we prove a technical lemma which is later used to lower bound maximum circular consecutive choosability of graphs of fixed treewidth.

A graph G is called a k-tree if the vertices of G can be ordered as $v_{1}, v_{2}, \cdots, v_{n}$ in such a way that $\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}$ induces a K_{k}, and for each $j \geq k+1$, the set $N^{+}\left(v_{j}\right)=\left\{v_{i}: i<j, v_{i} \sim v_{j}\right\}$ induces a K_{k}. The treewidth of a graph G is the minimum k such that G is a subgraph of a k-tree.

Lemma 5. Let $k \geq 2, p$ and q be positive integers such that $p / q \geq k$, and let s be a positive integer. Suppose that every graph G with treewidth at most $k-1$ is circular consecutive (p, q)-s-choosable. Then there exists a non-empty family \mathcal{S} of k-element subsets of $\{0,1, \ldots, p-1\}$ such that for every $S \in \mathcal{S}$ the following conditions hold

1. for every distinct $x_{1}, x_{2} \in S$ we have $q \leq\left|x_{1}-x_{2}\right| \leq p-q$,
2. for every $X \subset S$ with $|X|=k-1$ and every $i \in\{0,1, \ldots, p-1\}$ there exists $S^{\prime} \in \mathcal{S}$ such that $S^{\prime}=X \cup\left\{x_{0}\right\}$ and $x_{0} \in[i, i+s-1]_{p}$.

Proof. For a graph H and a (p, q)-colouring f of H let $\mathcal{S}(H, f)$ denote the family of sets of colours of cliques of size k in H. Choose a graph G of treewidth at most $k-1$ and a map $l: V(G) \rightarrow\{0,1, \ldots, p-1\}$ so that the minimum of $|\mathcal{S}(G, f)|$ over all (p, q)-colourings f of G compatible with (l, s) is maximum. Construct the graph G^{\prime} and a map $l^{\prime}: V\left(G^{\prime}\right) \rightarrow\{0,1, \ldots, p-1\}$ as follows: For every clique $W \subseteq V(G)$ with $|W|=k-1$ and every $i \in$ $\{0,1, \ldots, p-1\}$ create a vertex v_{W}^{i} of degree $k-1$ of G^{\prime} that is joined by edges to vertices of W and set $l^{\prime}\left(v_{W}^{i}\right)=i$. Let l^{\prime} be identical to l on $V(G)$. Then G^{\prime} has treewidth at most $k-1$. By the choice of G there exists a (p, q) colouring f^{\prime} of G^{\prime} compatible with $\left(l^{\prime}, s\right)$ such that $\mathcal{S}\left(G^{\prime}, f^{\prime}\right)=\mathcal{S}\left(G, f^{\prime}\right)$.

We claim that $\mathcal{S}=\mathcal{S}\left(G, f^{\prime}\right)$ satisfies the requirements of the lemma. Clearly \mathcal{S} is non-empty. For every $S \in \mathcal{S}$ there exists a clique $U \subseteq V(G)$ such that $S=f^{\prime}(U)$. Therefore the first requirement is satisfied by the definition of (p, q)-colouring. Similarly, for every $X \subset S$ with $|X|=k-1$ there exists a clique $W \subset U$ such that $|W|=k-1$ and $X=f^{\prime}(W)$ then $S^{\prime}=f^{\prime}\left(W \cup\left\{v_{W}^{i}\right\}\right)$ satisfies the second requirement.

Theorem 6. For every $k \geq 3$ and $\varepsilon>0$ there exists a graph $G_{k, \varepsilon}$ such that $G_{k, \varepsilon}$ has treewidth at most $k-1$ and $\operatorname{ch}_{c c}\left(G_{k, \varepsilon}\right)>k+1-1 / k-\varepsilon$.

Proof. We will show that for every positive integer n and every integer $k \geq 3$ there exists a graph $G_{k, n}$ of treewidth at most $k-1$ that is not circular consecutive (p, q)-s-choosable, where $p=n k(k+1)-2, q=n k$ and $s=n k(k+1)-n-2$. By Lemma 4, for $r=k+1-2 / n k, c h_{c c}\left(G_{k, n}\right) \geq$ $c h_{c c}^{r}\left(G_{k, n}\right)>(p-1) / q=(n k(k+1)-n-2-1) / n k=k+(k-1) / k-3 / n k$. As graphs of treewidth $k-1$ are k-choosable, this implies the required lower bound on $c h_{c c}(G)$ for k-choosable graphs.

Suppose, on the contrary, that for some n and some $k \geq 3$ every graph of treewidth at most $k-1$ is circular consecutive $(p, q)-s$-choosable. By Lemma 5 then there exists a family \mathcal{S} of k-element subsets of $\{0,1, \ldots, p-1\}$ satisfying the requirements of that lemma.

