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Abstract

This paper studies the circular chromatic number of a class of circular partitionable graphs.
We prove that an infinite family of circular partitionable graphs� have����� � ����.
A consequence of this result is that we obtain an infinite family of graphs� with the rare
property that the deletion of each vertex decreases its circular chromatic number by exactly
�.
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1 Introduction

Suppose� is a graph and� � �� are positive integers. A��� ��-coloring of� is a
mapping� � � ��� � �� such that for each edge�� of �, � � ����� � ����� �
� � �. Thecircular chromatic numberof � is defined as

����� � �����	� � � has a��� ��-coloring�
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Note that a��� ��-coloring of� is equivalent to a�-coloring of�. Recall that the
chromatic number���� of � is the minimum� for which � has a�-coloring.
Therefore����� � ����. On the other hand, it is known [11,13] that����� �
���� � �. Therefore���� � �������. So the parameter����� is a refinement of
����, and���� is an approximation of�����.

This paper studies the circular chromatic number of partitionable graphs. There
are two motivations for the study of this problem. One concerns the circular chro-
matic number of induced graphs. Suppose� is a graph with���� � �. Then it
is obvious that for any integer�, � has an induced subgraph with ��� � �
if and only if � � �. Given a graph� with ����� � �	�. For what numbers
�, � has a subgraph with ���� � � ? This naive question turns out to be
very difficult. Instead of finding a complete list of all such numbers�, one may
ask if some particular numbers� are the circular chromatic numbers of induced
subgraphs of�. One question, asked in [12] is that whether every graph� has a
vertex� such that����� � ���� � �� � �. Recently the question has been an-
swered in [15] in the negative, where an infinite family of graphs� was found to
have����� � 	 and���� � �� � 
	� for each vertex� of �. Another particular
question, asked in [13], is that which graphs� have the property that the dele-
tion of any vertex decreases its circular chromatic number by exactly� ? Complete
graphs, graphs which are the direct sum of two�-critical graphs, and some other
isolated example graphs are known to have this property. In general, this seems to
be a rare property. To search for graphs with this property, partitionable graphs are
natural candidates. We shall prove that for an infinite family of partitionable graphs
� we have����� � ����. Because� is a partitionable graph, for any vertex�,
��� � �� � ��� � �� � ���� � �, which implies that���� � �� � ���� � �.
Therefore for these partitionable graphs, the deletion of any vertex decreases its
circular chromatic number by exactly�.

Another motivation concerns the study of circular perfect graphs. Given positive
integers� � ��, thecircular complete graph���� has vertex set�� in which �� is
an edge if� � ��� �� � �� �. A homomorphismfrom a graph� to a graph is a
mapping� � � ��� � � �� such that�������� is an edge of whenever�� is an
edge of�. Then a�-coloring of a graph� is equivalent to a homomorphism from
� to �� and a��� ��-coloring of� is equivalent to a homomorphism from� to
����. So in the study of circular chromatic number of graphs, the circular complete
graphs���� play the role of complete graphs as in the study of chromatic number
of graphs. Thecircular clique numberof a graph� is defined as

����� � ����	� � ���� admits a homomorphism to��


It was shown in [14] that����� is equal to the maximum of those�	� for which
���� is an induced subgraph of�.

A graph� is calledcircular perfect[14] if for every induced subgraph of �,
���� � ����. Since��� � ���� � ���� � ���, every perfect graph
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is circular perfect. On the other hand, there are circular perfect graphs which are
not perfect. In particular, odd cycles and the complement of odd cycles are circular
perfect graphs. So the class of circular perfect graphs is strictly larger than the class
of perfect graphs, but it is still a very restrictive class. A sufficient condition for
a graph to be circular perfect is given in [14], and this sufficient condition is used
to prove an analogue of Hajos Theorem for circular chromatic number. We believe
that the class of circular perfect graphs is an interesting class of graphs, although the
concept is quite new, and not much is known about it. We call a graph� minimal
circular imperfect, if � is not circular perfect but every proper induced subgraph
of � is circular perfect. As an analogue to the study of perfect graphs, it would be
nice to have an appealing conjecture on the structure of minimal circular imperfect
graphs.

