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Abstract

A p-list assignment L of a graph G assigns to each vertex v of G a set L(v) ⊆
{0, 1, . . . , p − 1} of permissible colors. We say G is L-(p, q)-colorable if G has a
(p, q)-coloring h such that h(v) ∈ L(v) for each vertex v. The circular list chromatic
number χc,l(G) of a graph G is the infimum of those real numbers t for which the
following holds: For any p, q, for any p-list assignment L with |L(v)| ≥ tq, G is
L-(p, q)-colorable. We prove that if G has an orientation D which has no odd
directed cycles, and L is a p-list assignment of G such that for each vertex v,
|L(v)| = d+

D(v)(2q − 1) + 1, then G is L-(p, q)-colorable. This implies that if G is
a bipartite graph, then χc,l(G) ≤ 2dmad(G)/2e, where mad(G) is the maximum
average degree of a subgraph of G. We further prove that if G is a connected
bipartite graph which is not a tree, then χc,l(G) ≤ mad(G).

Keywords: circular choosability, combinatorial Nullstellensatz, orientation, polyno-
mial.

Mathematical Subject Classification: 05C15

1 Introduction

This paper studies circular choosability of graphs, which is a combination of two varia-
tions of graph coloring: circular coloring and list coloring. Circular coloring of a graph,
introduced by Vince [7], is defined as follows: Suppose G = (V,E) is a graph and p ≥ q
are positive integers. Take the set Zp = {0, 1, . . . , p − 1} as the set of colors. For two
colors i, j ∈ Zp, the distance between i and j is |i − j|p = min{|i − j|, p − |i − j|}.
One may view the elements of Zp as p points evenly spaced on a circle of perimeter
p. Then |i − j|p is the length of the shortest arc of the circle between points i and j.
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A (p, q)-coloring of G is a mapping h : V → Zp such that colors assigned to adjacent
vertices have distance at least q, i.e., for any edge xy of G, |h(x) − h(y)|p ≥ q. The
circular chromatic number χc(G) of G is defined as

χc(G) = inf{p/q : G has a (p, q)-coloring}.

For finite graphs, the infimum in the definition is always attained and hence can be
replaced by the minimum [7]. It is known that for any graph G, χ(G) − 1 < χc(G) ≤
χ(G). So χc(G) is a refinement of χ(G), and χ(G) is an approximation of χc(G).
Circular chromatic number of graphs has been studied extensively in the literature.
The reader is referred to [10, 12] for surveys on this subject.

List coloring of graphs, initiated independently by Vizing [8] and Erdős, Rubin and
Taylor [2], is another variation of graph coloring. A list-assignment L of a graph G
assigns to each vertex v a set L(v) of permissible colors. We say G is L-colorable if
G has a (proper) vertex-coloring h such that h(v) ∈ L(v) for each v. We say G is
k-choosable if G is L-colorable for any list assignment L for which |L(v)| = k for every
vertex v. The list chromatic number (or choosability) of G, χl(G), is the minimum
integer k such that G is k-choosable.

List circular coloring of graphs, first studied in [11], is the circular version of list
coloring. A p-list assignment is a mapping L which assigns to each vertex v of G a set
L(v) ⊆ Zp of permissible colors to v.

An L-(p, q)-coloring of G is a (p, q)-coloring h of G for which h(v) ∈ L(v) for every
v ∈ V . We say G is L-(p, q)-colorable if there is an L-(p, q)-coloring of G.

Suppose G = (V,E) is a graph and ` : V → {0, 1, . . . , p} is a mapping. We say G
is `-(p, q)-choosable if for every p-list assignment L with |L(v)| = `(v), G is L-(p, q)-
colorable. The question of interest is for which mappings `, G is `-(p, q)-choosable.
We say a graph G is circular t-choosable if for any p ≥ tq, and with `(v) = dtqe for
all v, G is `-(p, q)-choosable. The circular list chromatic number of G (or the circular
choosability of G) is defined as

χc,l(G) = inf{t : G is circular t-choosable}.

Unlike in the definition of circular chromatic number, it is proved by Norine [5] that
the infimum in the above definition of the circular list chromatic number of a graph is
not always attained and hence cannot be replaced by the minimum.

The concept of circular list coloring of graphs is relatively new, and some basic
questions remain open. It is unknown whether χc,l(G) is always a rational number for
a finite graph G. It is also unknown whether χc,l(G) is bounded from above by αχl(G)
for some constant α. A necessary and sufficient condition on ` is given in [6] under
which a forest is `-(p, q)-choosable. The problem of `-(2k + 1, k)-choosability of cycles
is also studied in [6], where a sharp sufficient condition is given under which a cycle
Cn is `-(2k + 1, k)-choosable. The circular list chromatic numbers are known for trees,
cycles, complete graphs, odd wheels, etc. It is known that graphs of maximum degree
k have circular list chromatic number at most k + 1 [11], the circular list chromatic
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number of planar graphs is at most 8 [3], outerplanar graphs G of girth at least 2n + 2
are shown to have χc,l(G) ≤ 2 + 1/n [9]. Circular list coloring of graphs in which the
list L(v) of permissible colors assigned to each vertex v is a circular consecutive set is
studied in [4].