Choose $S=\left\{a_{1}, \ldots, a_{k}\right\} \in \mathcal{S}$ so that a_{1}, \ldots, a_{k} appear in $\{0,1, \ldots, p-1\}$ in circular order and $\left(\left[a_{2}-a_{1}\right]_{p},\left[a_{3}-a_{2}\right]_{p}, \ldots,\left[a_{k}-a_{k-1}\right]_{p}\right)$ is lexicographically maximum. Let $a_{k+1}=a_{1}$, by convention.

Consider $X=S-\left\{a_{2}\right\}$ and $\left.i=a_{1}+\Gamma\left(\left[a_{3}-a_{1}\right]_{p}+n\right) / 2\right\rceil$. Then by condition 2 in Lemma 5 there exists $S^{\prime} \in \mathcal{S}$ such that $S^{\prime}=X \cup\left\{a_{2}^{\prime}\right\}$ and $a_{2}^{\prime} \in[i, i+s-1]$. Note that $a_{2}^{\prime} \in\left[a_{1}, a_{3}\right]_{p}$. Otherwise $a_{2}^{\prime} \in\left[a_{l}, a_{l+1}\right]_{p}$ for some $l \geq 3$, and we obtain contradiction as follows,

$$
\begin{aligned}
p & =\sum_{j=1}^{l-1}\left[a_{j+1}-a_{j}\right]_{p}+\left[a_{2}^{\prime}-a_{l}\right]_{p}+\left[a_{l+1}-a_{2}^{\prime}\right]_{p}+\sum_{j=l+1}^{k}\left[a_{j+1}-a_{j}\right]_{p} \\
& \geq q(l-1+2+k-l)=q(k+1)=p+2 .
\end{aligned}
$$

Since $a_{2}^{\prime} \notin[i-n, i-1]$, it follows that

$$
\left|\left[a_{3}-a_{2}^{\prime}\right]_{p}-\left[a_{2}^{\prime}-a_{1}\right]_{p}\right| \geq n-1
$$

Hence
$\max \left\{\left[a_{3}-a_{2}^{\prime}\right]_{p},\left[a_{2}^{\prime}-a_{1}\right]_{p}\right\} \geq\left(\left[a_{3}-a_{2}^{\prime}\right]_{p}+\left[a_{2}^{\prime}-a_{1}\right]_{p}+n-1\right) / 2=\left(\left[a_{3}-a_{1}\right]_{p}+n-1\right) / 2$.

By the choice of S, we have

$$
\begin{aligned}
{\left[a_{2}-a_{1}\right]_{p} } & \geq \max \left\{\left[a_{2}^{\prime}-a_{1}\right]_{p},\left[a_{3}-a_{2}^{\prime}\right]_{p}\right\} \\
& \geq\left(\left[a_{3}-a_{1}\right]_{p}+n-1\right) / 2=\left(\left[a_{3}-a_{2}\right]_{p}+\left[a_{2}-a_{1}\right]_{p}+n-1\right) / 2
\end{aligned}
$$

Consequently,

$$
\left[a_{2}-a_{1}\right]_{p} \geq\left[a_{3}-a_{2}\right]_{p}+n-1
$$

By considering $X=S-\left\{a_{l}\right\}$ for $l \in\{3, \ldots, k\}$ and $i=a_{l-1}+q+n$, and using an argument similar to the above, we deduce $\left[a_{l}-a_{l-1}\right]_{p} \geq q+n$. A contradiction follows:

$$
\begin{aligned}
p & =\sum_{j=1}^{k}\left[a_{j+1}-a_{j}\right]_{p} \geq\left[a_{2}-a_{1}\right]_{p}+(q+n)(k-2)+\left[a_{1}-a_{k}\right]_{p} \\
& \geq q+n+n-1+(q+n)(k-2)+q=(q+n) k-1=p+1
\end{aligned}
$$

Since graphs of treewidth at most $(k-1)$ are k-choosable, Theorem 6 shows that the bound of Corollary 3 is tight.

Corollary 7. If G is a series-parallel graph, then $c h_{c c}(G) \leq 11 / 3$. For any $\epsilon>0$, there is a series-parallel graph G with $c h_{c c}(G)>11 / 3-\epsilon$.

3 Planar graphs

In this section we study bounds on circular consecutive choosability of planar graphs.

Theorem 8. For every planar graph G we have $\operatorname{ch}_{c c}(G) \leq 5.8$. For every $\varepsilon>0$ there exists a planar graph G_{ε} such that $c h_{c c}\left(G_{\varepsilon}\right)>4.7-\varepsilon$.

