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Abstract

This note presents an infinite family of graphs G for which x.(G) = 4 and for each vertex z
of G, xc(G — z) = 8/3. This gives a negative answer to a question asked in [8].
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Suppose G = (V,E) is a graph and k > 2d are positive integers. A (k,d)-coloring of G is
a mapping f : V — {0,1,---,k — 1} such that for any edge zy of G, d < |f(z) — f(y)| < k —d.
The circular chromatic number x.(G) of a graph G is defined as x.(G) = min{k/d : there exists a
(k, d)-coloring of G}. It is known [1, 5, 8] that x(G) — 1 < x.(G) < x(G), so x.(G) is a refinement
of x(G).

It is obvious that the deletion of any vertex or edge decrease the chromatic number of a
graph by at most 1. For circular chromatic number, it is proved in [7] that the deletion of one edge
decrease the circular chromatic number of a graph by at most 1. Recently, Hajiabolhassan and Zhu
[4] improved this result by showing that x.(G —e) > x(G) — 1 for any edge e of G. This result has

the following interesting corollary.

Theorem 1 If G has circular chromatic number x.(G) > n for an integer n, then G has a subgraph

H with x.(H) = n.

A natural question is whether G has an induced subgraph H with x.(H) = n. This question
is equivalent to ask if every graph G has a vertex  such that x.(G — z) > x(G) — 1. It was shown
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in [7] that for any graph G and for any vertex z of G, x.(G — z) > x(G) — 2. Moreover, this bound
is sharp. For any € > 0, there is a graph G and a vertex x of G such that x.(G —z) < x.(G) —2+e.
The example graph with x.(G — ) < x.(G) — 2+ 1 is obtained by taking the circular complete
graphs K¢ y1)/¢ (which has vertices {0,1,2,---,nt} and i ~ j if and only if t < |i —j| <nt+1—1)
and adding to it a universal vertex u. The resulting graph G has circular chromatic number n + 2,
however, x.(G — u) = Xc(K(nt+1)/t) = n+ 7. For such example graphs, if one delete any vertex
other than the universal vertex u, the decrease of the circular chromatic number is 1. The following

question was asked quite a few times [4, 7, 8], however, it remained open:
Question 1 Is it true that for any graph G there is a vertex x such that x.(G — z) > x.(G) —1 ¢

In this note we give a negative answer to Question 1 by constructing an infinite family of

graphs G with x.(G) = 4, and for any vertex z of G, x.(G — z) = 8/3.

Let Cor41 be the (2k 4+ 1)-cycle and P, be the path with n edges. The Cartesian product
P,0C5k41 has vertices z; j : ¢ =0,1,---,n,j =0,1,---,2k, and in which z; ; ~ z; j if either j = j’

andi=i+x1,ori=4and j=4"+1 (mod 2k+1).

Let G(k,n) be the graph obtained from P,0C54+1 by identifying zo ; with zp2541—; for
j=0,1,---,2k. (Note that the calculation in the second coordinate of the index is modulo 2k + 1.
Thus 2k +1—0=0, i.e., 2o, is identified with z,¢.)

Theorem 2 For any k> 1 andn > 2, x.(G(k,n)) =4. If k > 2 and n > 6, then for any verter
Of G(kan): XC(G(k’n) - .’L’) = 8/3

Proof. The graph G = G(k,n) is actually a quadrangulation of the Klein bottle, and it follows
from a result in [2] that x.(G) = 4. We also note that the special case k = 1 of the first part of the
theorem was proved by Zhou [6], where the proof is quite long. For the completeness of this note,
we give a direct proof, as the argument is also needed to prove that x.(G — z) = 8/3 for any vertex

z of G.

As G is 4-regular, it follows from Brook’s theorem that G is 4-colorable. Thus x.(G) < 4.
Assume to the contrary that x.(G) = r < 4. By a result in [3], G has an orientation D such
that for any circuit C' of G, |C|/|C*| < r and |C|/|C~| < r. In this note, a circuit is denoted by
a cyclic sequence of distinct vertices C = (vg, vy, -+,vUm_1) such that v;v; 1 is an edge of G for

i=0,1,---,m — 1 (the addition in the indices is taken modulo m) and C* = {v;v;41 : v; = V41 I8



an arc of D} is the set of forward edges of C, and C~ = {v;vs41 : viy1 — v; is an arc of D} is the

set, of backward edges of C.

Such an orientation D of G induces an orientation D' of P,0C51, in which the circuit

C(0) = (x0,0,%0,1,%0,2, > To,2r) and the circuit C(n) = (Tn,0,%n,2k> Tn2k—1,">Ln,1) have the
same orientation (because they are a single circuit in G). Thus |C(0)*| = |C(n)*| and |C(0)" | =
|C(n)~ .

For ¢ = 0,1,---,n — 1 and j = 0,1,---,2k, let C(i,j) be the circuit C(i,j) =
(%ij, Tij41, Tit1,j+1, Tit1,5)- (The addition in the second coordinate of the indices is taken modulo
2k + 1). Since |C|/|C(i,j)"| < 4 and |C|/|C(i,7) | < 4, it follows that |C(i, j)*| = |C(i,5) | = 2.

Therefore
n—1 2k

YD (CG, i)t =106 7]) =0.