This paper studies the circular list chromatic number of graphs by using combina-
torial Nullstellensatz. We generalize a result of Alon and Tarsi [1] concerning choos-
ability of graphs with an orientation containing no odd directed cycles and prove the
following result: Suppose a graph G has an orientation D in which there is no odd
directed cycle and denote by d+

D(v) the out-degree of v in D. If L is a p-list assignment
with |L(v)| = d+

D(v)(2q − 1) + 1 for each vertex, then G is L-(p, q)-colorable. The
q = 1 case is proved by Alon and Tarsi [1]. As a consequence of this result, every
bipartite graph G has circular list chromatic number at most 2dmad(G)/2e, where
mad(G) = maxH⊆G 2|E(H)|/|V (H)| is the maximum average degree of subgraphs H
of G. However, for bipartite graphs, a stronger result holds. We prove in Section 4
that if G is a connected bipartite graph which is not a tree, then χc,l(G) ≤ mad(G). In
Section 5, several questions are asked.

2 Circular choosability and orientation

We shall need the following theorem, called the combinatorial Nullstellensatz [1], in our
proofs.

Theorem 2.1. Let F be a field and let f(x1, x2, . . . , xn) be a polynomial in F [x1, x2, . . . , xn].
Suppose the degree of f is equal to

∑n
j=1 tj and the coefficient of

∏n
j=1 x

tj
j in f is

nonzero. Then for any subsets S1, S2, . . . , Sn of F with |Sj | = tj + 1, there exist
s1 ∈ S1, s2 ∈ S2, . . . , sn ∈ Sn so that

f(s1, s2, . . . , sn) 6= 0.

Let D be an orientation of a graph G. A subgraph D′ of D is eulerian if for each
vertex v, d+

D′(v) = d−D′(v). An eulerian subgraph D′ is called an odd eulerian subgraph
(respectively, an even eulerian subgraph) if D′ has an odd (respectively, even) number
of edges. Denote by EE(D) and EO(D) the number of even eulerian subgraphs and
the number of odd eulerian subgraphs of D, respectively. The following result is proved
by Alon and Tarsi.

Theorem 2.2. [1] Suppose G has an orientation D for which EE(D) 6= EO(D). If L
is a list-assignment with |L(v)| = d+

D(v) + 1 for each vertex v, then G is L-colorable.

We first generalize Theorem 2.2 to (p, q)-list colorings. An eulerian subgraph D′ of D
corresponds to a mapping φ : E(D) → {0, 1} such that

∑
e∈E+

D(v) φ(e) =
∑

e∈E−D(v) φ(e).

Here E+
D(v) is the set of arcs in D with v as their tails, and E−

D(v) is the set of arcs
in D with v as their heads. For any positive integer q, we call a mapping φ : E(D) →
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{0, 1, . . . , 2q − 1} eulerian (with respect to q) if for each vertex v,
∑

e∈E+
D(v)

φ(e) =
∑

e∈E−D(v)

φ(e).

An eulerian mapping φ is called even (respectively, odd) if
∑

e∈E(D) φ(e) is even (re-
spectively, odd).

Suppose φ is an eulerian mapping (with respect to q) and p ≥ q is an integer. We
assign a weight wp,q(φ) to φ as follows:

wp,q(φ) =
∏

e∈E(D)

aφ(e)(p, q),

where aφ(e)(p, q) is defined as

aφ(e)(p, q) =
∑

J⊆{−q+1,...,q−1},|J |=φ(e)

∏

j∈J

e2πij/p.

Here i =
√−1 and e2πij/p is a complex number for any j. However, for any integers

φ(e), p, q, the number aφ(e)(p, q) is real, because it is easy to check that aφ(e)(p, q) equals
its conjugate:

aφ(e)(p, q) =
∑

J⊆{−q+1,...,q−1},|J |=φ(e)

∏

j∈J

e−2πij/p = aφ(e)(p, q).

If q = 1, then wp,1(φ) = 1. So EE(D) 6= EO(D) is equivalent to
∑

φ is even eulerian
wp,1(φ) 6=

∑

φ is odd eulerian
wp,1(φ).

Theorem 2.3. Suppose a graph G has an orientation D for which
∑

φ is even eulerian
wp,q(φ) 6=

∑

φ is odd eulerian
wp,q(φ).

If L is a p-list assignment with |L(v)| = d+
D(v)(2q− 1)+1, then G is L-(p, q)-colorable.