Proof. The upper bound follows from Theorem 6 and 5-choosability of planar graphs [5].

To obtain the lower bound it suffices to construct, for each positive integer n, a graph G_{n} that is not circular consecutive (p, q)-s-choosable, where $p=200 n-1, q=40 n$ and $s=188 n-1$.

Let K_{4} be a complete graph on vertex set $\{a, b, c, d\}$. For each edge $x y$ of K_{4}, we add $6 n(200 n-1)$ paths of length 4 (i.e., paths with 5 vertices) with every vertex in these paths joined by an edge to x and to y. The resulting graph is denoted by H_{n}. It is obvious that H_{n} is planar.

For each edge $e=x y$ of K_{4}, the $6 n(200 n-1)$ paths in H_{n} joined to x, y are indexed as $P_{k, m, e}$, where $k, m \in\{0,1, \ldots, p-1\}$ and $50 n \leq[m-k]_{p}<$ $56 n$.

Claim 1. There is a map $l: V\left(H_{n}\right) \rightarrow\{0,1, \ldots, p-1\}$ such that if f is a (p, q)-colouring of H_{n} compatible with (l, s), then there is an edge uv of H_{n} such that $56 n \leq|f(u)-f(v)|_{p} \leq 80 n-1$.

Proof. The map l is defined as follows: Suppose $P_{k, m, e}=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right)$. Then let $l\left(v_{1}\right)=l\left(v_{4}\right)=[k+m+56 n]_{p}, l\left(v_{2}\right)=l\left(v_{5}\right)=[k+156 n]_{p}$. Let $l\left(v_{3}\right)$ be arbitrary. Let $l(x)$ be arbitrary for $x \in\{a, b, c, d\}$.

Assume to the contrary of the claim, there is a (p, q)-colouring f of H_{n} compatible with (l, s) for which there is no edge $u v$ with $56 n \leq \mid f(u)-$ $\left.f(v)\right|_{p} \leq 80 n-1$. It is obvious that there exist an edge $e=x y$ with $x, y \in\{a, b, c, d\}$ and $50 n \leq[f(x)-f(y)]_{p} \leq 80 n-1$. By our assumption, this implies that $50 n \leq[f(x)-f(y)]_{p} \leq 56 n-1$.

Without loss of generality, we assume that $f(y)=0$ and $50 n \leq f(x)=$ $m \leq 56 n-1$. Then we consider the path $P_{0, m, e}=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right)$. Because the five vertices of the path are adjacent to both x and y, it follows that for each $v_{j}, f\left(v_{j}\right) \in[m+40 n, m+56 n-1]_{p} \cup[144 n, 160 n-1]_{p}$. By symmetry, we may assume that $f\left(v_{3}\right) \in[144 n, 160 n-1]_{p}$. As v_{4} is adjacent to v_{3}, we have $f\left(v_{4}\right) \in[m+40 n, m+56 n-1]_{p}$. Because f is compatible with (l, s) and $l\left(v_{4}\right)=[m+56 n]_{p}$, we conclude that

$$
f\left(v_{4}\right) \in[m+40 n, m+44 n-1]_{p} .
$$

Since $v_{4} v_{5}$ is an edge, $f\left(v_{5}\right) \in[144 n, 160 n-1]_{p}$. As f is compatible with (l, s) and $l\left(v_{5}\right)=[156 n]_{p}$, we conclude that

$$
f\left(v_{5}\right) \in[156 n, 160 n-1]_{p} .
$$

Because $50 n \leq m \leq 56 n-1$, this implies that

$$
56 n+2 \leq\left[f\left(v_{5}\right)-f\left(v_{4}\right)\right]_{p} \leq 70 n-1 .
$$

This completes the proof of the claim.
For each edge $e=x y$ of H_{n}, we add p paths of length 4 with every vertex in these paths joined by an edge to x and to y. The resulting graph is denoted by G_{n}. Obviously, G_{n} is planar.

For an edge $e=x y$ of H_{n}, the paths in G_{n} joined to x, y are indexed as $P_{k, e}$, where $k \in\{0,1, \ldots, p-1\}$. Now we extend the map l of H_{n} to G_{n}. For each edge $e=x y$ of H_{n}, the images of l for vertices of the path $P_{k, e}=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right)$ are defined as follows: $l\left(v_{1}\right)=l\left(v_{4}\right)=[k+108 n]_{p}$ and $l\left(v_{2}\right)=l\left(v_{5}\right)=[k+160 n]_{p}$, and $l\left(v_{3}\right)$ is arbitrary.

