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Abstract

This note presents an infinite family of graphs G for which x.(G) = 4 and for each vertex z
of G, xc(G — z) = 8/3. This gives a negative answer to a question asked in [8].
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Suppose G = (V, E) is a graph and k > 2d are positive integers. A (k,d)-coloring of G is
a mapping f : V — {0,1,---,k — 1} such that for any edge zy of G, d < |f(z) — f(y)| < k — d.
The circular chromatic number x.(G) of a graph G is defined as x.(G) = min{k/d : there exists a
(k,d)-coloring of G}. It is known [1, 5, 8] that x(G) — 1 < x.(G) < x(G), so x.(G) is a refinement
of x(G).

As x(G)—1 < x(G—=z) < x(Q) for every vertex z of G, it follows that x.(G) —2 < x.(G—z) <
Xc(G). How small can x.(G —x) be? It was shown in [7] that for any € > 0 there is a graph G which
contains a vertex x such that x.(G — z) < x.(G) — 2 + €. But it is natural to ask whether every
graph G must contain a vertex z with x.(G — z) > x.(G) — 1. This question was posed in [7] and
remained open until now: in this paper we give a negative answer by constructing an infinite family

of graphs G with x.(G) = 4 and x.(G — z) = 8/3 for every vertex z of G.

A corresponding question can be asked regarding edge deletion. In this case it was proved
already in [7] that x.(G — e) > x.(G) — 1 for every edge e of G. Recently, Hajiabolhassan and Zhu
[4] strengthened this inequality to x.(G —e) > x(G) — 1. From this result it follows that any graph
G with x.(G) > n for an integer n has a subgraph H with x.(H) = n. We cannot always take H
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to be an induced subgraph here, since this would require that any graph G has a vertex x for which

Xc(G — x) > x(G) — 1, and by our construction this might not be possible.

Let Csy1 be the (2k + 1)-cycle and P, be the path with n edges. The Cartesian product
P,0C5p41 has vertices z; ; : ¢ =0,1,---,n,5 =0,1,---,2k, and in which «; ; ~ xy j if either j = j’

andi=i+1,ori=¢and j=35"+1 (mod 2k+1).

Let G(n,k) be the graph obtained from P,0C541 by identifying o ; with x, og41—; for
j=0,1,---,2k. (Note that the calculation in the second coordinate of the index is modulo 2k + 1.
Thus 2k +1—0=0, i.e., xo, is identified with z,¢.)

Theorem 1 For any k> 1 and n > 2, x.(G(n,k)) =4. If k > 2 and n > 6, then for any vertez x
Of G(nv k)’ XC(G(n) k) - 1‘) = 8/3

Proof. The graph G = G(n,k) is actually a quadrangulation of the Klein bottle, and it follows
from a result in [2] that x.(G) = 4. We also note that the special case k = 1 of the first part of the
theorem was proved by Zhou [6], where the proof is quite long. For the completeness of this note,
we give a direct proof, as the argument is also needed to prove that x.(G — z) = 8/3 for any vertex

z of GG.

As G is 4-regular, it follows from Brooks’ theorem that G is 4-colorable. Thus y.(G) < 4.
Assume to the contrary that x.(G) = r < 4. By a result in [3], G has an orientation D such that
for any cycle C of G, |C|/|CT(D)| <r and |C]/|C~(D)| < r.

Such an orientation D of G induces an orientation D’ of P,0C511, in which the circuit
C(O) = (37070,56071,56072, v ,56072]4,) and the circuit C’(n) = ($n70,$n72k,$n72k_1, v ,Zlﬁml) have the
same orientation (because they are a single circuit in G). Thus |[C(0)T(D)| = |C(n)*(D)| and

|C(0)~(D)| = |C(n)~(D)].

For ¢ = 0,1,---,n — 1 and 5 = 0,1,---,2k, let C(i,j) be the circuit C(i,j) =
(%i,5, Tij+1, Tit1,j+1, Tit1,5). (The addition in the second coordinate of the indices is taken modulo
2k + 1). Since |C|/|C(i,5)T(D)] < 4 and |C|/|C(i,5)" (D)| < 4, it follows that |C(i,5)"(D)| =
|C(i,j)~ (D)| = 2. Therefore

n—1 2k

>N (C, )T (D) - |CE,4) (D)) = 0.

i=0 j=0

In the summation above, each edge of P,0C5+; other than those edges in C(0) and in C(n)

is contained in two of the circuits C(i, ), once as a forward edge, and once as a backward edge.