Proof. Assume G has vertices v1, v2, . . . , vn. Consider the polynomial f(x1, x2, . . . , xn) ∈
C[x1, x2, . . . , xn] defined as

f(x1, x2, . . . , xn) =
∏

(vj ,vj′ )∈D

q−1∏

t=−q+1

(xj − e2πit/pxj′).

Let γ : Zp → C be defined as γ(l) = e2πil/p for l ∈ Zp. It is obvious that a mapping
h : V → Zp is a (p, q)-coloring of G if and only if

f(γ(h(v1)), γ(h(v2)), . . . , γ(h(vn))) 6= 0.
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Thus with Si = {γ(a) : a ∈ L(vi)}, the graph G is L-(p, q)-colorable if and only if there
exist s1 ∈ S1, s2 ∈ S2, . . . , sn ∈ Sn such that f(s1, s2, . . . , sn) 6= 0.

Let tj = d+
D(vj)(2q − 1) for j = 1, 2, . . . , n. Then the degree of f is |E|(2q − 1) =∑n

j=1 tj . To prove Theorem 2.3 by using Theorem 2.1, it suffices to show that the

coefficient of
∏n

j=1 x
tj
j is nonzero.

For an arc (vj , vj′) of D and for 0 ≤ l ≤ 2q − 1, the coefficient of x2q−1−l
j xl

j′ in∏q−1
t=−q+1(xj − e2πit/pxj′) is equal to

∑

J⊆{−q+1,...,q−1},|J |=l

∏

j∈J

(−e2πij/p) = (−1)lal.

It is easy to see that a mapping φ : E(D) → {0, 1, . . . , 2q− 1} makes a contribution
to the coefficient of

∏n
j=1 x

tj
j in f(x1, x2, . . . , xn) if and only if φ is eulerian, and the

coefficient of
∏n

j=1 x
tj
j in f is equal to

∑

φ is eulerian

∏

e∈D

(−1)φ(e)aφ(e) =
∑

φ is even eulerian
wp,q(φ)−

∑

φ is odd eulerian
wp,q(φ).

By our assumption,
∑

φ is even eulerian
wp,q(φ) 6=

∑

φ is odd eulerian
wp,q(φ).

Hence the coefficient of
∏n

j=1 x
tj
j in f is non-zero and G is L-(p, q)-colorable.

Theorem 2.4. Suppose G is a graph and D is an orientation of G which contains no
odd directed cycle. Let L be a p-list assignment for G such that |L(v)| = d+

D(v)(2q−1)+1
for each vertex v. Then G is L-(p, q)-colorable.

Proof. Without loss of generality, we may assume that G is connected. By Theorem
2.3, it suffices to show that

∑

φ is even eulerian
wp,q(φ) 6=

∑

φ is odd eulerian
wp,q(φ).

Given an eulerian mapping φ : E(D) → Z+, we construct a multi-digraph Dφ on
the vertex set V of G, with each arc e = (vj , vj′) of D replaced by φ(e) parallel
arcs from vj to vj′ . Then Dφ is an eulerian digraph, as d+

Dφ
(vj) = d−Dφ

(vj) for each
vertex vj . Each directed cycle of Dφ corresponds to a directed cycle of D. Since D
has no directed cycle of odd length, Dφ has no directed cycle of odd length. Thus
|E(Dφ)| is even, i.e.,

∑
e∈D φ(e) is even. So D has no odd eulerian mapping and∑

φ is odd eulerian wp,q(φ) = 0. It remains to show that
∑

φ is even eulerian wp,q(φ) 6=
0.
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If d+
D(v) ≤ 1 for each vertex v, then either G is a tree, or G is an even cycle, say of

length 2n. In the former case, there is only one eulerian mapping φ defined as φ(e) = 0
all e. As a0 = 1, we have

∑

φ is even eulerian
wp,q(φ) =

∏

e∈D

a0 = 1.

In the later case, there are 2q even eulerian mappings, defined as φj(e) = j for j =
0, 1, . . . , 2q − 1. Thus

∑

φ is even eulerian
wp,q(φ) =

2q−1∑

j=0

(aj)2n.

As all the aj ’s are real numbers, and a0 = 1,
∑

φ is even eulerian
∏

e∈D aφ(e) ≥ 1 in this
case.

It remains to consider the case that there is at least one vertex v with d+
D(v) ≥ 2.

Since |L(v)| = d+
D(v)(2q − 1) + 1, we must have p ≥ 4q − 1. We need the following

lemma, whose proof is given in the next section.

Lemma 2.5. Suppose p ≥ 2q are positive integers such that either q = p/2 or for
some positive integer d, q − 1 ≤ (2d − 1)p/2d+1 and 2d−1 divides p. Then for any
0 ≤ k ≤ 2q − 1, ak > 0.