Now we claim that there is no (p, q)-colouring of G_{n} which is compatible with (l, s). Assume to the contrary that f is a (p, q)-colouring of G_{n} compatible with (l, s). By Claim 1, there is an edge $e=x y$ of H_{n} such that $56 n \leq[f(x)-f(y)]_{p} \leq 80 n-1$. Without loss of generality, we assume that $f(y)=0$ and $f(x)=m$ and $56 n \leq m \leq 80 n-1$. Consider the restriction of f to the path $P_{0, e}$ of G_{n}. Because the five vertices of the path are adjacent to both x and y, it follows that for each $v_{j}, f\left(v_{j}\right) \in[96 n, 160 n-1]_{p}$. By symmetry, we may assume that $f\left(v_{3}\right) \in[128 n, 160 n-1]_{p}$. As $v_{3} v_{4}$ is an edge, this forces $f\left(v_{4}\right) \in[96 n, 120 n-1]$. Because f is compatible with (l, s) and $l\left(v_{4}\right)=108 n$, we conclude that $f\left(v_{4}\right) \in[108 n, 120 n-1]_{p}$. This forces $f\left(v_{5}\right) \in[148 n, 160 n-1]_{p}$ (as $v_{4} v_{5}$ is an edge). But then f is not compatible with $(l, s)\left(\right.$ as $\left.l\left(v_{5}\right)=160 n\right)$.

4 Generalized theta graphs

If $k=2$, then the upper bound in Theorem 6 is not tight. The so called theta graphs are used in characterizing 2 -choosable graphs. For positive integers a, b, c, the theta graph $\theta_{a, b, c}$ is the graph obtained from three disjoint paths $P_{1}=\left(x_{0}, x_{1}, \ldots, x_{a}\right), P_{2}=\left(y_{0}, y_{1}, \ldots, y_{b}\right)$ and $P_{3}=\left(z_{0}, z_{1}, \ldots, z_{c}\right)$ by identifying x_{0}, y_{0}, z_{0} into a single vertex and identifying x_{a}, y_{b}, z_{c} into a single vertex. Given a graph G, the heart of G is the graph H obtained from G by repeatedly deleting degree 1 vertices.

It is proved in [1] that a connected graph G is 2-choosable if and only if the heart of G is K_{1} or an even cycle or $\theta_{2,2,2 k}$ for some $k \geq 1$. Given a graph G, let

$$
\operatorname{mad}(G)=\max \{2|E(H)| /|V(H)|: H \text { is a subgraph of } G\} .
$$

The following result was proved in [4].
Theorem 9. If G is a bipartite graph, then

$$
c h_{c}(G) \leq \operatorname{mad}(G) .
$$

Since $c h_{c c}(G) \leq c h_{c}(G)$, for any bipartite graph G, we have $c h_{c c}(G) \leq$ $\operatorname{mad}(G)$. As a consequence, if the heart of G is K_{1} or an even cycle, then $\operatorname{ch}_{c c}(G) \leq 2$; if the heart of G is $\theta_{2,2,2 k}$ for some $k \geq 1$, then $\operatorname{ch}_{c c}(G) \leq$ $(4 k+8) /(2 k+3)$. It was proved in [4] that $c h_{c}\left(K_{2,3}\right)=2$. As $K_{2,3}=\theta_{2,2,2}$, we have $c h_{c c}\left(\theta_{2,2,2}\right) \leq c h_{c}\left(\theta_{2,2,2}\right)=2$. It was proved in [3] that $c h_{c c}\left(\theta_{2,2,4}\right)=2$. Combine these results with Theorem 9, we have the following corollary, which gives a better upper bound on $c h_{c c}(G)$ for 2-choosable graphs G than that given in Theorem 6.

Corollary 10. If G is 2 -choosable, then $\operatorname{ch}_{c c}(G) \leq 20 / 9$.
A natural question is to find the tight upper bound on $c h_{c c}(G)$ for 2choosable graphs G. It was conjectured in [4] that if G is 2-choosable, then $c h_{c}(G) \leq 2$. The following is a weaker conjecture:

Conjecture 11. If G is 2-choosable, then $c h_{c c}(G) \leq 2$.
To prove Conjecture 11, it suffices to show that $c h_{c c}\left(\theta_{2,2,2 k}\right)=2$ for every $k \geq 1$. For $k \geq 3$, the question is open. However, even if Conjecture 11 is confirmed, it does not answer the following question:

Question 12. Which graphs G have $c h_{c c}(G) \leq 2$?
If G has a vertex x of degree 1 , then $c h_{c c}(G) \leq 2$ if and only if $c h_{c c}(G-$ $x) \leq 2$. So a graph G is circular consecutive 2 -choosable if and only if the heart of G is circular consecutive 2-choosable. There are graphs G that are not 2-choosable but are circular consecutive 2-choosable. For example, it is shown in [3] that for any odd cycle $C_{n}, c h_{c c}\left(C_{n}\right)=2$.

