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Abstract

In a search for triangle-free graphs with arbitrarily large chromatic numbers,
Mycielski developed a graph transformation that transforms a graph G into a new
graph p(G), we now call the Mycielskian of G, which has the same clique number
as G and whose chromatic number equals x(G) + 1. Let p"(G) = p(p"~YG))
for n > 2. This paper investigates the circular chromatic numbers of Mycielski’s
graphs. In particular, the following results are proved in this paper: (1) for any
graph G of chromatic number n, x.(u" 1(G)) < x(u" *(G)) — &; (2) if a graph G
satisfies x.(G) < x(G) — § with d = 2 or 3, then x.(1*(G)) < x(1*(G)) — 3; (3) for
any graph G of chromatic number 3, x.(u(G)) = x(u(G)) = 4; (4) x(u(Kyp)) =
x(u(Ky)) =n+1for n >3 and x.(u?(K,)) = x(u?(K,)) =n+2 for n > 4.
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1 Introduction

All graphs in this paper are simple, i.e., finite, undirected, loopless, and without multiple

edges.

In a search for triangle-free graphs with arbitrarily large chromatic numbers, My-
cielski [15] developed an interesting graph transformation as follows. For a graph G
with vertex set V(G) = V and edge set E(G) = E, the Mycielskian of G is the
graph p(G) with vertex set V U V' U {u}, where V' = {2’ : = € V}, and edge set
EUu{zy' :zy € E}U{y'u:y" € V'}. The vertex 2’ is called the twin of the vertex = (and
x is also called the twin of 2'); and the vertex w is called the root of u(G). If there is no

ambiguity we shall always use u as the root of pu(G). For n > 2, let u*(G) = pu(pu" Q).

Myecielski [15] showed that x(1(G)) = x(G)+1 for any graph G and w(u(G)) = w(G)
for any graph G with at least one edge. Hence u"(K>) is a triangle-free graph of chromatic
number n+ 2. Besides such interesting properties involving clique numbers and chromatic

numbers, Mycielski’s graphs also have some other parameters that behave in a predictable
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xf(G)
any graph G, where x;(G) is the fractional chromatic number of G. Mycielski’s graphs

way. For example, it was shown by Larsen et al. [14] that x;(u(G)) = xf(G) + for
were also used by Fisher [6] as examples of optimal fractional colorings that have large

denominators.

The purpose of this paper is to investigate the circular chromatic numbers of My-
cielski’s graphs. The circular chromatic number x.(G) of a graph G is a variation of the
chromatic number of G, introduced by Vince [17] in 1988, as the “star chromatic num-
ber” of a graph. Let k£ and d be integers such that 0 < d < k. A (k,d)-coloring of G
is a coloring ¢ of vertices of G with k colors {0,1,...,k — 1} such that for any edge zy,
d < |e(x) — e(y)| < k—d. The circular chromatic number x.(G) of G is the minimum
ratio ¥ for which there exists a (k, d)-coloring of G. (To be precise, the minimum in the
definition should be infimum. However, it was shown in [17] that the infimum is attained.)
Observe that a (k, 1)-coloring of a graph G is just an ordinary k-coloring of G. It follows
that x.(G) < x(G). On the other hand, it is also not difficult to see ([3, 17, 18]) that
X(G)—1 < x.(G). Therefore, x(G) = [x.(G)]. In some sense the circular chromatic num-
ber is a refinement of the chromatic number of a graph, and it contains more information
about the graph. Readers are referred to [1, 2, 3, 5, 7, 8, 9, 10, 16, 18, 19, 20, 21, 22, 23|

for more information on circular chromatic numbers of graphs.

In this paper, we show that circular chromatic numbers of Mycielski’s graphs exhibit



interesting patterns. The problem of determining if x.(G) = x(G) or x.(G) is “close
to” x(G) — 1 is hard and has been extensively studied for general graphs. This paper
reports some progress for Mycielski’s graphs in this direction. In Section 3, we prove that
Xe("H@)) < x(@"H(G)) — 5 for any graph G of chromatic number n, and x.(4*(G)) <
x(#*(@)) — % for any graph G with x.(G) < x(G) — 4, d = 2 or 3. Section 4 establishes
that x.(u(G)) = x(u(G)) = 4 for any graph G of chromatic number 3, x.(u(K,)) =
X(u(Kyn)) =n+1forn >3 and x.(4*(K,)) = x(1*(K,)) =n+2 for n > 4.

These results yield many graphs with special properties having particular circular
chromatic numbers. For example, it follows that there are triangle-free 4-critical graphs
whose circular chromatic numbers are 4. This disproves a conjecture in [16]. It also
follows from these results that there are triangle-free and color-critical graphs G of high

connectivity for which x.(G) < x(G) — 3.

Along the way to proving these results, we also refine some tools used by others in
the study of the relationship between the circular chromatic number and the chromatic
number of a graph. We believe that the results obtained here are just a fraction of a
family of interesting properties concerning the circular chromatic numbers of Mycielski’s

graphs. In Section 5, a few questions are raised.