As all the minimal imperfect graphs are circular perfect, we need to search a larger
area for minimal circular imperfect graphs. The class of partitionable graphs is
again a natural candidate. This paper proves that none of a subclass of partitionable
graphs is a minimal circular imperfect graph.

2 Circular partitionable graphs and the main result

Suppose�� � � � are integers. A graph� is a��� ��-partitionable graphif �� ���� �
�� � �, and for each vertex� of �, � 	 ��� admits a partition into� cliques of
cardinality� as well as a partition into� stable sets of cardinality�. A graph is
partitionable if it is a ��� ��-partitionable graph for some�� � � �. Partitionable
graphs were introduced by Lov´asz [9] and Padberg [10] as a tool in the study of
perfect graphs. A graph� is perfectif for every induced subgraph of �, we have
��� � ���. Here��� is theclique numberof �, which is the cardinality of a
maximum clique of�. A graph� is minimal imperfectif � is not perfect, but every
induced subgraph of� is perfect. The Strong Perfect Graph Theorem, which was
conjectured by Berge [2] in 1961, proved by Chudnovsky, Robertson, Seymour and
Thomas [5] in 2002, says that odd cycles of length at least� and their complements
are the only minimal imperfect graphs. Before the proof of Berge’s conjecture, it
was shown by Lov´asz [9] and Padberg [10] that every minimal imperfect graph is a
partitionable graph. Thus to prove Berge’s conjecture, it suffices to show that none
of the partitionable graph is a counterexample. Although the final proof of Berge’s
conjecture given by Chudnovsky, Robertson, Seymour and Thomas [5] takes a dif-
ferent route, the class of partitionable graphs has been studied thoroughly in the
literature, and this turns out to be an interesting class of graphs. The understand-
ing of the structure of this class of graphs may be helpful in the study of other
graph theory problems. It is known (cf. [3]) that a��� ��-partitionable graph has the
following properties:

(1) � is the maximum cardinality of a stable set of�, and� is the maximum car-
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dinality of a clique of�;

(2) � has exactly� stable sets of cardinality� and exactly� cliques of cardinality
�, where� is the number of vertices of�;

(3) For each maximum clique� of �, there is a unique maximum stable set�
such that� 
 � � �; and similarly, for each maximum stable set� there is a
unique maximum clique� such that� 
 � � �;

(4) Each vertex belongs to exactly� maximum cliques, and belongs to� maxi-
mum stable sets.

In the study of partitionable graphs, some recursive constructions of sub-families
of partitionable graphs are discussed in the literature [6,4]. The class of circular
partitionable graphs was introduced by Chv´atal, Graham, Perold and Whitesides
[6].

For two sets of integers�� � , let � � � denote the set�� � � � � � �� � � � �.
If � � ��� is a singleton, we write�� � instead of��� � � .

Suppose�� � � (� � �� ��    � ��) are integers. Define integers�� (for � �
�� ��    � ��), sets�� (for � � �� ��    � ��), and sets�� � as follows:

�������   �� ��� � ���

�� � ��� ����� ������    � ��� � ��������

� ��� ��� �   �������

���� ��� �   ����


Let � � ����   ��� � �. We denote by����� ���    � ���� the circulant graph
with vertex set�� � ��� ��    � � � ��, where�� is an edge if and only if� �� �
and�� � modulo� is equal to the difference of two elements of�.

Note that�� � ���
����

�����. This implies that��� � ����   ����� and��� �
����   ���. Let� � ��� and� � ���. Then� � ��� �. Suppose� is a subset
of ��. A circular shiftof � is a set of the form��� � ���� ���� �� � � � ��.

Theorem 1 [6] Suppose�� � � are integers for� � �� ��    � ��. Then� �
����� ���    � ���� is an ��� ��-partitionable graph. Moreover, the� maximum
cliques of� are the� circular shifts of�, and the� maximum stable sets of� are
the� circular shifts of�.