Also it is easy to show that for any integer $n \geq 2, c h_{c c}\left(K_{2, n}\right)=2$. Assume $2 \leq r<4, V\left(K_{2, n}\right)=\{u, v\} \cup\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, and L is a 2-circular consecutive colour-list assignment of G with respect to r. Then $L(u) \cap L(v) \neq$ \emptyset. Let $f(u)=f(v)=t \in L(u) \cap L(v)$, and let $f\left(x_{i}\right) \in L\left(x_{i}\right) \backslash(t-1, t+1)_{r}$. Then f is a circular L-colouring of $K_{2, n}$.

Observe that $K_{2,3}$ is $\theta_{2,2,2}$. By finding the "theta graph" for $K_{2, n}$, we can define generalized theta graphs as follows. Let $n \geq 2$ and $k_{1}, k_{2}, \cdots, k_{n} \geq 1$ be integers and let P_{i} (for $i=1,2, \cdots, n$) be a path of length k_{i}. We denote by $\theta_{k_{1}, k_{2}, \cdots, k_{n}}$ the graph obtained from the disjoint union of $P_{1}, P_{2}, \cdots, P_{n}$ by identifying their initial vertices into a single vertex x and their terminal vertices into a single vertex y. So $\theta_{a, b}$ is a cycle of length $a+b$ and $\theta_{a, b, c}$ is the theta graph defined above. As mentioned above, we conjecture that for
any positive integer n, the graph $\theta_{2,2,2 n}$ is circular consecutive 2-choosable. On the other hand, $\underbrace{\theta_{2,2, \cdots, 2}}_{n}$ is simply the graph $K_{2, n}$ and hence is also circular consecutive 2-choosable.

Question 13. For which positive integers $k_{1}, k_{2}, \cdots, k_{n}$, the generalized theta graph $\theta_{k_{1}, k_{2}, \cdots, k_{n}}$ is circular consecutive 2-choosable?

In the following, we provide some partial answer to this question. First we consider circular L-colourings of the graph $\theta_{2,2,2}$ for some special colourlist assignment L.

Let the three paths of length 2 in $\theta_{2,2,2}$ be $\left(x, z_{1}, x^{\prime}\right),\left(x, z_{2}, x^{\prime}\right)$ and $\left(x, z_{3}, x^{\prime}\right)$. Assume $0<\epsilon \leq 1 / 2$. Let $0<\delta \leq(1-\epsilon) / 3$ and $r=4-\epsilon$. Let $l: V\left(\theta_{2,2,2}\right) \rightarrow[0,4-\epsilon)$ be defined as

$$
l(v)= \begin{cases}0, & \text { if } v=x \\ 2+2 \delta, & \text { if } v=x^{\prime} \\ r-1-\delta, & \text { if } v=z_{1} \\ r-1+3 \delta+\epsilon, & \text { if } v=z_{2} \\ 1+\delta, & \text { if } v=z_{3}\end{cases}
$$

Lemma 14. Let $l: V\left(\theta_{2,2,2}\right) \rightarrow[0,4-\epsilon)$ be defined as above. Let $L(v)=$ $(l(v), l(v)+2+\delta)_{r}$ for $v \in \theta_{2,2,2}$. If f is a circular L-colouring of $\theta_{2,2,2}$, then

$$
f(x) \in(0,4 \delta+\epsilon)_{r} \text { and } f\left(x^{\prime}\right) \in(r-\delta, 3 \delta+\epsilon)_{r} .
$$

Proof. Assume the lemma is not true and f is a circular L-colouring of $\theta_{2,2,2}$ for which $f(x) \notin(0,4 \delta+\epsilon)_{r}$ or $f\left(x^{\prime}\right) \notin(r-\delta, 3 \delta+\epsilon)_{r}$.

First we consider the case that $f(x) \notin(0,4 \delta+\epsilon)_{r}$. Then $f(x) \in[4 \delta+\epsilon, 2+$ $\delta)_{r}$. (Refer to Figure 1 for the positions of the intervals $L(x), L\left(x^{\prime}\right), L\left(z_{1}\right)$, $L\left(z_{2}\right)$ and $L\left(z_{3}\right)$.)