2 Preliminary results

The connectivity k(G) of a graph G is the minimum non-negative integer k such that
G\ S is disconnected or trivial for some vertex set S of size k. A graph G is k-critical if
X(H) < x(G) = k for any proper subgraph H of G; or equivalently, G is connected and
X(G\ e) < x(G) =k for any edge e in G. The following lemma is surely folkloric:

Lemma 1 If G has no isolated vertices, then k(u(G)) > k(G)+1. If G is k-critical, then
w(G) is (k + 1)-critical.

Proof. Suppose V(G) =V and V(u(G)) =V UV'U{u}. Let S be a subset of V(u(G))
of size k(G). If |SNV| < k(G), then G\ (SNV) is connected. Also, for any vertex x € V/,
x' is adjacent to at least k(@) vertices of V' in u(G). So, any such vertex z’ of u(G)\ S
is adjacent to at least one vertex in G'\ (SN V). And u is adjacent to all such vertices 2’
of n(G)\'S. Thus, u(G)\ S is connected. If |SNV| = k(G), then S C V. Since G has
no isolated vertices, any vertex z € V'\ S is adjacent to some vertex y' in V', which is in
turn adjacent to u. Thus, p(G) \ S is also connected. Therefore, k(u(G)) > k(G) + 1.
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For the proof of the second half of this lemma, assume that G is k-critical. Since
G is connected, so is u(G). Let e be any edge of p(G). We consider the following three

cases.

Suppose e = ab for some a € V and b € V. Let ¢ be a proper (k — 1)-coloring of
G \ e. Then the following ¢’ is a proper k-coloring of u(G) \ e: ¢(z) = ¢(x) for all z € V,
d(x')=k—1forall 2/ € V', and ¢(u) = 0.

Suppose e = ab’ for some ¢ € V and &' € V'. Let ¢ be a proper (k — 1)-coloring of
G\ ab. Then the following ¢ is a proper k-coloring of p(G) \ e: ¢(b) =k —1, d(z) = ¢(x)
for all z € V'\ {b}, d(2') = ¢(x) for all ' € V', and (u) =k — 1.

Suppose e = a’u for some o' € V'. Suppose ¢ is a proper (k — 1)-coloring of G \ a.
Then the following ¢ is a proper k-coloring of u(G) \ e: d(z) = ¢ (2') = ¢(x) for all
zx €V \{a}and d(a) = (d) = (u) =k — 1. i

For an n-coloring ¢ : V/(G) — {0,1,...,n—1} of G, we denote by D.(G) the directed
graph with vertex set V(G) in which there is an arc from z to y if and only if zy € E(G)
and ¢(z) + 1 = ¢(y) (mod n). It was shown in [10], in the corollary of Theorem 1, that
an n-chromatic graph G satisfies x.(G) < n if and only if G has an n-coloring ¢ for which

D.(G) is acyclic. For our purposes in this paper, we refine this result in two respects.

Lemma 2 If zq is a vertex of an n-chromatic graph G for which x.(G) < n, then there
is an n-coloring ¢ of G such that D.(G) is acyclic, c(xy) = 1, and c¢(x) ¢ {0,1} for all

vertices x adjacent to .

Proof. Suppose x.(G) = & < n and d > 1. Then G has a (k,d)-coloring h with
h(z) = d — 1. Define ¢: V(G) + {0,1,...,n — 1} by ¢(v) = || for each v € V(G).
It is straightforward to check that ¢ is a proper coloring, D.(G) is acyclic, ¢(xy) = 1, and

c(x) ¢ {0,1} for all vertices z adjacent to xy. i

Corollary 3 If u(G) with root u satisfies x.(u(G)) < x(u(G)) = n, then there is an
n-coloring ¢ of u(G) such that D.(u(G)) is acyclic, c(u) = 1, and c(z') ¢ {0,1} for
all ' € V'. Moreover, for any such coloring ¢, there is an edge ab € E(G) such that
c(a) =0,¢(b) =1, and ¢(a') = ¢(V).

Proof. Applying Lemma 2 to pu(G) with xy = u, we obtain an n-coloring ¢ such that
D.(u(G)) is acyclic, ¢(u) =1, and ¢(z') ¢ {0,1} for all 2’ € V'. To prove the “moreover”
part, we assume to the contrary that c(a') # ¢(b') for all edges ab € E(G) with ¢(a) =0
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and ¢(b) = 1. Let ¢’ be the coloring defined by ¢'(z) = ¢(x) if ¢(x) ¢ {0,1} and ¢(z) =
c(z") if ¢(x) € {0,1}. It is straightforward to verify that ¢ is an (n — 2)-coloring of G,
contrary to the assumption that x(u(G)) = n. |

Lemma 4 Suppose G is an n-chromatic graph and that there is an n-coloring ¢ : V(G) —
{0,1,...,n—1} of G such that D.(G) is acyclic. Let P be the set of all directed paths of
D.(G). For any P € P, let z(P) be the number of vertices of P which are colored 0 and
let d = max{z(P)+1: P €P}. Ifn>3, then x.(G) <n— 3.
Proof. For each vertex x of G, let P, be the set of all directed paths of D.(G) that
end at x and let {(z) = max{z(P) : P € P,}. Define an (nd — 1, d)-coloring h of G
by h(z) = (¢(x)d + ¢(x)) mod (nd — 1). Since 0 < ¢(x) < n—1and l(z) < d -1, it
follows that 0 < ¢(z)d + ¢(z) < nd — 1 and then h(x) = c(x)d + {(z), except h(z) = 0 for
c(r) =n—1and {(z) = d— 1. We show that h is indeed an (nd — 1, d)-coloring of G.

