
Circular chromatic number and Mycielski
construction

Hossein Hajiabolhassan1,2

and
Xuding Zhu1,∗

1Department of Applied Mathematics
National Sun Yat-sen University

Kaohsiung 80424, Taiwan
2Institute for Studies in Theoretical

Physics and Mathematics(IPM)
P.O. Box 19395–5746, Tehran, Iran

Jan, 2001

Abstract

This paper gives a sufficient condition for a graph G to have its circular
chromatic number equal its chromatic number. By using this result, we prove
that for any integer t ≥ 1, there exists an integer n such that for all k ≥ n
χc(M t(Kk)) = χ(M t(Kk)).
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1 Introduction

All graphs considered in this paper are finite and simple. Suppose G = (V, E) is

a graph and k ≥ 2d are positive integers. A (k, d)-colouring of G is a mapping
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c : V → {0, 1, · · · , k − 1} such that for any edge xy of G, d ≤ |c(x) − c(y)| ≤ k − d.

The circular chromatic number χc(G) of G is defined by

χc(G) = inf{k/d : there exists a (k, d)-colouring of G}.

The circular chromatic number (also known as the star chromatic number) is a

natural generalization of the chromatic number (note that a (k, 1)-colouring is simply

a k-colouring), and has been studied extensively in the past decade, [1, 2, 4, 6, 11,

12, 13, 14, 15, 16]. It is known [12] that χ(G)− 1 < χc(G) ≤ χ(G) for any graph G,

and there are graphs G with χc(G) = χ(G) as well as graphs with χc(G) arbitrarily

close to χ(G)− 1. The question of which graphs G have χc(G) = χ(G) has attracted

some attention [1, 4, 6, 11, 12, 13, 14, 15]. It is NP-hard to determine if a given

graph G has χc(G) = χ(G) [6]. However, some sufficient conditions for graphs to

have χc(G) = χ(G) can be found in the literature [1, 4, 6, 11, 15, 13].

This paper gives another sufficient condition for graphs to have χc(G) = χ(G).

This condition is then applied to the study of the circular chromatic number of My-

cielski’s graphs, especially, the circular chromatic number of the iterated Mycielskian

of complete graphs.

For a graph G with vertex set V (G) = V and edge set E(G) = E, the Myciel-

skian M(G) of G is the graph with vertex set V ∪V ′ ∪{u}, where V ′ = {x′ : x ∈ V },
and edge set E ∪ {x′y : xy ∈ E} ∪ {x′u : x′ ∈ V ′}. The vertex x′ is called the twin of

the vertex x (and x is also called the twin of x′); and the vertex u is called the root

of M(G). If there is no ambiguity we shall always use u as the root of M(G). For

t ≥ 2, let M t(G) = M(M t−1(G)).

There is a very simple formula for χ(M(G)) in terms of χ(G), i.e., χ(M(G)) =

χ(G) + 1 [10], as well as a very simple formula for χf (M(G)) in terms of χf (G), i.e.,

χf (M(G)) = χf (G) + 1/χf (G) [8]. (χf (G) denotes the fractional chromatic number

of G). However, there is no simple formula for χc(M(G)) in terms of χc(G).

The problem of calculating the circular chromatic number of Mycielski’s graphs

has been investigated in [4, 3, 7]. It turns out that the circular chromatic number

of M(G) is not determined by the circular chromatic number of G alone. Rather, it

depends on the structure of G. Even for graphs G with very simple structure, it is

still difficult to determine χc(M(G)).
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The problem of determining the circular chromatic number of the iterated My-

cielskian of complete graphs was discussed in [3]. It was conjectured in [3] that if

n ≥ t+2 ≥ 3, then χc(M
t(Kn)) = χ(M t(Kn)) = n+ t. With complicated arguments,

the special cases t = 1, 2 of this conjecture have been proved in [3, 4]. A simpler proof

of these special cases was given in [4] (for t = 2, the result proved in [4] is slightly

weaker, i.e., it was proved in [4] that for n ≥ 5, χc(M
2(Kn)) = χ(M2(Kn)) = n + 2).

We shall prove in this paper that for any integer t ≥ 1, if n ≥ 2t + 2 then

χc(M
t(Kn)) = χ(M t(Kn)) = n + t.