=0 =0

In the summation above, each edge of P,0C5;1 other than those edges in C'(0) and in C(n)
is contained in two of the circuits C(i,j), once as a forward edge, and once as a backward edge.
Therefore each of these edges contributes 0 to the summation. The edges in C(0) and C(n) are
counted once, in the direction of C(0) and C(n), respectively. So

n—1 2k
0 = > > (CGN-1C6EH)])

i=0 j=0

(COF=1cO)~N) + (CM)T|-IC(n)7])
2(1C(0)*| = 1C©O)7D-

Hence |C(0)*| = |C(0)~|. But this is impossible, as |C(0)*| + |C(0)~| = 2k + 1 is odd, and each of
|C(0)*],|C(0)"| is an integer.

Next we show that for any vertex = of G, x.(G — z) = 8/3. For i > 1, the mapping ¢ defined
as ¢(zy j) = xy—;; for i <i' <n—1and ¢(xy ;) = Ti'—itn,2k+1—; is an automorphism of G(k,n).
Also the mapping ¢ defined as ¢(x; ;) = *;2kr4+1—; is an automorphism of G(k,n). Therefore, we

may assume the deleted vertex x = 1 ; for some 0 < j < k.

First we show that x.(G — ) > 8/3. Assume x.(G —z) = r < 8/3, where = ;. Again
let D be an orientation of G — z for which |C|/|Ct| <r and |C|/|C~| < r. Similarly let D' be the
orientation of P,0Cy1 — 1,; induced by D. We consider the circuits C; ; as defined in the proof
above, except that the four circuits Co j_1,Co,j, C1,j—1, C1,; are replaced by a single circuit C* which
is the symmetric difference of Cy ;_1,Co,;,C1,j-1,C1,5. Now |C*| = 8. Since |C*|/|(C*)T| < 8/3
and |C*|/|(C*)~| < 8/3, it follows that |[(C*)*| = |(C*)~| = 4. The rest of the argument is the



same as in the previous paragraph, which leads to the same contradiction.

It remains to prove that x.(G—=) < 8/3. If k > 3, then the mapping f defined as f(z; ;) = z; ;
for j <2k —2 and f(zi2k-1) = Ti2k—3 and f(@;2k) = Ti26—2 is a homomorphism from G(k,n) to
G(k—1,n). If n > 8, then the mapping f defined as f(x; ;) = x;j fori <n—3 and f(zin_2) = Tin—4a
and f(%;in—1) = %in—3 is a homomorphism from G(k,n) to G(k,n—2). Therefore it suffices to show
that G(2,6) — z is (8, 3)-colorable for any vertex z of G(2,6), and G(2,7) — x is (8, 3)-colorable for
any vertex z of G(2,7). As mentioned above, by symmetry, we may assume that = z; ; for some

0 < j < 2. Figures 1 and 2 below give (8, 3)-colorings of G — z, for = x1,9,21,1 and z; 2, and for

G =(G(2,6) and G = G(2,7), respectively. |
0 0
3 3
o 0 | 4
6 2 6 6
o
2 6 3 6 7 6
5 7 2
7 %J%% 1 1 6 2, 3
2 5 4 7 5 U
4 6 4 1 6 5 1 6
7 7 3 0 3
1 — 61 3 1 — 6 3 1 Y 2
4 7 4 0 4 7
6 3 0 6 0 6 3 7
1 4 1 S5 1 4

Figure 1: (8, 3)-coloring of G(2,6) — =

Although the infinite family of graphs presented here give a negative answer to Question 1,

there are still many questions remain unanswered.
Question 2 1. Are there n-chromatic graphs G for some n > 5 such that for any vertexr x,

XC(G) _XC(G _'7;) >17

2. Is there a graph G such that for every vertex x of G, x.(G) — xc(G — z) > 2 — € for some
€<2/3 ? Or even for any e >0 ¥

3. Does there exist a graph G for which x.(G) # x(G) and yet there is a vertex x of G such that
Xe(G) — xc(G—2)>1 7%



5 3 3 3 4 3
1 6 2 6 1 6
2 6 3 6 7 6
3 1 2 3
7 4 1 1 6 2 7 3
2 5 4 7 5 0
| 6
2 4 4 1 5 4 4 0
5 0 7 2 3 5
| 6
5 5 7 7 4 0 4 1 5
0 3 2 5 7
1 6 32 7 301 2
4 7 4 7
6 3 0 6 3 0o 6 7
1 4 1 5 1 4

Figure 2: (8,3)-coloring of G(2,7) — x

References

[1] J. A. Bondy and P. Hell, A note on the star chromatic number, J. Graph Theory 14 (1990)
479-482.

[2] M. DeVos, L. Goddyn, B. Mohar, D. Vertigan and X. Zhu, Coloring-flow duality of graphs on

surfaces, manuscript, 2002.

[3] L. A. Goddyn, M. Tarsi, and C. Q. Zhang, On (k,d)-colorings and fractional nowhere-zero
flows, J. Graph Theory, 28(1998), 155-161.

[4] H. Hajiabolhassan and X. Zhu, The circulr chromatic number of subgraphs, manuscript, 2001.
[5] A. Vince, Star chromatic number, J. Graph Theory 12 (1988) 551-559.

[6] B. Zhou, Some theorems concerning the star chromatic number of a graph, J. Comb. Theory

(B), 70(1997), 245-258.
[7] X. Zhu, Star chromatic numbers and products of graphs, J. Graph Theory 16 (1992), 557-569.

[8] X. Zhu, Circular chromatic number, a survey, Discrete Mathematics, 229(1-3)(2001), 371-410.