By Lemma 2.5 (with d = 1), wp,q(φ) =
∏

e∈D aφ(e) > 0 for any eulerian mapping φ.
Hence ∑

φ is even eulerian
wp,q(φ) > 0.

This completes the proof of Theorem 2.4.

Corollary 2.6. Suppose G has an orientation D which has no directed cycle of odd
length. If k = maxv∈V d+

D(v), then χc,l(G) ≤ 2k.

Note that the bound on χc,lG in Corollary 2.6 is optimal. The equality is achieved,
in particular, for directed even cycles.

3 Proof of Lemma 2.5

In this section, p is a fixed positive integer. Let w = e2πi/p. For an integer k and a
subset Q ⊆ Zp, let

Sk(Q) =
∑

J⊆Q,|J |=k

∏

j∈J

wj .

As a convention, we let Sk(Q) = 0 if k > |Q| and S0(Q) = 1 for any Q. For an integer
1 ≤ q ≤ p/2, let Iq = {−q + 1,−q + 2, . . . ,−1, 0, 1, . . . , q − 1}, where arithmetic in Zp

is modulo p. Lemma 2.5 can be re-stated as follows:
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Lemma 3.1. If q = p/2 or for some positive integer d, q − 1 ≤ (2d − 1)p/2d+1 and
2d−1 divides p, then for 0 ≤ k ≤ 2q − 1, Sk(Iq) > 0.

Proof. For Q ⊆ Zp, let

fQ(x) =
|Q|∑

k=0

Sk(Q)x|Q|−k =
∏

j∈Q

(x + wj).

If Q, R ⊆ Zp are disjoint, then it follows from the definition that

fQ(x)fR(x) = fQ∪R(x). (3.1)

Note that xp − 1 =
∏p−1

j=0(x−wj). Suppose p = 2q. In this case Iq = Zp \ {q}. Since p

is an even integer,
∏p−1

j=0(x− wj) =
∏p−1

j=0(x + wj). Hence

fIq(x) = (xp − 1)/(x− 1) =
p−1∑

j=0

xj .

It follows that Sk(Iq) = 1 > 0 for every 0 ≤ k ≤ 2q − 1.
Assume now that for some positive integer d, q − 1 ≤ (2d − 1)p/2d+1 and 2d−1

divides p. We need to show that for any 0 ≤ k ≤ 2q − 1, Sk(Iq) > 0. For an integer
0 ≤ m ≤ d − 1, and j ∈ {1, 2, . . . , p − 1} such that p

2m+1 does not divide j, we define
the snowflake Am(j) of order m inductively as follows.

A0(j) = {j,−j}
Am(j) = Am−1(j) ∪Am−1(p/2m − j).

It can be proved by induction that for m ≥ 0,

Am(j) = {tp/2m ± j : t = 0, 1, . . . , 2m − 1}.

Because p
2m+1 - j, Am−1(j) ∩Am−1(p/2m − j) = ∅ and Am(j) has cardinality 2m+1.

Note that for j 6= 0, we have

fA0(j)(x) = (x + ωj)(x + ω−j) = x2 + (2 cos
2πj

p
)x + 1. (3.2)

We prove by induction on m that for 1 ≤ m < d,

fAm(j)(x) = x2m+1 − (2 cos
2m+1πj

p
)x2m

+ 1. (3.3)
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We consider the base case m = 1 and the induction step simultaneously. By (3.1) we
have

fAm(j)(x) = fAm−1(j)(x)fAm−1(p/2m−j)(x)

= (x2m − (2 cos
2mπj

p
)x2m−1

+ 1)

×(x2m − (2 cos
2mπ(p/2m − j)

p
)x2m−1

+ 1)

= x2m+1
+ 2(1− 2(cos

2mπj

p
)2)x2m

+ 1

= x2m+1 − (2 cos
2m+1πj

p
)x2m

+ 1,

where we use (3.2) when m = 1 and the induction hypothesis for m > 1.
We say that a snowflake Am(j) is proper if m = 0 and 1 ≤ j ≤ p/4, or m > 0 and

p/2m+2 ≤ j < p/2m+1. By (3.2) and (3.3), for a proper snowflake A of order m, we
have Sk(A) ≥ 0 for all k ≥ 0 and

S2m+1(A), S0(A) > 0.