Suppose zy is an edge of G. Assume that ¢(z) < ¢(y). First consider the case
that 2 < ¢(y) —c(z) < n—2. If ¢(y) <n—2o0rely) =n—1but {(y) < d-—1, then
c(y)d < h(y) < c(y)d+d—1 and c(z)d < h(z) < ¢(x)d + d — 1. Hence,

d<c(y)d— (e(x)d+d—1) < h(y) — h(z) <cly)d+d—1—-c(z)d <nd—-1-d.

If ¢(y) = n—1 and £(y) = d — 1, then h(y) = 0. Since 1 < ¢(z) < n — 3, it follows that
d < h(z) < (n—2)d—1. Hence, d < h(x) — h(y) <nd — 1 —d.

Next, we assume that ¢(y) —c(z) = 1. In this case, zy is an arc of D.(G). Therefore,
Uy) > l(z). If c(y) <m—2o0rc(y) =n—1but l(y) <d—1, then h(y) = c(y)d + £(y)
and h(z) = c(z)d + ¢(x). Hence, d < h( J—h(z)<2d—1<nd—1-d. Ife(y)=n—1

and ((y) = d — 1, then h(y) = 0. Since ¢(z) = n — 2, it follows that (n — 2)d < h(z) <
(n—2)d+d—1. Hence, d < h(x) — h(y) <nd — 1 —d.

Finally, we assume that ¢(y) = n — 1 and ¢(x) = 0. In this case, yz is an arc of
D.(¢) and £(z) > £(y) + 1. Therefore, {(y) < ¢(x) < d — 1. Hence, h(y) = c(y)d + £(y)
and h(z) = £(x) > (y) + 1. It follows that d < h(y) — h(z) < nd — 1 —d. This completes
the proof of the lemma. | |

Corollary 5 Suppose n > 3 and that G is an n-chromatic graph having an n-coloring
¢ such that D.(G) is acyclic. Let P be the set of all directed paths of D.(G). For each
P € P, let s(P) be the number of arcs in P and let s = max{s(P) : P € P}. If

d=[2]+2, then x.(G) <n— 5.



Proof. Since each directed path of D.(G) has at most s arcs, it follows that the path

contains at most [ 2] + 1 vertices with color 0. The result then follows from Lemma 4.

3 Graphs G with x.(u(G)) < x(u(G))

Note that z(K>) is a pentagon that has circular chromatic number 2. Indeed, it is not

difficult to see that for any bipartite graph G, p(G@) has circular chromatic number 2.
The purpose of this section is to study G and m for which x.(u™(G)) < x(u™(G)) — +

for some d.

To work with such graphs, we need to take special care with the names of the
vertices. We now introduce a system for naming the vertices of p™(G). It turns out
that using this naming system provides an easy method for determining the adjacency of

vertices and for telling which vertex is the twin of another vertex at a certain level.

For any two non-negative integers 7 and j, let i&j denote the integer whose binary
representation is the logical “and” of the binary representations of 7 and j. For instance,
14&25 = 01110,&11001, = 01000, = 8 and 10&17 = 01010,&10001, = 00000, = 0.
If i > 0, let f(i) denote the maximum factor of ¢ that is a power of 2. For instance,
f(1) = f(3) =1, f(6) = f(18) = 2 and f(12) = 4. For any graph G and any non-

negative integer m, let GG, be the graph whose

vertex set V(G,,) = {r':2€V(G)and 0 <i<2m}uU{u’:1<i<2™} and
edge set F(G,,) = {2’ :zy € E(G) and i&j = 0} U {z'v/ : i&j = f(j)}U
{u'e +i&j = max{f(i), f(5)} and f(i) # f(4)}.
Note that G = G,.

Lemma 6 For any graph G and any non-negative integer m, G,,11 1S isomorphic to
w(Gr). Consequently, n™(G) =2 G, for any m > 0.

Proof. Consider the function h : V(G,41) — V(1u(Gy,)) defined by:

h(z') = 2 and h(z7?") = (2') for x € V(G) and 0 < i < 2™,

h(u?) = u® and h(u'™?") = (u?)' for 1 < i < 2™,

h(u?") = u.
It is straightforward to check that h is an isomorphism between G, 1 and u(G,,) by using
the following facts:

(i) IF 0 < d,j < 27, then (i +2™)&j = i&(j + 2™) = i&j and (i + 2™)&(j + 2™) =
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(i&j) +2™.
(ii) If 1 <4 < 2™ then f(2™) =2™ > f(i) = f(i +2™).