Since $L\left(z_{2}\right)=(r-1+3 \delta+\epsilon, 1+4 \delta+\epsilon)_{r}$, this forces $f\left(z_{2}\right) \in(r-$ $1+3 \delta+\epsilon, f(x)-1]_{r}$. As $L\left(x^{\prime}\right)=(2+2 \delta, 3 \delta+\epsilon)_{r}$, we must have $f\left(x^{\prime}\right) \in$ $\left(2+2 \delta, f\left(z_{2}\right)-1\right]_{r}$. On the other hand, we have $f\left(z_{3}\right) \in\left[f(x)+1, f\left(x^{\prime}\right)-1\right]_{r}$. The four colours $f(x), f\left(z_{2}\right), f\left(x^{\prime}\right), f\left(z_{3}\right)$ occur in the circle $S(r)$ in this cyclic order, and every two consecutive colours have distance at least 1 . This is a contradiction, because $S(r)$ has length $r=4-\epsilon<4$.

If $f\left(x^{\prime}\right) \notin(r-\delta, 3 \delta+\epsilon)_{r}$, then $f\left(x^{\prime}\right) \in(2+2 \delta, r-\delta]_{r}$. This forces $f\left(z_{1}\right) \in\left[f\left(x^{\prime}\right)+1,1\right)_{r}$, which in turn forces $f(x) \in\left[f\left(z_{1}\right)+1,2+\delta\right)_{r}$. As

Figure 1: The intervals $L(x), L\left(x^{\prime}\right), L\left(z_{1}\right), L\left(z_{2}\right), L\left(z_{3}\right)$
$f\left(z_{3}\right) \in\left[f(x)+1, f\left(x^{\prime}\right)-1\right]_{r}$ the four colours $f\left(x^{\prime}\right), f\left(z_{1}\right), f(x), f\left(z_{3}\right)$ occur in $S(r)$ in this cyclic order, and every two consecutive colours have distance at least 1, which leads to the same contradiction.

In the following, we use Lemma 14 to prove that $\theta_{2,2,2, n}$ has circular consecutive choosability greater than 2 , provided that $n \neq 2,4,6$, and $\theta_{2,2,2,2, n}$ has circular consecutive choosability greater than 2 if $n \neq 2,6$.

Theorem 15. Suppose $n \geq 0$ is an integer. Then

1. $\operatorname{ch}_{c c}\left(\theta_{2,2,2,2 n+1}\right) \geq 2+1 /(n+5)$.
2. $\operatorname{ch}_{c c}\left(\theta_{2,2,2,2 n+8}\right) \geq 2+2 /(4 n+21)$.

Proof. Let the graph $\theta_{2,2,2, k}$ be obtained from the graph $\theta_{2,2,2}$, with vertices labeled as in Lemma 14, by adding the path $\left(x, y_{1}, y_{2}, \cdots, y_{k-1}, x^{\prime}\right)$.

First we show that $c h_{c c}\left(\theta_{2,2,2,2 n+1}\right) \geq 2+1 /(n+5)$ for any $n \geq 0$. It suffices to show that for any $0<\epsilon \leq 1 / 2$, for $r=4-\epsilon$ and for $\delta=$ $(1-\epsilon) /(n+5)$, there is a list assignment L which assigns to each vertex v an open interval of length $2+\delta$ of $S(r)$, for which there is no circular L-colouring of $\theta_{2,2,2,2 n+1}$.

Let $l: V\left(\theta_{2,2,2,2 n+1}\right) \rightarrow[0,4-\epsilon)$ be defined so that the restriction to $\theta_{2,2,2}$ is the same as in Lemma 14, and

$$
l\left(y_{j}\right)= \begin{cases}r+(4+t) \delta+\epsilon-1, & \text { if } j=2 t+1 \\ r-t \delta, & \text { if } j=2 t\end{cases}
$$

We shall show that there is no circular L-colouring of $\theta_{2,2,2,2 n+1}$. Assume to the contrary that there is a circular L-colouring f of $\theta_{2,2,2,2 n+1}$. By Lemma 14, $f(x) \in(0,4 \delta+\epsilon)_{r}$ and $f\left(x^{\prime}\right) \in(r-\delta, 3 \delta+\epsilon)_{r}$.