For every j ∈ Iq − {0}, choose m(j) so that the snowflake Am(j)(j) is defined,
Am(j)(j) ⊆ Iq and subject to these conditions, m(j) is maximum. Denote Am(j)(j) by
A(j) for brevity. Note that the snowflake A(j) is proper, as otherwise the snowflake
Am(j)+1(j) is defined and lies in Iq, in contrary to the choice of m(j). For every j, h ∈ Iq,
we have A(j) = A(h) or A(j) ∩ A(h) = ∅. Therefore there exists J ⊆ Iq such that the
snowflakes A(j) for j ∈ J are pairwise disjoint and ∪j∈JA(j) = Iq -{0}. Therefore we
have

fIq(x) = (x + 1)
∏

j∈J

fA(j)(x) (3.4)

and thus fIq(x) is a polynomial with non-negative coefficients. It remains to show
that all the coefficients of fIq(x) are positive. By (3.4), it suffices to show that if
S = {A(j) : j ∈ J} contains a snowflake of order m, then it contains a snowflake of
order m−1. Note that if S contains a snowflake of order m, then q−1 > (2m−1)p/2m+1

and Am−1((2m − 1)p/2m+1) ∈ S as the number (2m − 1)p/2m+1 is contained in no
snowflake of order m and Am−1((2m − 1)p/2m+1) ⊆ Iq. This completes the proof of
Lemma 3.1 and thus of Lemma 2.5.

4 Bipartite graphs

It is known [1] that any graph G has an orientation D which has maximum out-degree
dmad(G)/2e. If G is a bipartite graph, then any orientation of G has no odd directed
cycle. By Corollary 2.6, we have the following corollary:
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Corollary 4.1. If G is a bipartite graph, then χc,l(G) ≤ 2dmad(G)/2e.
In this section, we prove a strengthening of Corollary 4.1.

Theorem 4.2. Suppose G is a bipartite graph. Let G′ be obtained from G by replacing
each edge with 2q − 1 parallel edges. Let D′ be an orientation of G′. Let L be a p-list
assignment for G such that |L(v)| = d+

D′(v)+1 for each vertex v. If p = 2q or for some
positive integer d, q−1 ≤ (2d−1)p/2d+1 and 2d−1 divides p, then G is L-(p, q)-colorable.

Proof. The proof is basically the same as the proof of Theorem 2.3. Let D be an
arbitrary orientation of G. Consider the polynomial

f(x1, x2, . . . , xn) =
∏

(vj ,vj′ )∈D

q−1∏

k=−q+1

(xj − e2πik/pxj′).

Let Si = {γ(a) : a ∈ L(vi)}, where γ is defined as in the proof of Theorem 2.3. It suffices
to prove that there exist s1 ∈ S1, s2 ∈ S2, . . . , sn ∈ Sn such that f(s1, s2, . . . , sn) 6= 0.

Let tj = d+
D′(vj) for j = 1, 2, . . . , n. Then the degree of f is |E(D′)| = ∑n

j=1 tj . By

using Theorem 2.1, it suffices to show that the coefficient of
∏n

j=1 x
tj
j is nonzero.

For 0 ≤ l ≤ 2q−1, let al be defined as in the proof of Theorem 2.3. For each vertex v
of G, let ξ(v) = d+

D′(v)−d+
D(v)(2q−1). We call a mapping φ : E(D) → {0, 1, . . . , 2q−1}

compatible with ξ if for each vertex v,
∑

e∈E+
D(v)

φ(e)−
∑

e∈E−D(v)

φ(e) = ξ(v).

Then a mapping φ makes a contribution of
∏

e∈D(−1)φ(e)aφ(e) to the coefficient of∏n
j=1 x

tj
j in f(x1, x2, . . . , xn) if and only if φ is compatible with ξ, and the coefficient

of
∏n

j=1 x
tj
j in f is equal to

∑

φ is compatible with ξ

∏

e∈D

(−1)φ(e)aφ(e).

Given a mapping φ : E(D) → Z+ compatible with ξ, we construct a multi-digraph
Dφ on the vertex set V of G, with each arc e = (vj , vj′) of D replaced by φ(e) parallel
arcs from vj to vj′ . Then Dφ is a digraph with the property that d+

Dφ
(v)−d−Dφ

(v) = ξ(v).
Let A be one partite set of the bipartite graph G. Let ||ξ|| =

∑
v∈A ξ(v). Then the

total number of edges in the digraph Dφ is
∑

v∈A

(d+
Dφ

(v) + d−Dφ
(v)) ∼= ||ξ|| (mod 2).

I.e.,
∑

e∈E(D) φ(e) ∼= ||ξ|| (mod 2). By Lemma 2.5, for any mapping φ,

wp,q(φ) =
∏

e∈D

aφ(e) > 0.
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Hence
∑

φ is compatible with ξ

∏

e∈D

(−1)φ(e)aφ(e) =
∑

φ is compatible with ξ

(−1)||ξ||wp,q(φ) 6= 0.

Corollary 4.3. For any connected bipartite graph G which is not a tree, χc,l(G) ≤
mad(G).

Proof. Let r = mad(G). It suffices to prove that for any ε > 0, for the mapping `
defined as `(v) = d(r + ε)qe, G is `-(p, q)-choosable.