An induction with the basis G = G, proves that u™(G) = G, for any m > 0. |

It follows from Lemma 6 that for any graph G, we may simply take the definition
of G, as a naming system for the vertices of " (G). For the remainder of this paper, we
use V(Gy,) and E(G,,) to denote the vertex set and the edge set of ™ (G), respectively.
Figure 1 shows p?(G). Note that a link between the two sets {z' : * € V(G)} and
{y/ : y € V(G)} means that i&j = 0, i.e., 2y’ € E(p*(Q)) if and only if zy € E(G); and
a link between {z': x € V(G)} and v/ means i&j = f(j), i.e., z'u’ € E(u*(G)) for all
z € V(G).

Figure 1: 12(G).

Theorem 7 IfG is a graph for which x.(G) < x(G)—5 withd = 2 or 3, then x.(1*(G)) <
X(2(6)) -

Proof. Suppose x(G) =k and that x.(G) <k — 2. Let ¢: V(G) — {0,1,...,dk — 2} be
a (dk — 1,d)-coloring of G. Define ¢ : V(u*(G)) — {0,1,...,dk + 2d — 2} as

dk +d, if i =0 and ¢(x) = dk — d,
i c(z)+dk—1, ifi=2and c¢(z) <d-—2,
@)=\ agr_1 if i =3 and c(z) < d — 2,
c(x), otherwise;

| dk+d—1, ifi=1,
du) =< dk+2d—-2, ifi=2,
dk+d—2, ifi=3

It is straightforward to verify that d < |d'(a) — ¢(b)| < (dk + 2d — 1) — d for each
ab € E(1*(@)) (see Figure 1). Hence ¢ is a (dk + 2d — 1, d)-coloring of 1?(G). i
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,d=2o0r3 and k is a

IS

Corollary 8 If G is a graph for which x.(G) < x(G) —
non-negative integer, then x.(1**(G)) < x(1?*(G)) — %.
For any integer n > 4, in order to find an n-chromatic graph G for which x.(u(G)) <
x(1(@)) — &, we may take any graph H such that x(H) = n —1 and x.(H) < n — 3
(see [17] for a proof of the existence of such graphs) and let G = p(H). It follows from
Theorem 7 that x.(u(G)) = xe(p*(H)) < x(#*(H)) — 3 = x(#(G)) — 5. Therefore there
are many graphs G whose Mycielskians have circular chromatic numbers strictly less than
their chromatic numbers. Our next result concerns graphs obtained by repeatedly taking

Myecielski transformations of a graph.

Theorem 9 If G is a graph of chromatic number n, then x.(u"~*(G)) < x(1"(G)) — 3.
Proof. First of all, we construct a (2n—1)-coloring ¢ of "~ '(K,,) such that D.(u"*(K,))

is acyclic. For the sake of clarity, we first color the vertices of u" 2(K,).

Let the vertices of K, be xy,xs,...,z,. Then by our naming system, the vertex
set of u"?(Ky) is {zf : 1 < j <mand 0 <7< 2"} U{u : 1 <i <22} Let
I'={i:0<ic< 2”_2}. We partition I into subsets I; for 1 < t < n — 1, where
L={iel:272-2"1 <4 <2"2—-2"2} TLet ¢ be the (2n — 1)-coloring of u"2(K,)

defined as follows:

2j—1, if2<j<n-—1,

_ 0, ifj=nandiel, ={2"? -1},
c(xf) =4 2, ifj=1landie UIl,_,
2t, ifje{l,n}andiefor2<t<n-2,
2n—2, ifj=nandi €I, q;

) . .: n73
c(u’):{ 1, if 1 =277,

2t + 4, otherwise, where f(i) = 2.

We first verify that ¢ is a proper coloring of y"~?(K,). The graph ;" ?(K,) has

three types of edges: zizf, u'v’, and ziuf. If 2izf, € E(u" 2(K,)), then j # j' and

i&i’ = 0. It follows that c(z}) # c(z7,), since i&i’ # 0 when i and ' are both in I,

for some 2 < t < n —2. If v'v/ € E(u"%(K,)), then f(i) # f(j), which implies that
c(u?) # c(u?). Suppose ziuf € E(u""?(K,)). Note that u>"" is the only vertex of color 1.
Thus, we may assume that & # 2" 3. Then c(u¥) is an even integer and 4 < c(u¥) < 2n—4.
Suppose to the contrary that both end vertices of the edge x;uk are colored with color

c(z}) = c(uF) = 25 4+ 4, where 2 < 5 +2 < n — 2. It then follows from the definition
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that f(k) =2% j € {l,n},and i € I,,o = {272 — 251 . 272 25 — 1}. However this
implies that i&k # f(k) and hence, z/u* ¢ E(u" *(K,)). Therefore, ¢ is indeed a proper
coloring of u"2(K,).

Next we color the remaining vertices of u"~'(K,) = pu(u"?(K,)). All these ver-
tices will be colored the same color as their twins in p" 2(K,), except that ¢(z2" 1) =

c(u? 2" = 2n — 2 and c(u?" ) = 1.