2 A sufficient condition for χc(G) = χ(G)

For k ≥ 2d and gcd(k, d) = 1, let Gk
d be the graph with vertex set {0, 1, · · · , k − 1}

and in which j ∼ j′ if and only if d ≤ |j − j′| ≤ k − d. A homomorphism from

a graph G = (V, E) to a graph G′ = (V ′, E ′) is a mapping f : V → V ′ such that

f(x)f(y) ∈ E ′ whenever xy ∈ E. It is well known [16] and easy to see that if G

admits a homomorphism to G′ then χc(G) ≤ χc(G
′). It follows from the definition

that a (k, d)-colouring of a graph G is simply a homomorphism from G to Gk
d. When

considering a (k, d)-colouring of G (or equivalently, a homomorphism from G to Gk
d),

we view the colours 0, 1, · · · , k − 1 as cyclically ordered. For a, b ∈ {0, 1, · · · , k − 1},
the interval [a, b]k means the interval from a to b in this cyclic order. For example,

[2, 5]k = {2, 3, 4, 5} and [5, 2]k = {5, 6, · · · , k − 1, 0, 1, 2}. The following lemma is an

easy consequence of a result of [13].

Lemma 1 Suppose G = (V, E) is a graph with χc(G) = k/d and that c : V →
{0, 1, · · · , k − 1} is a (k, d)-colouring of G. Then for each i ∈ {0, 1, · · · , k − 1}, there

exists a vertex x with c(x) = i which is adjacent to a vertex y with c(y) = i + d. Here

the addition is modulo k.

Proof. Assume to the contrary that there exists an index i such that no vertex

of colour i is adjacent to a vertex of colour i + d. Let e = i(i + d). Then the

colouring c is a homomorphism from G to Gk
d − e. However, it was proved in [13]

that χc(G
k
d − e) < k/d, which implies that χc(G) ≤ χc(G

k
d − e) < k/d, contrary to

our assumption.
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Suppose G = (V, E) is a graph. For a vertex x of G, we denote by NG(x) the

set of non-neighbours of x, i.e., NG(x) = {y : y 6∼ x, y 6= x}. For X ⊆ V , let

NG(X) = ∪x∈XNG(x). With an abuse of notation, for any subset X of V , we shall

also use X to denote the subgraph of G induced by X. We say Y ⊆ NG(X) is a

pointwise-dominating set of NG(X) if for each x ∈ X, NG(x)− Y is an independent

set. We define a parameter βG(X) as follows:

βG(X) = min{|Y | : Y is a pointwise-dominating set of NG(X)}.

Theorem 2 Suppose G = (V, E) is a graph and X is a clique of G. If χc(G) = k/d

(with gcd(k, d) = 1), then

|X|(d− 1) ≤ 2βG(X).

Proof. Let c : V → {0, 1, · · · , k − 1} be a (k, d)-colouring of G. It is well known

[2, 12] (and also follows from Lemma 1) that c must use every colour. Assume that

X = {x1, x2, · · · , xm} and c(xi) < c(xi+1).

For i = 0, 1, · · · , k − 1, let Ai = c−1(i), i.e., Ai is the set of vertices coloured by

colour i. In the following, all the additions and subtractions of the indices are carried

out modulo k.

Let Y be a pointwise-dominating set of NG(X) with |Y | = βG(X).

Construct a bipartite graph H with X, Y as its two parts so that xi ∼ y if and

only if

c(y) ∈ [c(xi)− d + 1, c(xi) + d− 1]k − {c(xi)}.

We shall show that each vertex of X has degree at least d − 1 in H and each

vertex of Y has degree at most 2 in H.

Suppose xi ∈ X and c(xi) = a. For each ` ∈ {1, 2, · · · , d− 1}, Aa−d+` ∪ Aa+` ⊆
NG(xi). By Lemma 1, there exists an edge joining a vertex of Aa−d+` to a vertex

of Aa+`. Since NG(xi) − Y is an independent set, we conclude that Aa−d+` ∪ Aa+`

contains at least one vertex of Y . It follows that xi has degree at least d− 1 in H.
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Suppose y ∈ Y and c(y) ∈ [c(xi), c(xi+1)]k. Since X is a clique, we know that

for any xj ∈ X where j 6= i, i + 1,

[c(xj)− d + 1, c(xj) + d− 1]k ∩ [c(xi), c(xi+1)]k = Ø.

Therefore y 6∼ xj in H. So y has degree at most 2 in H. Hence

|X|(d− 1) ≤ |E(H)| ≤ 2|Y |,

and the proof is complete.

Corollary 3 If G has a clique X such that |X| > 2βG(X), then χc(G) = χ(G).