Since $L\left(y_{1}\right)=(r+4 \delta+\epsilon-1,1+5 \delta+\epsilon)_{r}$ and $\left|f(x)-f\left(y_{1}\right)\right|_{r} \geq 1$, we conclude that $f\left(y_{1}\right) \in(1,1+5 \delta+\epsilon)_{r}$. Since $L\left(y_{2}\right)=(r-\delta, 2)_{r}$ and $\left|f\left(y_{1}\right)-f\left(y_{2}\right)\right|_{r} \geq 1$, we have $f\left(y_{2}\right) \in(r-\delta, 5 \delta+\epsilon)_{r}$. Inductively, one can show that

$$
\begin{aligned}
f\left(y_{2 j+1}\right) & \in(1-j \delta, 1+(j+5) \delta+\epsilon)_{r} \\
f\left(y_{2 j}\right) & \in(r-j \delta,(j+4) \delta+\epsilon)_{r} .
\end{aligned}
$$

In particular, $f\left(y_{2 n}\right) \in(r-n \delta,(n+4) \delta+\epsilon)_{r}$. As $f\left(x^{\prime}\right) \in(r-\delta, 3 \delta+\epsilon)_{r}$ and $(n+5) \delta+\epsilon<1$, we conclude that $\left|f\left(x^{\prime}\right)-f\left(y_{2 n}\right)\right|_{r}<1$, in contrary to the assumption that f is a circular L-colouring of $\theta_{2,2,2,2 n+1}$. This completes the proof of (1).

Next we prove that $c h_{c c}\left(\theta_{2,2,2,2 n+8}\right) \geq 2+2 /(4 n+21)$ for any $n \geq 0$.
Let $\epsilon=\frac{2 n+6}{4 n+21}, r=4-\epsilon$ and $\delta=\frac{2}{4 n+21}$. Let $l: V\left(\theta_{2,2,2,2 n+8}\right) \rightarrow[0,4-\epsilon)$ be defined so that the restriction of l to $\theta_{2,2,2}$ is as defined in Lemma 14 and

$$
l\left(y_{j}\right)= \begin{cases}j-2+(3+j) \delta+\epsilon, & \text { if } 1 \leq j \leq 7 \\ 6+(7+t) \delta+\epsilon, & \text { if } j=2 t \geq 8 \\ 7-(t-3) \delta, & \text { if } j=2 t+1 \geq 9\end{cases}
$$

Now we shall prove that $\theta_{2,2,2,2 n+8}$ has no circular L-colouring. Assume to the contrary that f is a circular L-colouring of $\theta_{2,2,2,2 n+8}$. By Lemma 14, $f(x) \in(0,4 \delta+\epsilon)_{r}$ and $f\left(x^{\prime}\right) \in(r-\delta, 3 \delta+\epsilon)_{r}$.

Similarly as in the proof of (1), we can prove by induction that for $j=1,2, \cdots, 7$,

$$
f\left(y_{j}\right) \in(j, j+(j+4) \delta+\epsilon)_{r}
$$

For $j=2 t \geq 8$,

$$
f\left(y_{j}\right) \in(8-(t-4) \delta, 8+(t+8) \delta+\epsilon)_{r} .
$$

For $j=2 t+1 \geq 9$,

$$
f\left(y_{j}\right) \in(7-(t-3) \delta, 7+(t+8) \delta+\epsilon)_{r} .
$$

In particular,

$$
f\left(y_{2 n+7}\right) \in(7-n \delta, 7+(n+11) \delta+\epsilon)_{r} .
$$

However, it is straightforward to verify that for any $a \in(r-\delta, 3 \delta+\epsilon)_{r}$, for any $b \in(7-n \delta, 7+(n+11) \delta+\epsilon)_{r},|a-b|_{r}<1$. This is in contrary to our assumption that f is a circular L-colouring of $\theta_{2,2,2,2 n+8}$. This completes the proof of (2).

We do not know whether $c h_{c c}\left(\theta_{2,2,2,2 n}\right)>2$ for $n=2,3$. The next lemma shows that $\operatorname{ch}_{c c}\left(\theta_{2,2,2,2,4}\right)>2$.

Theorem 16. $c h_{c c}\left(\theta_{2,2,2,2,4}\right) \geq 2+1 / 8$.
Proof. Similar to Lemma 14, we first consider circular L-colourings of $\theta_{2,2,2,2}$, which is obtained from the graph $\theta_{2,2,2}$ in Lemma 14 by adding the path $\left(x, z_{4}, x^{\prime}\right)$. Let $l: V\left(\theta_{2,2,2,2}\right) \rightarrow[0,4-\epsilon)$ be defined such that the restriction of l to $\theta_{2,2,2,2} \backslash\left\{z_{4}\right\}$ is the same as in Lemma 14 , and let $l\left(z_{4}\right)=r-1+\delta+\epsilon / 2$.