To verify that ¢ is a proper coloring of u"~'(K,,), it suffices to consider the three
exceptionally colored vertices 2" =1 42" *2"™° ‘and u?"~". The only other vertex with
color 1 is u?" ™", which is not adjacent to u2"~". The only other vertices of color 2n — 2 are
those z, with 0 < i < 2" 3, which are not adjacent to 22" "' and u®" "*2"°. Therefore,

¢ is indeed a proper coloring of "~ (K,).

Next we show that D.(u" '(K,)) is acyclic. ~Assume to the contrary that
D.(u"'(K,)) contains a directed cycle. Note that z2"°~! is the only vertex of color

0. We conclude that this cycle has a length of 2n — 1. It starts with 22" ~~1; and then

n—3 . . . . n—2_ . n—2 n—3
u?" ", which is the unique vertex of color 1 adjacent to z2" "~!; and ends with u?" " 2" *

which is the unique vertex of color 2n — 2 adjacent to z2* ',
Let us call the vertices of this cycle Y = (yo,y1, .- ., Yon_2), where c(y;) = i. There-

2n72 2n72+2n73

_ -1 _ 23
fore, Yo = T, YY1 =1u

,and yo,_0 = u

Define Jf = {a} : 0 <i <27 or0<i—2"2 <2} and I} = {2} i € [, or

i—2"2¢e L} for1 <t<n-—2 Ttiseasy to verify that for any 1 < ¢ < n — 2 and
wixl, € E(u" ' (K,)), if o% € I}, then i&i’ = 0 and so 2% € J;. Moreover, any vertex
zi € Ji is not adjacent to any vertex uF colored by 2t + 2, since 0 < 4 (or i — 2"7?)
< 2=" and f(k) = 27", Since 5, = u*"’, we may conclude that y, € IF. It then follows
that y3 € Ji,ya € I3,y € J3,...,y2n—a € I_,, and yo,_3 € J;_,. Thus, y,_3 is not

i contrary to the assumption that Y is a cycle. Therefore,

adjacent to yop,_o = u
D ("~ '(K,)) is indeed acyclic. Since there is only one vertex colored with color 0, it

follows from Lemma 4 that x.(u" 1(K,)) < 2n—1— 3 = x(u" 1(K,)) — 3.

If G is an arbitrary n-chromatic graph, then there is a homomorphism from G to
K,. Tt follows that there is a homomorphism from p"~'(G) to p" '(K,). Therefore,

Xe (1" HG)) < x(p" N EKR)) = 5 = x(0" (@) — 5 1

The following corollary follows easily from Theorems 7 and 9:

Corollary 10 If G is an n-chromatic graph and t is a non-negative integer, then
(" G) < () —



By Lemma 1, if G is color-critical, then so is ¢ (G). It also follows from Lemma
1 that p™(G) has high connectivity. If G is triangle-free, then so is p™(G). Thus, it
follows from Corollary 10 that there are triangle-free and color-critical graphs G of high
connectivity for which x.(G) < x(G) — L (for example, p*=3(Cs) is such a k-critical
graph). This gives another proof of Theorem 4 in [2], which asserts that there exist
k-critical (k — 1)-connected triangle-free graphs G for which x.(G) <k — 3.

4 Graphs G with x.(u(G)) = x(u(G))

This section investigates graphs G for which x.(u(G)) = x(u(G)). We first prove that

the Mycielskian of any 3-chromatic graph has circular chromatic number 4.
Theorem 11 If x(G) = 3, then x.(u(G)) = x(u(G)) = 4.

Proof. Suppose that, to the contrary, there is a 3-chromatic graph G for which
X(p(G)) < 4. By Corollary 3, there is a 4-coloring ¢ of u(G) such that D.(u(G)) is
acyclic, c(u) =1, ¢(2’) ¢ {0,1} for all 2’ € V'; and there is an edge zy € E(G) such that
c(x) =0,c(y) = 1, and ¢(2’) = c(y'). Assume that c¢ is such a coloring with a least num-
ber of 0-1 edges (i.e., edges with two end vertices colored 0 and 1 respectively). Assume
c(z') = ¢(y') = 2 (the case in which ¢(2') = ¢(y') = 3 is symmetric). Then ¢(z) =1 for
each z € Ng(x), otherwise xyx'z is a directed 4-cycle in D.(u(G)). For each z € Ng(x),
if ¢(2") = 3, then ¢(w) = 0 for each w € Ng(z) \ {z}, otherwise zzw?z' is a directed 4-cycle
in D.(u(G)). We re-color 2’ with color 2 for each z € Ng(z), and re-color z and 2’ with
color 3. Tt is straightforward to verify that this new coloring ¢’ is still a proper 4-coloring
of u(G@) and that D.(G) is acyclic. However ¢’ has fewer 0-1 edges than ¢, contrary to
the choice of c. |

[t was conjectured in [16] that triangle-free n-critical graphs have circular chromatic
numbers strictly less than n. However, it follows from Lemma 1 and Theorem 11 that for
k> 2, u(Cori1) is a triangle-free 4-critical graph that has the circular chromatic number
4. Therefore the conjecture fails for n = 4. We do not know whether the conjecture fails

for any other integer n.