Observe that if for some positive integer k, for `′(v) = d(r + ε)kqe, G is `′-(kp, kq)-
choosable, then G is `-(p, q)-choosable. Indeed, if L is an `-p-list assignment, then L′

defined as L′(v) = ∪j∈L(v){kj, kj + 1, . . . , kj + k − 1} is a kp-list assignment satisfying
|L′(v)| ≥ `′(v). If G is `′-(kp, kq)-choosable, then G is a L′-(kp, kq)-colorable. If h′ is
an L′-(kp, kq)-coloring of G, then h(v) = bh′(v)/kc is an L-(p, q)-coloring of G.

Thus we may assume that either p = 2q or there is a positive integer d, q − 1 ≤
(2d − 1)p/2d+1 and 2d−1 divides p and q is sufficiently large. For a positive integer q,
let G(q) be obtained from G by replacing each edge of G with 2q − 1 parallel edges.
It is obvious that mad(G(q)) = mad(G)(2q − 1). It is known [1] that G(q) has an
orientation D′ with d+

D′(v) ≤ dmad(G(q))/2e for each vertex v. It follows from Theorem
4.2 that G is L-(p, q)-colorable, provided that |L(v)| = d+

D′(v) + 1 (note that since
G is connected and is not a tree, r ≥ 2, we have p ≥ 2q). If q ≥ (2 − r/2)/ε,
then d+

D′(v) + 1 < r(2q − 1)/2 + 2 < (r + ε)q. Hence G is `-(p, q)-choosable, with
`(v) = d(r + ε)qe.

Note that there exist graphs, e. g. even cycles, for which Corollary 4.3 can not be
improved.

Corollary 4.4. If G is a connected bipartite planar graph of girth g and G is not a
tree, then χc,l(G) < 2g/(g − 2).

Proof. It follows from Euler formula that G have mad(G) < 2g/(g − 2).

Corollary 4.4 can, in fact, be strengthened to projective planar graphs.

5 Some remarks and open problems

Theorem 2.4 can be viewed as the circular version of the following result proved by
Alon and Tarsi.

Theorem 5.1. [1] Suppose D is an orientation of a graph G which has no odd directed
cycles. If L is a list assignment which assigns to each vertex v a set L(v) of d+

D(v) + 1
colors, then G is L-colorable. I.e., G has a coloring h with h(v) ∈ L(v) for each vertex
v.
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Theorem 2.3 is the circular version of Theorem 2.2. However, it seems more dif-
ficult to check the condition in Theorem 2.3. Currently we do not know any di-
rected graph D for which EE(D) 6= EO(D) and yet

∑
φ is even eulerian wp,q(φ) =∑

φ is odd eulerian wp,q(φ) for some p, q. A natural question is whether there are such
directed graphs.

Question 5.2. Is it true that if D is a digraph with EE(D) 6= EO(D), then for any
p, q, ∑

φ is even eulerian
wp,q(φ) 6=

∑

φ is odd eulerian
wp,q(φ)?

One intuitive explanation of the difference between list coloring and list (p, q)-
coloring might be as follows: In list coloring, one of the color in L(v) is used to color v,
the other colors are “killed” by the neighbours of v. Coloring one “critical” neighbour
u of v kills one color of L(v), as the color assigned to u cannot be used by v. In a list
(p, q)-coloring, again, one color is used by v, but coloring one “critical”neighbour u of
v kills 2q − 1 colors in L(v), as the 2q − 1 colors close to the color of u cannot be used
by v. We do not know what neighbours of v are critical (or more likely, the neighbours
of v are all “fractional” critical), however, maybe a neighbour u of v which is critical in
list (p, q)-coloring is also critical in list coloring. The comparison of Theorem 2.4 and
Theorem 5.1 seems to support such an intuition. If this intuition is correct in general,
the following question has a positive answer.

Question 5.3. Suppose G is a graph and l : V (G) → Z≥0 is a mapping. Assume
G is L-colorable for any list-assignment L with |L(v)| = l(v). Is it true that G is
L′-(p, q)-colorable for any p-list assignment L′ with |L′(v)| = (l(v)− 1)(2q − 1) + 1?

A positive answer to Question 5.3 would imply that for any graph G, χc,l(G) ≤
2χl(G). We remark that the following question asked in [11] remains open:

Is there a constant α such that for any graph G, χc,l(G) ≤ αχl(G)? If such a
constant exists, what is the smallest α?

A positive answer to either Question 5.3 or Question 5.2 implies a positive answer
to the following question:

Question 5.4. Assume G has an orientation D for which EE(D) 6= EO(D). Assume
L is a p-list assignment such that for each vertex v, |L(v)| = d+

D(v)(2q − 1) + 1. Is it
true that G is L-(p, q)-colorable?