As an example, we consider the graph���� �� �� ��. Then
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�� ���� � � �� �� �� �� 	�

�� � ��� ��� �� � ��� ��� �� � ��� 	�� �� � ��� 
��

� � ��� �� 	� ���

� � ��� �� 
� ���


The vertex set of���� �� �� �� is ���, and�� is an edge if��� �� � ��� �� 	� ��. The
graph is depicted in Figure 2.
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Fig. 1. The circular partitionable graph���� �� �� ��

The following is the main result of this paper.

Theorem 2 Let��� 
 
 
 � �� (� � �) be integers such that�� � � for every� � � �
�. LetÆ � ����� and let� � ����� �� 
 
 
 � ��� ��. If � � � or ���� 
 
 
 �� � ����Æ
then����� � ����.

The proof of Theorem 2 is left to Section 4.

Observe that for� � ����� �� 
 
 
 � ��� ��, � � ��, � � ����   �� and�� ���� �
� � ������ 
 
 
 �� � �. Therefore

�	��� �
�

�
� � �

�

��
� ����� � ���� � � � �


There are a few papers devoted to the study of the circular chromatic number of
circulant graphs [7,8]. It is known [13] that for any graph�, �	��� � ����� �
����. A graph� is calledstar extremalif �	��� � �����. In [7,8], classes of star
extremal circulant graphs are investigated. Theorem 2 provides a class of circulant
graphs of another kind of extremality, i.e., circulant graphs with����� � ����.

Corollary 3 Suppose� � ����� �� 
 
 
 � ��� �� satisfies the condition of Theorem 2.
Then� is circular imperfect.

PROOF. It is known [14] that���� � ����� � ���� � �. As ����� � ���� �
���� � �, it follows that����� � �����. �
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It is unknown if any of the graphs� � ����� �� 
 
 
 � ��� �� are minimal circular
imperfect. A computer search shows that���� �� �� �� is not minimal circular im-
perfect. The subgraph of���� �� �� �� induced by the set� � ��� �� 	� �� �� �� ���
��� ��� �	� ��� has circular chromatic number	 and circular clique number�, and
hence is circular imperfect.

Since the graphs� � ����� �� ��� ��    � ��� �� are partitionable,��� � �� �
��� � �� � ���� � �� � ���� � � for each vertex�. Therefore we have the
following corollary.

Corollary 4 Suppose� � ����� �� 
 
 
 � ��� �� satisfies the condition of Theorem 2.
Then����� �� � ������ � for each vertex� of �.

In other words, the circulant graphs satisfying the condition of Theorem 2 have
the property that the deletion of each vertex decreases its circular chromatic num-
ber by exactly�. Not many such graphs were known before, and the problem of
characterizing and constructing such graphs was raised in [13].

3 Structural properties of �

In the remainder of this paper,� � ����� �� ��� 
 
 
 � ��� ��. Let � � �� 
 
 
 ��,
� � ��, � � �� � �.

In this section, we shall be interested in elements of�� only. If � �  ���� ��,
then��  are treated as the same. However, by an abuse of notation, we also use the
natural order of integers in the following sense: If� �  , we denote���  � the set of
integers� � � �  . Note that it is possible that��  �� ��� ��    � �� ��. However,
���  � always denote a subset of��� ��    � � � ��, by means of taking modulo�.
For example,���� �� � ���� �� �� � �� � �� �� ��. For a set! of integers, let
�! � ��� � � � !�, � � ! � �� � � � � � !�. Again the multiplications and
additions are modulo�.

Let "� � �, and for� � �� 
 
 
 � �, let

"� � �������� 
 
 
 ��� and �� �
��

���

"�


First we derive an explicit expression of the maximum cliques and stable sets of�.
It follows from the definition that�� � � and for� � � � �,

����� � �������� 
 
 
 �� � "�� and��� � ������ 
 
 
 �� � �"�
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Therefore for� � � � �,

����� � �"������ �� � ��� and��� � ��� "��


So

� �
��

���

����� �
��

���

�"������ �� � ���

� �
��

���

��� �
��

���

��� "��


By Theorem 1, the maximum cliques of� are the� circular shifts� � � of �
(� � ��), and the maximum stable sets of� are the� circular shifts� � � of �
(� � ��).