[t was shown in [16] that n-critical graphs of “large girth” have circular chromatic
numbers “close to” n—1. However, it is unknown how large the girth of an n-critical graph
G must be to guarantee that x.(G) < n. For each integer n, let g(n) be the minimum
integer such that any n-critical graph of girth greater than g(n) has x.(G) < n. It follows

10



from the corollary of Theorem 1 in [10] that g(n) < n. The above argument shows that
g(4) > 4 and hence g(4) = 4. It is easy to show that ¢g(3) = 3. The value of g(n) is

unknown for n > 5.

The next four results concern the Mycielskian of the complete graphs K,,. When
n = 2, u(Ks) is the pentagon, and hence has circular chromatic number g It follows from
Theorem 11 that y.(u?(K3)) = 4, and follows from Corollary 8 that x.(u?**t1(Ky)) <
2k + 2+ % In the following we consider the case of n > 3.

Theorem 12 Ifn > 3, then x.(W(K,)) = x(u(K,)) =n + 1.
Theorem 13 Ifn > 4, then x.(u*(K,)) = x(¢*(K,)) = n + 2.

To prove Theorems 12 and 13, it suffices to show that for any (n + 1)-coloring
¢ of u(K,) and any (n + 2)-coloring ¢’ of p?(K,), the directed graphs D.(u(K,)) and
Do (p?(K,)) contain directed cycles (see Lemma 2). However, we prove two stronger

results that seem to be potentially useful for more general graphs.

First, we introduce notation. Suppose G is a graph and that ¢ : V(G) —
{0,1,...,k — 1} is a proper coloring of G. Let C' = (z1,x2,...,2,) be a cycle of G.
We say that C' is consistently colored if there is an index i such that c(z;) < ¢(xi41) <
coo < e(xy) < c(zy) < ... < e(xi—r). We may view the colors as cyclically ordered, such
that ¢ precedes ¢ + 1 and k — 1 precedes 0. Then a cycle C is consistently colored only
if the colors of the vertices of C' are in the same cyclic order as C'. To be precise, for
two colors ¢ and j we let [i,j], denote the set {i,7 + 1,i+ 2,...,;j}, where addition is
carried out modulo k. For example, [2,5]s = {2,3,4,5} and [5,2]s = {5,6,7,0,1,2}. We
let (4,5)r = [i, 7]k — {i,7} and [i, 7))k = [i, 7]k — {j}. Then a cycle C = (1, 29,...,2,,) is
consistently colored if for any index ¢ ¢ {p,p+ 1}, c(xq) & [c(xp), c(zps1)]k-

It is trivial that for any proper coloring of K, there is a consistently colored n-cycle.
In the next two theorems, we show that for n > 3, every proper coloring of p(K,) has a

consistently colored (n + 1)-cycle; and for n > 4, every proper coloring of p?(K,) has a

consistently colored (n + 2)-cycle.

Theorem 14 If n > 3 and ¢ : V(u(K,)) — {0,1,...,k — 1} is a proper coloring of
w(Ky,), then there is a consistently colored (n + 1)-cycle.

Proof. The restriction of ¢ to V' = V(K,,) has a consistently colored n-cycle which

we assume is C' = (29, 29,...,2%). The colors (¢(z?), c¢(29),...,c(x?)) form a cycle with
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respect to the cyclic order of the colors. For each j, we consider the color c(x]l) (recall

that =7 is the twin of 29). If c(z}) € [c(z7), c(27,,)]x for some i ¢ {j — 1,7}, then we
0 0 1 .0 0

obtain an (n+1)-cycle (29, 9,... 27,2}, 29, , ..., 2)) which is consistently colored (note

that 2} is adjacent to both z?,, and z7, hence c(x}) € (c(7), c(2?,,)))-

Assume now that for each j, we have c(z}) € (c(29_,),c(2%,,))r. Let i be the

index such that c(u') € [¢(2?), c(2),,))r. We now consider the relative positions of the

colors ¢(x;), ¢(xl,), and c(u'). If e(u') € (c(x}), c(xi))e C (e(2? ), c(xdy))k, then

(29,29, ... 2 al,ut alyy,2d 0, . 2) is a consistently colored (n+1)-cycle. If ¢(u') €
(k) el € (elolin),elatia))e, them (a9, a8, a0,y wligy a0 s
a consistently colored (n + 1)-cycle. Otherwise c(u') € [e(2?), c(x}))r C (c(z) ), c(x})),
and in this case (29,29,...,20 5,2l | u',z},2d ,2),,...,20) is a consistently colored
(n + 1)-cycle. [

We note from the proof of Theorem 14 that there are two types of consis-

tently colored (n + 1)-cycles in p(K,) (See Figure 2). Type I is an (n + 1)-cycle

Cr(i,j) = (@),...,29, 2}, 27, ...,2)) obtained from the n-cycle C' = (a9, 29,...,2)

2 ’»¥n ’rrn
in K, by adding a vertex zj between

Crr(i) = (2f,...,20, 2} 4, ut, 2} 5,20 5, ..., 20) obtained from the n-cycle in K, by re-

and 29 ,. Type II is an (n + 1)-cycle

- 0 .0 - 1 11
placing ;. ,, 7}, , with x; ,u’, 2, ,.