Claim 2. If f is a circular L-colouring of $\theta_{2,2,2,2}$ then either

$$
f(x) \in(0,2 \delta+\epsilon / 2)_{r}, \quad \text { and } \quad f\left(x^{\prime}\right) \in(-\delta, 2 \delta+\epsilon / 2)_{r}
$$

or

$$
f(x) \in(\delta+\epsilon / 2,4 \delta+\epsilon)_{r}, \quad \text { and } \quad f\left(x^{\prime}\right) \in(\delta+\epsilon / 2,3 \delta+\epsilon)_{r} .
$$

Proof. If the claim is not true, then by using Lemma 14, we conclude that one of $f(x), f\left(x^{\prime}\right)$ lies in the interval $(-\delta, \delta+\epsilon / 2]_{r}$ and the other lies in the interval $[2 \delta+\epsilon / 2,4 \delta+\epsilon)_{r}$. Since z_{4} is adjacent to both x and x^{\prime}, there is no legal colour for z_{4} in the interval $L\left(z_{4}\right)$. This proves the claim.

Let $l: V\left(\theta_{2,2,2,2,4}\right) \rightarrow[0,4-\epsilon)$ be defined so that the restriction of l to $\theta_{2,2,2,2}$ is as in Claim 2 and for $j=1,2,3, l\left(y_{j}\right)=j-2+(3+j) \delta+\epsilon$. We shall show that, for appropriate ϵ and $\delta, \theta_{2,2,2,4}$ has no circular L-colouring. Assume to the contrary that f is a circular L-colouring of $\theta_{2,2,2,2,4}$.

Let $\epsilon=1 / 2$ and let $\delta=1 / 8$. By Claim 2, we have two cases.

Case 1

$$
f(x) \in(0,2 \delta+\epsilon / 2)_{r}, \quad \text { and } f\left(x^{\prime}\right) \in(-\delta, 2 \delta+\epsilon / 2)_{r} .
$$

By using the proof of Theorem 15, we can show that $f\left(y_{3}\right) \in(3,3+7 \delta+$ $\epsilon)_{r}$. Since $\epsilon=1 / 2$ and $\delta=1 / 8$, straightforward calculation shows that for any $a \in(-\delta, 2 \delta+\epsilon / 2)_{r}$, for any $b \in(3,3+7 \delta+\epsilon)_{r}$, we have $|a-b|_{r}<1$, in contrary to our assumption that f is a circular L-colouring of $\theta_{2,2,2,2,4}$.

Case 2

$$
f(x) \in(\delta+\epsilon / 2,4 \delta+\epsilon)_{r}, \quad \text { and } \quad f\left(x^{\prime}\right) \in(\delta+\epsilon / 2,3 \delta+\epsilon)_{r} .
$$

Observe that, in comparison with Case 1, the possible colour of $f(x)$ is "shifted to the right" by a distance of $\delta+\epsilon / 2$. By using the argument as in the proof of Theorem 15, we can show that $f\left(y_{3}\right) \in(3+\delta+\epsilon / 2,3+7 \delta+\epsilon)_{r}$. Again, straightforward calculation shows that for any $a \in(\delta+\epsilon / 2,3 \delta+\epsilon)_{r}$, for any $b \in(3+\delta+\epsilon / 2,3+7 \delta+\epsilon)_{r}$, we have $|a-b|_{r}<1$, in contrary to our assumption that f is a circular L-colouring of $\theta_{2,2,2,2,4}$.

References

[1] P. Erdős, A. L. Rubin and H. Taylor, Choosibility in graphs, Proc. West Coast Conf. on Combinatorics, Graph Theory and Computing, Congress. Numer., XXVI (1980), 125-157.
[2] W. Lin, D. Yang and X. Zhu, Circular consecutive choosability of graphs, manuscript, 2006.
[3] D. Liu, Circular consecutive choosability for every cycle and for $\theta_{2,2,4}$ is 2, manuscript, 2007.
[4] S. Norine, T. Wong and X. Zhu, Circular choosability via Combinatorial Nullstellensatz, manuscript, 2006.
[5] C. Thomassen, Every planar graph is 5 -choosable, J. Combin. Theory Ser. B, 62(1) (1994), 180-181.
[6] R.J.Waters, Consecutive list colouring and a new graph invariant, London Mathematical Society, to appear.
[7] X. Zhu, Circular chromatic number: a survey, Discrete Math. 229 (2001), 371-410.
[8] X. Zhu, Recent developments in circular colouring of graphs, in Topics in Discrete Mathematics, Algorithms Combin. 26 (Springer, Berlin, 2006), 497-550.
[9] X. Zhu, Circular choosability of graphs, J. Graph Theory, 48(2005), 210218.

[^0]: *School of Mathematics, Georgia Tech, Atlanta, GA 30332-0160. Partially supported by NSF grants 0200595 .
 ${ }^{\dagger}$ Department of Applied Mathematics, National Sun Yat-sen University. Grant number: NSC95-2811-M-110-008
 ${ }^{\ddagger}$ Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan 80424, and National Center for Theoretical Sciences. Partially supported by NSC95-2115-M-110-013-MY3