A positive answer to Question 5.3 also implies that every 2-choosable graph is
circular 2-choosable. Denote by θa,b,c the graph consisting of three internally disjoint
paths connecting u and v, where the lengths of the three paths are a, b, c, respectively.
It is known [2] that a connected graph G is 2-choosable if and only if the heart of G
(i.e., the graph obtained from G by repeatedly deleting degree 1 vertices) is K1 or an
even cycle or θ2,2,2k. To prove that every 2-choosable graph is circular 2-choosable,
it suffices to show that K1, even cycles and θ2,2,2k are circular 2-choosable for every
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positive integer k. The graph K1 is trivial and even cycles are settled in [5]. The
only case remain unsolved is θ2,2,2k. The best known upper bound for the circular
list chromatic number of θ2,2,2k is obtained in [3], namely, χc,l(θ2,2,2k) ≤ 2.5. We can
improve this bound a little bit.

First of all, it is proved in [5] that χc,l(K2,4) = 2, which implies that χc,l(θ2,2,2) = 2.
By Corollary 4.3, for k ≥ 2, χc,l(θ2,2,2k) ≤ 2(2k + 4)/(2k + 3) ≤ 16/7. So χc,l(θ2,2,2k) ≤
16/7 for any k ≥ 1.

Conjecture 5.5. For any k ≥ 1, χc,l(θ2,2,2k) = 2.

Even if Conjecture 5.5 is true, neither the problem of characterizing all graphs G
with χc,l(G) = 2 nor the problem of characterizing circular 2-choosable graphs is solved.
This is due to the fact that graphs G with χc,l(G) = 2 need not be circular 2-choosable.

Conjecture 5.6. For any k ≥ 1, θ2,2,2k is circular 2-choosable.

Conjecture 5.6 is stronger than Conjecture 5.5. If this conjecture is true, we do have
a characterization of all circular 2-choosable graphs. The following theorem confirms
the k = 1 case of Conjecture 5.6.

Theorem 5.7. For any p-list assignment L of K2,3 with L(v) = 2q for every vertex v,
K2,3 is L-(p, q)-colorable.

Proof. We consider Zp as a set of points on a circle of circumference p and the arithmetic
throughout the proof is modulo p. The interval [a, b]p is defined as [a, b]p = {a, a +
1, . . . , b− 1, b}. In particular generally [a, b]p 6= [b, a]p.

For a ∈ Zp, let Bp,q(a) = [a− q +1, a+ q− 1]p = {a− q +1, a− q +2, . . . , a+ q− 1}.
When p is clear from the context, we write Bq(a) for Bp,q(a). For a, b ∈ Zp, let
Bq(a, b) = Bq(a) ∪Bq(b).

Let the two parts of K2,3 be {u1, u2} and {v1, v2, v3}. Let L be a p-list assignment
of K2,3 with |L(v)| = 2q for each vertex v.

If there exist a ∈ L(u1) and b ∈ L(u2) such that for j = 1, 2, 3, L(vj) 6⊆ Bq(a, b),
then color u1 by color a, color u2 by color b, and color each vj with an arbitrary color
in L(vj) \Bq(a, b), we obtain an L-(p, q)-coloring of K2,3, as desired.

Assume for each a ∈ L(u1), b ∈ L(u2), there is a j = f(a, b) ∈ {1, 2, 3} such that
L(vj) ⊆ Bq(a, b).

If L(u1)∩L(u2) 6= ∅, then for a = b ∈ L(u1)∩L(u2), Bq(a, b) has cardinality 2q−1,
in contrary to the assumption that L(vj) ⊆ Bq(a, b). So we have L(u1)∩L(u2) = ∅. In
particular, p ≥ 4q.

If L(v1) = L(v2), then we can find an L-(p, q)-coloring K2,3 − {v1} (which exists
because even cycles are circular 2-choosable), and then color v1 the same color as v2 to
obtain an L-(p, q)-coloring of K2,3. Thus we assume that L(vj) 6= L(vj′) if j 6= j′.

We say that an interval [a, b]p of Zp is clean if for some j ∈ {1, 2}, a, b ∈ L(uj)
and [a, b]p ∩ L(u3−j) = ∅. It is obvious that the Zp is partitioned into an even number
of maximal clean intervals. Let [a0, b0]p, [a1, b1]p, . . . , [a2k−1, b2k−1]p be all the maximal
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clean intervals of Zp, and without loss of generality, assume that a1, a3, . . . , a2k−1 ∈
L(u1) and a0, a2, . . . , a2k−2 ∈ L(u2).

Our next step is to show that k = 1. We will use the following lemma from [5].

Lemma 5.8. Assume p ≥ 4q − 3. If a, b, c, d ∈ Zp in this cyclic order, and |[b, c]p| +
|[d, a]p| ≥ 2q + 1, then

|Bq(a, b) ∩Bq(c, d)| ≤ 2q − 1.