We call {2, 2, ,} the base of a Type I cycle Cy(i, ) and {x, ), ,, 22, 2}, 4} the
base of a Type II cycle Crr (7).

Ly
3 TP 3 Tgpr Tihe Tiga
Type I cycle Cy(i, j) Type II cycle Crr(i)

Figure 2: Two types of (n + 1)-cycles.

Theorem 15 If n > 4 and ¢ : V(p*(K,)) — {0,1,...,k — 1} is a proper coloring of
12(K,,), then there is a consistently colored (n + 2)-cycle.

Proof. Recall that the vertex set of p?(K,) is (U?_,Vi) U {u',u* v}, where V; = {2" :

x € V(K,)} for 0 < i < 3 (see the naming system introduced in the previous section and
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Figure 1). Then we have five copies of u(K,,) in y?(K,) that are induced by the following
vertex sets: VoUViU{u'}, VouViU{u?}, VouTVaU{u?}, VouVsUu{u'}, VouVzU{u?}. By
Theorem 14, the copy of p(K,) with vertex set Vo5 UV, U {u®} has a consistently colored
(n 4+ 1)-cycle C, s, which is either of Type I or of Type IIL.

Assume to the contrary that p?(K,,) has no consistently colored (n + 2)-cycles. We
consider the relative positions of the above five (n + 1)-cycles C, ;. First of all, the bases
of any two (n + 1)-cycles have at least two common vertices, otherwise their union would
induce a consistently colored (n + 2)-cycle. Therefore, for any two consistently colored
(n + 1)-cycles C; s and C, ¢, one of the following relative positions holds.

(i) Crs = Cy(i,j) and Cp g = Cy(4, ') (see Figure 3).

(ii) Crs = Crr(i) and Cp g = Cy(i,7) or Cry(i) or Cr(i + 2,7) or Crr(i + 2) (see
Figure 4), or vice versa.

(iii) Crs = Cys(i) and Cp g = Cr(i+1, j) or Cr(i+1) (see Figure 5), or vice versa.

H T
Figure 3: Relative position (i).

Claim. If u® is adjacent to all vertices of V,» and u* is adjacent to all vertices of V,, then
(i) or (ii) holds.

Proof. Suppose to the contrary that (iii) holds. For the case in which C, s = C/;(7) and
Cr g = Cr(i+1,7), since x}fl is adjacent to u® (i.e., the dashed line in Figure 5 is an edge

in y*(K,)), we have

0 0 r' s T 0 0 0 0 ,.r s . 5.0 0
(xla"'axi-l—laxjau7xi+27xi+37"'7xn) or (xla"'axiaxi—l—lau7xj7xi+27"'7xn)

is a consistently colored (n + 2)-cycle. Similarly, for the case in which C, = C/(7) and
C g = Crs(i + 1), 2%, is adjacent to u® and so,
0 0 .7

0 0 ' S T 0 0 s a1 s’ ! 0
(@9, ), @0, U B 0, XY gy ) OF (2,2 @ g ut w g, vt X g ayy,

is a consistently ordered (n + 2)-cycle. i

Note that if C, s and C}v ¢ have relative position (i) or (ii), and that Cy ¢ and Cyr g
have relative position (i) or (ii), then C, s and C,» ¢ also have relative position (i) or (ii).

In other words, two (n + 1)-cycles having relative positions (i) or (ii) form an equivalence
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Figure 5: Relative position (iii).

relation among the five (n + 1)-cycles.

This fact along with an application of the above claim to the (n + 1)-cycle pairs
(0272, 0372), (03,2, 03,1), (03,1, 01,1), (0171, 0173) leads to the COHClllSiOIl that 0272 and 0173

have relative positions (i) or (ii).

Suppose C5 5 and C 3 have relative position (ii), say Ca o = Cy/(i) and Cy 3 = C;(4, j)
or Crr(i) or Cy(i +2,j) or Cpy(i +2). If Cyy = Cpy(i) and Cy3 = Cr(i, ), then z; is

adjacent to 27, ; and so

0 0.1 ,2 2.2 0 0 0 0,2 .1 .0 0
(@Y, @, g, vt wd g, s, ) or (2w w T, g a)

is a consistently colored (n + 2)-cycle. If Cyy = Cy7(i) and Cy 3 = Cpr(i), then u? is

adjacent to u? and so

0

0 1 0
(27,..., 27,204, u

n

0

0 .2 2 .3
) or (af,...,x), 2, u,u

3

2,2 0 1,0 0
U T g, T gy T S0y Ty ey L)
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is a consistently colored (n + 2)-cycle. If Cyy = Cr(i) and Cy 3 = Cr(i + 2, j), then x; is

adjacent to 27, , and so

0 0 1.2 0 0 0 0.2 2.2 1 .0 0
(Y, - s s Ty Ty Tigs 5 Tyy)  OF (0], sy w2 g, 5,05 g, )

is a consistently colored (n + 2)-cycle. If Cy, = Cpf(i) and Cy 3 = Cpy(i + 2), then x}, 4 is

adjacent to 27, , and so

0 0 0

0 1 2 0 0 .2 2 .2 1 3.1 0
(29, T g, @y, T, T yg,y oy ) OT (XY, .o, @), ), U, T g, T, U, Ty, Ty

is a consistently colored (n + 2)-cycle.