Proof. Otherwise χc(G) = k/d for some k, d with gcd(k, d) = 1 and d ≥ 2. By

Theorem 2, we have |X| ≤ |X|(d− 1) ≤ 2βG(X), contrary to our assumption.

Corollary 3 can be generalized to the following:

Theorem 4 Suppose G = (V, E) is a graph. If there exists a subset X ⊆ V such

that χ(X) > 2βG(X), then χc(G) = χ(G).

Proof. Assume to the contrary that χc(G) = k/d for some d ≥ 2 (and (k, d) = 1).

Let c be a (k, d)-colouring of G. We choose a sequence {x1, x2, · · · , xs} as follows: Let

x1 ∈ X be a vertex for which c(x1) = min{c(x) : x ∈ X}. Suppose xi ∈ X has been

chosen. If there is a vertex x ∈ X with c(x) ≥ c(xi)+d, then let xi+1 ∈ X be a vertex

for which c(xi+1) = min{c(x) : x ∈ X, c(x) ≥ c(xi) + d}. Otherwise, let i = s and

the construction of the sequence is completed. Let f : X → {1, 2, · · · , s} be defined

as f(x) = i if c(xi) ≤ c(x) < c(xi) + d. Then f is a proper colouring of X. Therefore

s ≥ χ(X).

The remaining part is similar to the proof of Theorem 2, with x1, x2, · · · , xs

playing the roles of the vertices of the clique. In case d = 2, the argument is exactly

the same. In case d ≥ 3, we need to be careful, because in the bipartite graph H

constructed in the proof of Theorem 2, those vertices of Y whose colours lie in the

interval [c(xs−1), c(xs)]k and [c(x1, c(x2)]k may have degree greater than 2. So we do

not have χ(X)(d−1) ≤ 2βG(X), but it is easy to show that χ(X) ≤ 2βG(X), contrary

to our assumption. The argument is similar, and we omit the details.
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3 Mycielski’s graphs

Suppose G = (V, E) is a graph and M(G) = (V ∪ V ′ ∪ {u}, E ′) is the Mycielskian of

G. If X is a subset of V , then we also consider X as a subset of V (M(G)) (because

V is a subset of V (M(G))). Recall that for x ∈ V , the twin of x is denoted by x′.

For a subset X of V , we shall denote by X ′ the set of twins of vertices in X, i.e.,

X ′ = {x′ : x ∈ X}.

Lemma 5 Let M(G) be the Mycielskian of G. Then for any subset X of V (G),

βM(G)(X) ≤ 2βG(X) + 1.

Proof. It is easy to see that for any vertex x, if S = NG(x), then NM(G)(x) =

S ∪ S ′ ∪ {x′, u}. Let Z = NG(X). Then

NM(G)(X) = Z ∪ Z ′ ∪X ′ ∪ {u}.

Let Y be a pointwise-dominating set of NG(X) with |Y | = β(X). To complete the

proof of Lemma 5, it suffices to show that Y ∪Y ′ ∪{u} is a pointwise-dominating set

of NM(G)(X).

Let x ∈ X and a, b ∈ NM(G)(x)− (Y ∪ Y ′ ∪ {u}). We need to prove that a 6∼ b.

Note that NM(G)(x) ⊆ Z ∪ Z ′ ∪ {x′, u}. Assume to the contrary that a ∼ b. Since

Z ′ ∪ {x′} is an independent set, we have {a, b} 6⊆ Z ′ ∪ {x′}. Since Y is a pointwise-

dominating set of NG(X), it follows that {a, b} 6⊆ Z. Thus we may assume that

a ∈ Z − Y and b ∈ (Z ′ ∪ {x′})− Y ′. But x′ is not adjacent to any vertex of NG(x).

Therefore b 6= x′. Assume that b = c′. Then c ∈ Z − Y . Now a ∼ c′ implies that

a ∼ c, contrary to the assumption that Y a pointwise-dominating set of NG(X).

Corollary 6 Suppose G is a graph and X is a subset of V (G). Then for t ≥ 1,

βMt(G)(X) ≤ 2tβG(X) + 2t − 1.

Proof. By Lemma 5, βMt(G)(X) ≤ 2(βMt−1(G)(X)) + 1. The conclusion follows by

induction.
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Corollary 7 Suppose G is a graph, t ≥ 1 and χc(M
t(G)) = k/d (where gcd(k, d) =

1). If X is a clique of G then

|X|(d− 1) ≤ 2t+1βG(X) + 2t+1 − 2.