Therefore each of these edges contributes 0 to the summation. The edges in C(0) and C(n) are

counted once, in the direction of C'(0) and C(n), respectively. So

n—1 2k

0 = > > (CGH"D)~ICEH™ (D))

i=0 j=0

= (ICOT(D) - cO) (D)) + (IC(n)"(D)] = |C(n) (D)])
= 2(C(0)" (D) - [C0)~(D)]).

Hence |C'(0)™(D)| = |C(0)~(D)|. But this is impossible, as |C'(0)"(D)| + [C(0)~(D)| = 2k + 1 is
odd, and each of |C'(0)™(D)|,|C(0) (D)] is an integer.

Next we show that for any vertex = of G, x.(G — ) = 8/3. For i > 1, the mapping ¢ defined

as

$lwp ) =3 TV ifi<i'<n-—1
v Ti—ign2k+1—j, Otherwise

is an automorphism of G(n, k). Also the mapping ¢ defined as 9 (z; ;) = ®;254+1—; is an automor-

phism of G(n, k). Therefore, we may assume the deleted vertex « = 1 j« for some 0 < j* < k.

First we show that x.(G — z) > 8/3. Assume Xx.(G —z) = r < 8/3. Again let D be an
orientation of G — z for which |C|/|CT(D)| < r and |C|/|C~(D)| < r for each circuit C' of G.
Similarly let D’ be the orientation of P,,0C541 — x1 ;- induced by D. We consider the circuits
C;; as defined in the proof above, except that the four circuits Co j«_1,Cp,j=,C1 j-—1,Ch j~ are
replaced by a single circuit C* which is the symmetric difference of Cy j«_1,Co j«, Ci j«—1,C1 j+. Now
|C*| = 8. Since |C*|/|(C*)T(D)| < 8/3 and |C*|/|(C*)~(D)| < 8/3, it follows that |(C*)*(D)| =
[(C*)~(D)| = 4. The rest of the argument is the same as in the previous paragraph, which leads to

the same contradiction.

It remains to prove that x.(G — z) < 8/3. If n > 8, then the mapping f defined as

fas) = {50 iSRS
is a homomorphism from G(n, k) — z to G(n — 2,k) — z. Therefore, it suffices to consider the case
that n=6andn=7. If k>3 and j* #k—1,k,k+ 1,k + 2, then let f be the mapping defined as
f@M):{ixlb g2§{§§22k
It is straightforward to verify that f is a homomorphism from G(n, k) —z1 j« to G(n,k—1)— f(x1 j+).
If k>5and j* € {k—1,k,k+ 1,k + 2}, then let f be the mapping defined as

Tij, lfj :0)1)
) w2, 25 <2k-2;
F@ii) =94 oo, ifj=2k—1;

Ti,2k—4, lf] = 2k.



Then f is a homomorphism from G(n, k) — 21 ;- to G(n,k —2) — f(x1 ). Therefore it suffices to
show the following:

1. G(6,2) — z1 ;- is (8, 3)-colorable for j* = 0,1, 2.

2. G(7,2) — 1 ;- is (8, 3)-colorable for j* =0,1,2.

3. Gg 3 — a1 4+ is (8,3)-colorable for j* = 2, 3.

4. G735 — 1,4+ is (8, 3)-colorable for j* = 2, 3.

5. Gga — x1,4+ is (8, 3)-colorable for j* = 3.

)

6. G7,4 — 1,5+ is (8,3)-colorable for j* = 3.

Figures 1, 2, 3 should be here.

Figures 1-3 give the required (8, 3)-colorings of G — z for each of the above cases. |

Although we have an infinite family of graphs G such that x.(G — z) < x.(G) — 1 for each
vertex x, all these graphs G have the same circular chromatic number, and all the subgraphs G — x
also have the same circular chromatic number. It would be interesting to know whether these are
the exception cases, or there are other examples. In particular, it would be interesting to answer

the following questions.

Question 1 Are there n-chromatic graphs G for some n > 5 such that for any vertex z, x.(G) —

Xe(G—2)>17

Question 2 Are there graphs G such that for every vertex x of G, x:(G) — x.(G —x) > 2 — € for

some € < 2/3 ¢ Or even for anye >0 ?

Question 3 Are there graphs G for which x.(G) # x(G) and yet there is a vertex x of G such that
Xe(G) = xc(G—xz)>17%
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Figure 1: (8,3)-coloring of G(6,2) — z and G(7,2) — z
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Figure 2: (8,3)-coloring of G(6,3) — = and G(7,3) — z
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Figure 3: (8, 3)-coloring of G(6,4) — x and G(7,4) — z