It follows from definition that for any j ∈ {0, 1, . . . , 2k − 1},

(L(u1) ∪ L(u2)) ∩ (bj , aj+1)p = ∅.

(Here we let a2k = a0.) It follows that for any distinct i, j ∈ {0, 1, . . . , 2k − 1},

L(u1) ∪ L(u2) ⊆ [ai+1, bj ]p ∪ [aj+1, bi]p.

Therefore 4q = |L(u1)|+ |L(u2)| = |L(u1)∪L(u2)| ≤ |[ai+1, bj ]p|+ |[aj+1, bi]p|. It follows
from Lemma 5.8 that |Bq(bi, ai+1) ∩ Bq(bj , aj+1)| ≤ 2q − 1. So for any t ∈ {1, 2, 3},
L(vt) 6⊆ Bq(bi, ai+1) ∩Bq(bj , aj+1). Hence f(bi, ai+1) 6= f(bj , aj+1) for any two distinct
i, j ∈ {0, 1, . . . , 2k − 1}. By pigeonhole principle we have k = 1, as desired.

Without loss of generality, we assume f(b0, a1) = 1 and f(b1, a0) = 2. Let a0 =
t1, t2, . . . , t2q = b0 be all the elements of L(u2) and let a1 = s1, s2, . . . , s2q = b1 be all
the elements of L(u1), and let t1, t2, . . . , t2q, s1, s2, . . . , s2q appear on Zp in this circular
order. We have |[a1, si]p|+|[ti, b0]p| ≥ 2q+1, and by Lemma 5.8, |Bq(b0, a1)∩Bq(ti, si)| ≤
2q − 1. Hence f(ti, si) 6= f(b0, a1) = 1. Similarly, f(ti, si) 6= 2. So f(ti, si) = 3 for
i = 1, 2, . . . , 2q, i.e., L(v3) ⊆ ∩2q

j=1Bq(sj , tj). We will show that this last inclusion is
impossible by showing that ∩2q

j=1Bq(sj , tj) = ∅. This will establish the theorem.
The fact that ∩2q

j=1Bq(sj , tj) = ∅ immediately follows from the next lemma.

Lemma 5.9. Let a1, a2, . . . , a4q ∈ Zp be distinct and appear in this cyclic order. Then

∩2q
j=1Bp,q(aj , a2q+j) = ∅.

Proof. We prove the lemma by induction on p. If p = 4q, then we may assume that
ai = i − 1 for i = 1, 2, . . . , 4q, and it is easy to see that ∩2q

j=1Bp,q(aj , a2q+j) = ∅.
Assume p > 4q. Then there is j ∈ Zp \ {a1, . . . , a4q}. Let φ : Zp → Zp−1 be defined
as φ(t) = t if t < j and φ(t) = t − 1 if t ≥ j. It is easy to verify that t ∈ Bp,q(x)
implies that φ(t) ∈ Bp−1,q(φ(x)). Thus t ∈ ∩2q

j=1Bp,q(aj , a2q+j) implies that φ(t) ∈
∩2q

j=1Bp−1,q(φ(aj), φ(a2q+j)). By induction hypothesis, ∩2q
j=1Bp−1,q(φ(aj), φ(a2q+j)) =

∅. Therefore ∩2q
j=1Bp,q(aj , a2q+j) = ∅.
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[2] P. Erdős, A.L. Rubin, and H. Taylor. Choosibility in graphs. Proc. West
Coast Conf. on Combinatorics, Graph Theory and Computing, Congress. Numer.,
XXVI:125–157, 1980.

[3] F. Havet, R. Kang, T. Muller, and J.-S. Sereni. Circular choosability. manuscript,
2006.

[4] W. Lin, C. Yang, D. Yang, and X. Zhu. Circular consecutive choosability of graphs.
manuscript, 2006.

[5] S. Norine. On two questions about circular choosability. J. Graph Theory, to
appear.

[6] A. Raspaud and X. Zhu. List circular coloring of trees and cycles. J. Graph Theory,
55(3):249–265, 2007.

[7] A. Vince. Star chromatic number. J. Graph Theory, 12(4):551–559, 1988.

[8] V.G. Vizing. Colroing the vertices of a graph in prescribed colors (in russian).
Diskret. Analiz. No. 29, Metody Diskret. Anal. v. Teorii Kodov i Shem 101, pages
3–10, 1976.

[9] G. Wang, G. Liu, and J. Yu. Circular list colorings of some graphs. J. Appl. Math.
Comput., 20(1-2):149–156, 2006.

[10] X. Zhu. Circular chromatic number: a survey. Discrete Math., 229(1-3):371–410,
2001.

[11] X. Zhu. Circular choosability of graphs. J. Graph Theory, 48(3):210–218, 2005.

[12] X. Zhu. Recent development in circular colouring of graphs. Topics in Discrete
Mathematics, pages 497–550, 2006.

14