Corollary 8 If G has a clique X such that |X| ≥ 2t+1βG(X) + 2t+1 − 1, then

χc(M
t(G)) = χ(M t(G)).

In Corollary 8, the clique X can be replaced by any subgraph X of G, with |X|
be replaced by χ(X) (see Theorem 4).

Corollary 9 Let G be a graph on n vertices and X the set of vertices of degree n−1.

If |X| ≥ 2t+1 − 1, then χc(M
t(G)) = χ(M t(G)).

Proof. Since each vertex of X has degree n − 1, it follows that NG(X) = Ø. So X

is a clique with βG(X) = 0. The conclusion follows from Corollary 8.

The special case t = 1 of Corollary 9 was proved in [4].

Corollary 10 If n ≥ 2t+1 − 1, then χc(M
t(Kn)) = χ(M t(Kn)).

4 Some improvements

For the circular chromatic number of the iterated Mycielskian of complete graphs,

the following was conjectured in [3]:

Conjecture 1 [3] If n ≥ t + 2, then χc(M
t(Kn)) = χ(M t(Kn)).

For any integer t ≥ 1, let n(t) be the minimum integer such that for any n ≥ n(t),

χc(M
t(Kn)) = χ(M t(Kn)). Corollary 10 shows that for any t ≥ 1, the integer n(t)

exists and n(t) ≤ 2t+1 − 1. It was shown in [3] that n(t) ≥ t + 2. Therefore we have

t + 2 ≤ n(t) ≤ 2t+1 − 1.

Conjecture 1 above is equivalent to saying that n(t) = t + 2.
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For t = 1, the upper and lower bound for n(t) coincide and we have n(1) = 3.

For t = 2, Conjecture 1 was proved in [3]. Hence n(2) = 4. For t ≥ 3, there is a big

gap between the upper and lower bounds for n(t). In this section, we shall slightly

improve the upper bound for n(t).

In Theorem 2, the cardinality of a minimum pointwise-dominating set Y of

NG(X) is used to bound the cardinality of X. A careful analysis of the proof of

Theorem 2 shows that what really matters is the number of colour classes of a (k, d)-

colouring of G that contain elements of Y . By finding a (k, d)-colouring that colours

some pairs of elements of Y with the same colours, we prove the following result,

which is a strengthening of Theorem 2.

Theorem 11 Suppose G is a graph and X is a clique of G. If χc(M(G)) = k/d

(where gcd(k, d) = 1), then

(|X| − 3)(d− 1) ≤ 2βG(X).

Proof. Let Y be a pointwise-dominating set of NG(X) with |Y | = βG(X). By the

proof of Lemma 5, we know that D = Y ∪ Y ′ ∪ {u} is a pointwise-dominating set of

NM(G)(X).

The remainder of the proof is similar to that of Theorem 2. However, instead of

the cardinality of D, we count the number of colour classes that contain an element

of D in a (k, d)-colouring of M(G).

Let f be a (k, d)-colouring of M(G). We construct a new (k, d)-colouring f ′ of

M(G) as follows:

f ′(x) = f(x) if x 6∈ Y ′ or x = v′ ∈ Y ′ and f(v) ∈ [f(u)− d + 1, f(u) + d− 1]k;

f ′(v′) = f(v) if v′ ∈ Y ′ and f(v) 6∈ [f(u)− d + 1, f(u) + d− 1]k.

It is easy to verify that f ′ is still a (k, d)-colouring of M(G). By the definition,

there are at most βG(X) colour classes (f ′)−1(i) such that i 6∈ [f(u)−d+1, f(u)+d−1]k

and (f ′)−1(i) contains an element of D.

Let

T = {i : 0 ≤ i ≤ k − 1, (f ′)−1(i) ∩D 6= Ø},
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and let

T ′ = T − [f(u)− d + 1, f(u) + d− 1]k.

The argument above shows that

|T ′| ≤ βG(X).

Now we construct a bipartite graph H with vertex X ∪ T and in which x ∈ X

is adjacent to i ∈ T if i ∈ [f ′(x)− d + 1, f ′(x) + d− 1]k.

The same argument as in the proof of Theorem 2 shows that each vertex of X

has degree at least d− 1, and each vertex in T has degree at most 2.

Since X is a clique, the colours of elements of X are far apart from each other

(i.e., f ′(x) 6∈ [f ′(y)− d + 1, f ′(y) + d− 1]k if x, y ∈ X and x 6= y). Let

X ′ = {x ∈ X : NH(x) ∩ [f ′(u)− d + 1, f ′(u) + d− 1]k 6= Ø.