Suppose Cy9 and (43 have relative position (i), say Css = Cp(i,j) and
Cis = Ci(i,j"). Then j = j', otherwise, 273 is adjacent to x} and so
0 0.2 1 .0 0 0 0,1 .2 0 0
(@Y, @, o wh,aly g, ) or (@Y, @, wh, ah w g, T)

is a consistently colored (n + 2)-cycle. We may assume that both V; U V5 U {u?} and
Vo U V1 U {u®} have only one Type I (n + 1)-cycle, for otherwise the union of two cycles
with different bases is a consistently colored (n + 2)-cycle, or we may choose j,j’ so that
j # j', contrary to the conclusion above. Therefore c(z)), c(z2) € (c(z) ), c(zp,1))k
for each p # j. We may assume that none of V5 U V5 U {u?} and Vo UV} U {u?} has
Type II cycles, for otherwise we may choose U5 and (3 so that they have relative
position (ii), which has been discussed in the previous paragraph. It follows that
c(u?) € ({5 ), c(@Fy )k and c(u?) € (c(zj ), c(xj,,))k, (cf. the proof of Theorem 14).
Note that ¢ # j — 1, j, without loss of generality, we may assume that 1 << j—2<n

and c(u?) € (c(u®), c(x},))e- If i < j — 2, then since u® is adjacent to u?,

0 0,1 .0 0 1 3,2 .2 0 0
(G5 PO 5 0 ST o N 5 SR VA Tl R ) SN
is a consistently colored (n + 2)-cycle. If i = j — 2, then either
0 0 1 2 0 0 0 0 0 .2 .1 3,2 .2 0
(Y, @G gy, 5,0 g, ) o (@Y, T g, wF g ut ut X, T,

is a consistently colored (n + 2)-cycle.

We have omitted some details of the proof, which can be added easily. For example,
we did not explicitly use the condition n > 4, which is a necessary condition. Indeed,
when n = 4, the fourth picture in Figure 4 looks different. The vertices x) ,, z, ; are equal
to a?, 22, respectively. A dashed line should be added between z/,, and 27, ,. However,

a consistently colored (n 4 2)-cycle can still be found in the corresponding cases. i

It follows from Theorems 14 and 15 that for any (n + 1)-coloring ¢ of p(K,) and
any (n+2)-coloring ¢ of u?(K,), the directed graphs D, (u(K,)) and D (u?(K,)) contain

directed cycles. Therefore, Theorems 12 and 13 have been proven.

We close this section with the following conjecture:
Conjecture 1 If n > m+ 2, then x.(W"(K,)) = x("™(K,)) = n + m.
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5 Further research

We have established some results for circular chromatic numbers on Mycielski’s graphs.

However, many questions remain open. We list below some related questions.

Question 1: Given a graph G, what can we say about the sequence (x(u™(G)) —
Xe(p™(G)) : m =1,2,...)7 Does it approach a limit? What are the possible accumulating

points of such a sequence?

It follows from Corollary 10 that there are infinitely many integers m for which
X(1™(@)) = xe(™(G)) > 5. We do not know whether there are infinitely many integers
m for which x(™(G)) — x(4"(G)) < &,

Question 2: What is x.(u"(K,))?

We know that y.(u*(K3)) = x(p?(K3)) = 4, but we do not know the value
Xe(p™(K,)) for any other n.

Question 3: What determines whether x.(u(G)) = x(u(G))?

We have many examples G for which x.(u(G)) = x(1(G)), and also many examples
G for which x.(u(G)) < x(p(G)). However, it seems difficult to characterize those graphs
G for which x.(u(G)) = x(u(G)). For two integers k and d such that k > 2d, G{ is the
graph with vertex set {0,1,...,k—1} in which ij is an edge if and only if d < |i—j| < k—d.
Vince [17] showed that x.(G¥f) = &. It is easy to prove (see [3]) that a graph G is (k, d)-
colorable if and only if there exists a homomorphism from G to G{. Therefore, in the
study of circular chromatic numbers, graphs G¢ play the role of complete graphs in the
study of chromatic numbers. Theorem 12 says that for n > 3, x.(u(K,)) = x(1(Kn))-

An interesting question is:
Question 4: Does x.(u(GY)) = x(4(GY))?

Remark. Question 4 has now been answered in the affirmative in [13].

Acknowledgments. The authors thank the referees for many constructive suggestions

on the revision of this paper.
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