In the following, we consider the intersections� 
 �� � �� of two maximum stable
sets of�.

Lemma 5 For � � � � �, "� �� �������� ������.

PROOF. Since"� � ����� � ��� � ���, and� � "� � 	���� � � � ����� �
����� � ���, we conclude that"� �� ������ ����. Assume� � � and "��� ��
�������� ������. Since"� � ���"��� and�� � �, we have

"� � �"��� � �"��� � �������� � �"��� � �����


Furthermore,

�� "� � ������   �� � �� "� � �"� � "� � "� � �����


Therefore"� �� �������� ������. �

For � � �� ��    � �, let

�� �
��

���

��� �
��

���

��� "��


Lemma 6 For every� in ��, for every� � � � �,

�� 
 ��� � �� � ����� 
 ����� � ��� � ������ � "�� 
 ����� � "� � ���

or
�� 
 ��� � �� � ����� 
 ����� � "� � ��� � ������ � "�� 
 ����� � ���
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PROOF. By definition,�� � ���� � ����� � "��. Hence�� � � � ����� � �� �
����� � "� � ��. Therefore

�� 
 ��� � ��� ����� 
 ����� � ��� � ������ � "�� 
 ����� � "� � ���

������ 
 ����� � "� � ��� � ������ � "�� 
 ����� � ���


If ����
�������� �� �, then� � ������� �����. By Lemma 5,"� �� �������� ������.
Therefore"���� "��� �� ������� �����. This implies that����
������"���� � �
and����� � "�� 
 ����� � �� � �. Therefore

�� 
 ��� � ��� ����� 
 ����� � ��� � ������ � "�� 
 ����� � "� � ���


If ���� 
 ����� � �� � �, then����� � "�� 
 ����� � "� � �� � �, and hence

�� 
 ��� � ��� ����� 
 ����� � "� � ��� � ������ � "�� 
 ����� � ���


�

For� � � � � � �, let

#�
� �
�

����
�
��� 
������

��� �
�

����
�
��� 
������

��� "��


Then�� � #�
� � ��� "�� � #�
� � �#�
� � "��. For convenience, let#� � #�
�.

Lemma 7 For every� � � � �, for every� � ��� � �� �, we have���
������� �
����. Moreover, if��� 
 ��� � ��� � ����, then there is a unique index� � � such
that � � �"� and�� 
 ��� � �� � #�
� or #�
� � "�, depending on� � �"� or
� � "�. In particular, for any� � ��, �� 
 �� � ��� � ����, and if equality holds
then there is a unique index� such that� � �"� and� 
 �� � �� � #� or #� � "�,
depending on� � �"� or � � "�.

PROOF. We prove this lemma by induction on�. It is obvious that for every� �
��� � �� �, we have��� 
 ��� � ��� � �, and equality holds only if� � �"�. Let
� � � and the lemma is true for�� � �� �.

By Lemma 6,

�� 
 ��� � �� � ����� 
 ����� � ��� � ������ � "�� 
 ����� � "� � ���

or
�� 
 ��� � �� � ����� 
 ����� � "� � ��� � ������ � "�� 
 ����� � ���
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First we consider the case that

�� 
 ��� � �� � ����� 
 ����� � ��� � ������ � "�� 
 ����� � "� � ���


By induction hypothesis,����� 
 ����� � ��� � ���� and������� � "�� 
 ����� �
"� � ���� � ����. Therefore

��� 
 ��� � ��� � � � ���� � ��


Moreover, if��� 
 ��� � ��� � ��, then����� 
 ����� � ��� � ���� and hence there
is a unique index� � � � � such that� � �"� and���� 
 ����� � �� � #���
�

or #���
� � "�. Then�� 
 ��� � �� � #���
� � ��� "�� � #�
� or �� 
 ��� � �� �
#���
� � "� � ��� "�� � #�
� � "�

Next we assume that

�� 
 ��� � �� � ����� 
 ����� � "� � ��� � ������ � "�� 
 ����� � ���


If � �� �"� then the same argument as in the previous case works. Assume� � "�.
Then

��� 
 ��� � ��� � ����� � "��� ����� 
 ����� � �"���


Note that if� � � � �, then�"� � �. If � � �, then�"� � ��. In any case,�"�
is equal to the difference of two integers of�. Therefore��� �"�� is an edge of�.
Hence�"� �� ���� � ���� (as���� is a stable set of�). This implies that

���� 
 ����� � �"�� � �


Hence
��� 
 ��� � ��� � ������ � �����

and
�� 
 ��� � �� � #�
� � "�

as#�
� 
 �#�
� � �"�� � � ( #�
� is a stable set and��� �"�� is an edge).

If � � �"�, then the same argument shows that

�� 
 ��� � �� � #�
�


�

4 Proof of Theorem 2

Assume that����� � �	�, where��� �� � �. Let � be a��� ��-coloring of �,
which is viewed as a homomorphism from� to ����. For � � ��, let�� � ������
be the set of vertices of� of color �. Let �� � �� � ���� �    � ������. Then
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�� is a stable set. It is known (see Lemma 1.3 of [13]) that for each�, �� �� � and
moreover, for each�, there is a vertex� � �� and a vertex� � ���� such that�� is
an edge of�. We need to prove that� � �.

Lemma 8 If ����� � �	� and��� �� � �, then� � �.

PROOF. Assume to the contrary that� � �. We consider two cases.

� Case 1: � � �
Note that in this case� � 	.
Assume that there is an index� for which ���� � �. Since� � �, �� ����� �

���� � �� and���� � �� � ���� � ����. However,������� ���� � � � 	, and
����� ��� ������� ��� ����� ������ � 	 (as���� � �, and each���� � �).
Therefore������ � ���� � 	, and hence����� �� are maximum stable sets of�.
However,����� 
 ��� � ����� ������ � � � �	�, in contrary to Lemma 7.

Hence, for every� � ��, we have���� � �. In particular,� � � � 	� � �.
From �

�
� � � � � � and� � �, we get� � 	. Since�� is a stable set of size�,

we have� � 	. Thus�� and�� are two maximum stable sets of� sharing�� �
vertices, in contrary again to Lemma 7.

This completes the proof of Case 1.
� Case 2: � � ����Æ

If there exists� � �� such that����� ������� ������ � �� then���� � ������ �
������ � �. By Claim 7, we have��� 
 ����� �

�
�
. Hence����� 	 ��� �

�
�
. As

���� 	 �� � ����, we get������ �
�
�
. As � � � and���� �� �, we conclude that

����� ������ �
�
�
. However���� ����� � ���� 
 ����. So���� and���� are

two distinct maximum stable sets with����� 
 ����� �
�
�
, in contrary to Lemma

7.
Thus for every� � ��, we have����� ������� ������ � ��. Since

�
����

���� �
��, we have

�
����

������ ������� ������� � ��� � ���� ���.
As � � �� � � and �

�
� � � �, we have

�� � ���� � �� � ���� ���� � ��


It follows that� � ��� 	. Hence

����Æ � � � ��� 	�

which is a contradiction, as� � �� andÆ � �.

�

By Lemma 8, we have� � � or �. If � � �, we are done. Thus we assume� � �,
and we shall derive a contradiction. As� � ����� � ���� � � � � and� � �,
we have� � �� � �.
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Lemma 9 There exists� � �� such that��� ����� 
 
 
 � ����Æ are all of size�.

PROOF.

� Case 1: � � �
If there exists� � �� such that���� � � then�� and���� are two maxi-

mum stable sets sharing���� � �	� vertices, in contrary to Lemma 7. Thus,
for every � � ��, we have���� � �. Since

�
����

���� � � � 	���� � � �
�� � �, it follows that there exists an unique� � ��, such that���� � �. Thus
����� ����� 
 
 
 � ������ are��� stable sets of size� � 	. As��� � 	������ �
�Æ � �, we are done.