Easy calculations show that |X ′| ≤ 4.

If |X ′| ≤ 3, then we have

(|X| − 3)(d− 1) ≤ 2βG(X).

If |X ′| = 4, then by calculating the distance between the colours of elements of

X ′, one can show that there are two vertices a, b ∈ X ′ such that

|([f ′(a)−d+1, f ′(a)+d−1]k∪[f ′(b)−d+1, f ′(b)+d−1]k)∩[f ′(u)−d+1, f ′(u)+d−1]k| ≤ d−2.

This would imply that there are at least d edges of H joining a and b to vertices of

T ′.

Therefore

2βG(X)− d ≥ (|X| − 4)(d− 1),

which is equivalent to

(|X| − 3)(d− 1) ≤ 2βG(X)− 1.

This completes the proof.

9



Corollary 12 Suppose G is a graph, t ≥ 1 and χc(M
t(G)) = k/d (where gcd(k, d) =

1). If X is a clique of G then

(|X| − 3)(d− 1) ≤ 2tβG(X) + 2t − 2.

Proof. Note that M t(G) = M(M t−1(G)) and X is a clique of M t−1(G). By Corollary

6, βMt−1(G)(X) ≤ 2t−1βG(X) + 2t−1 − 1. The result follows from Theorem 11.

For t ≥ 2, the following are improvements of Corollaries 9 and 10, respectively.

Corollary 13 Let G be a graph on n vertices and X the set of vertices of degree

n− 1. If |X| ≥ 2t + 2, then χc(M
t(G)) = χ(M t(G)).

Corollary 14 If n ≥ 2t + 2, then χc(M
t(Kn)) = χ(M t(Kn)).

For t = 3, Corollary 14 asserts that χc(M
3(Kn)) = χ(M3(Kn)) for n ≥ 10.

Conjecture 1 asserts that χc(M
3(Kn)) = χ(M3(Kn)) for n ≥ 5. By pushing further

the technique used in the proof of Theorem 11 (with a more complicated argument),

one can show that χc(M
3(Kn)) = χ(M3(Kn)) for n ≥ 8. It remains unknown if

χc(M
3(Kn)) = χ(M3(Kn)) for n = 5, 6, 7.

It was proved in [4] as well as in Section 2 (Corollary 9) that if an n-vertex

graph G has 3 vertices of degree n− 1 then χc(M(G)) = χ(M(G)). The following is

an improvement of this.

Theorem 15 Let G = (V, E) be a graph on n ≥ 3 vertices. If G has 2 vertices of

degree n− 1, then χc(M(G)) = χ(M(G)).

Proof. Let a, b be two vertices of G of degree n − 1. Let a′, b′ be the twins of a, b,

respectively in M(G), and let u be the root of M(G). Assume to the contrary that

χc(M(G)) = k/d for some d ≥ 2 (and gcd(k, d) = 1). Let f be a (k, d)-colouring

of M(G). Assume f(a) = i. Then none of f−1(i − d + 1), · · · , f−1(i + d − 1) is

empty and each contains only vertices that are not adjacent to a. However, the only

vertices of M(G) not adjacent to a are a′ and u. So we must have d = 2 and, say,

f−1(i− 1) = {a′}, f−1(i) = {a} and f−1(i + 1) = {u}.
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By symmetry, we have f−1(i + 2) = {b} and f−1(i + 3) = {b′}. Since n ≥
3, G has vertices other than a and b. Now for each vertex x ∈ V − {a, b}, since

f(x) 6∈ {f(u)− 1, f(u), f(u) + 1}, we can assume that f(x′) = f(x) (if f(x) 6= f(x′),

we can recolour x′ with the colour of x to obtain another (k, d)-colouring of M(G)).

Since every vertex of V − {b} is adjacent to b′, and since f(x) = f(x′) for every

x ∈ V −{a, b}, we conclude that f−1(i + 4) = Ø. But this is contrary to Lemma 1.

Theorem 15 is sharp in the sense that there are graphs G with one universal

vertex for which χc(M(G)) 6= χ(M(G)). Let W2n+1 be the odd wheel which is ob-

tained from the odd cycle C2n+1 by adding a universal vertex. Then for n ≥ 2, it is

easy to show that χc(M(W2n+1)) ≤ 4.5 < χ(M(W2n+1)), and the argument as in the

proof of Theorem 15 shows that χc(M(W2n+1)) ≥ 4.5. Hence χc(M(W2n+1)) = 4.5,

which was conjectured in [9].
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