� Case 2: � � ����Æ
Assume to the contrary that for every� � ��, there exists one stable set in

��� ����� 
 
 
 � ����Æ of size strictly less than�, then

����

���

������ �������   � �����Æ�� � ���Æ � ���� ���


On the other hand, as
����

��� ���� � ��, we have

��

���

������ �������   � �����Æ�� � ��Æ � ����


Therefore
��Æ � ���� � ���Æ � ���� ���


Since� � �� � � and� � �� � �, straightforward calculation shows that

	Æ � � � ��Æ � ���� �� � �


As � � ����Æ and� � ��, easy calculation derives a contradiction.

�

In the remainder of this section, let� be an index such that��� ����� 
 
 
 � ����Æ are
all of size�.

Lemma 10 For every� � �� �� �� �� 
 
 
 � �� �Æ, we have���� �
�
�
.

PROOF. By Lemma 7,���� � ����� 
 ��� �
�
�
. As � � ���� � ���� � ������, it

follows that���� � �� ������ �
�
�

if �� � � � � �� �Æ � �. Hence���� �
�
�
. If

� � � � �Æ, then since� � ������ � ������� ����, we also have���� �
�
�
. �
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Lemma 11 There exists an index$ � ��� ��    � �� and� � ��, such that either
for all � � �� �� 
 
 
 � �Æ,

���� � �� � �"� � #� � �� �"�� and ������ � � � � � �� � ��"�

or for all � � �� �� 
 
 
 � �Æ,

���� � �� � �"� � #� � �� �"�� and ������ � � � �� �� � ��"�


PROOF.

Let � be the element in�� such that�� � � � �.

By definition, for any� � $ � �, � � #� � ��� "�� � #� � �#� � "��. By Lemma
10, ��� 
 ����� �

�
�
. By Lemma 7,���� � �� � "� for some� � $ � �. First we

consider the case that���� � ��� "�. Since�� � �� � � �#� � ��� �#� � �� "��,
we have

���� � ��� 
 ����� � �� 
 �� � "��� � � � #� � "� � �


Moreover,

���� � ����� 	 ��� � ��� � "�� 	 �� � � � #� � �"� � �


Assume� � � � �Æ, ������ � #� � ����� ��"� and������ � �� ���� � ��"�.

Assume������ � � � � � for some� � � ��. Since

������ � � � �� �� � ��"�

and
������ 
 ������ � ������ � #� � �� �� � ��"��

it follows that
� 
 �� � �� � � �� �� � ��"��� � #� � "�


By Lemma 7,� ���������"� � "�. Thus we conclude that������ � ���������"�
and���� � #� � � � �"�, as���� � ������ 	������.

If ���� � �� � "�, then the same argument shows that for� � �� ��    � �Æ, ���� �
#� � �� �"� and������ � � � �� �� � ��"�. �

Now we derive the final contradiction. Let$ be the index given in Lemma 11.
Without loss of generality, we assume that for� � �� ��    � �Æ,���� � #�����"�.
If $ � �, then�����"� � "���. Then������� � �� � �����"� � #� � � � "���. By
definition,"��� � #�. Thus� � "��� � #� � � � ��. On the other hand,� � #�,
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and hence� � "��� � �������. This is a contradiction, as����� � �Æ � � � �,
which implies that�� 
������� � �. If $ � �, then

���"� � �������   ����� � ��� ���� � ���


Then����� � �� � ���"� � #� � � � ��. By definition,�� � #�. Thus� �
#� � � � �� � ����� . On the other hand,� � #�, and hence� � #� � � � ��.
This is a contradiction, as��� � � and hence�� 
����� � �. This completes the
proof of Theorem 2.

5 Open question

Theorem 2 gives the circular chromatic number of some circular partitionable graphs
such that their stability number is a power of two (these graphs are said to be of type
1 or 2 in [1]).

However, we believe that our result is likely to hold for most of the circular parti-
tionable graphs: e.g., is it true that every graph����� ��� 
 
 
 � ���� with � � � has
its circular chromatic number equal to its chromatic number?
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