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Abstract

We shall prove that for any graph H which is a core, if x(G) is
large enough, then H x G is uniquely H-colorable. We also give a new
construction of triangle free graphs which are uniquely n-colorable.

All graphs considered in this paper are finite. Suppose G and H are graphs.
An H-coloring of G is a mapping f from V(G) to V(H) such that f(z)f(y)
is an edge of H whenever zy is an edge of G. An H-coloring of G is also
called a homomorphism from G to H. We say G is H-colorable if there exists
an H-coloring of G. Two graphs G and H are homomorphically equivalent
if G admits a homomorphism to H (i.e., G is H-colorable) and H admits
a homomorphism to G. It is easy to see that a graph G is K,-colorable if
and only if G is n-colorable. Indeed, a K,-coloring of GG corresponds to an
n-coloring of G.

A graph H is a core if H is not H'-colorable for any proper subgraph
H' of H. A graph G is said to be uniquely H-colorable, if there exists an
H-coloring f of G such that f(V(G)) = V(H) and for any other H-coloring
f" of G, f'is the composition f o o of f with an automorphism o of H.
Again, when H = K, the concept of uniquely K,-colorable coincides with
the concept of uniquely n-colorable.

Suppose H is a core. Let C'(H) be the graph whose vertices are all the
mappings from V' (H) to V(H) which are not automorphisms of H. Two such
mappings f and g are adjacent in C(H) if for every edge zy of H, f(x)g(y)
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is also an edge of H. First we note that C'(H) has no loops. Indeed, if f is
adjacent to f, then for any edge zy of H, f(x)f(y) is also an edge of H, i.e.,
f is a homomorphism of H to H. Since H is a core, any homomorphism of H

to H is an automorphism. As the vertices of C'(H) are not automorphisms
of H, it follows that C'(H) has no loops.

For graphs G' and H, the categorical product H x G has vertex set {(z,y) :
z € V(H),y € V(G)}. Two vertices (z,y) and (2',y') are adjacent in H x G
if and only if  and 2z’ are adjacent in H, y and 3 are adjacent in G.

Theorem 1 If G is a connected graph which does not admit a homomor-
phism to C(H), then H x G is uniquely H-colorable.

Proof. The mapping defined as ¢(h, x) = h is a homomorphism of H X G to
H. Suppose there is another homomorphism ¢ from H x G to H, which is
not a composition of ¢ with an automorphism of H. Let x be any vertex of
G. Consider the mapping 1, from V(H) to V(H) defined as ¢, (h) = ¢(h, ).
If ¢, is an automorphism of H, then for any vertex y adjacent to x, we must
have 1(h,y) = ¥ (h,z) for all h € V(H), for otherwise, suppose ¥ (h*,y) #
Y(h*,x), then the mapping f defined as f(h) = ¢(h,z) for h # h*, and
f(h*) = (h*,y) would be a homomorphism from H to H, which is not one
to one, contrary to the assumption that H is a core.

Since G is connected, this implies that ¢, = ¢ for all 2’ € V(G). As 1,
is an automorphism of H, it follows that ¢ is a composition of ¢ with the
automorphism v, of H, contrary to choice of 1.

Therefore for any vertex x of G, v, is not an automorphism of H, i.e.,
Y, is a vertex of C'(H). It is easy to see that if zy is an edge of G, then
Y1)y is an edge of C(H), ie., f : V(G) — C(H) defined as f(x) = 1, is
a homomorphism from G to C'(H), contrary to the assumption that G does
not admit a homomorphism to C'(H). |

It is well-known, and also easy to see that C'(K,) is homomorphically
equivalent to K,,. Indeed, the constant mappings in C'(K,) induces a copy
of K, in C(K,), which shows that K, admits a homomorphism to C(K,).
On the other hand, for any mapping ¢ € C(K,), there are two vertices
i # j of K, such that g(i) = ¢g(j). Choose any such two vertices 7, j and
let f(g) = g(i) = g(j). Then it is easy to verify that f is a homomorphism
from C'(K,) to K,.. Therefore a graph G' admits a homomorphism to C'(K},)
if and only if G is n-colorable. Thus the following result of Greenwell and
Lovész [2] follows from Theorem 1:

Corollary 1 ([2]) If G is not n-colorable, then K, X G is uniquely n-
colorable.



It is easy to see that the odd girth of H x (G is at least as large as the odd
girth of GG, and that if G has chromatic number larger than the chromatic
number of C(H), then G does not admit a homomorphism to C(H). Since
there are many known methods to construct graphs of arbitrarily large girth
and arbitrarily large chromatic number (cf. [4, 5, 7, 8, 9]), we have the
following corollary:

Corollary 2 If H is a core, then for any integer g, there is a graph G with
odd girth at least g such that G is uniquely H-colorable.

In [13], we have given a probabilistic proof of a stronger result, namely, if
H is a core then there exist uniquely H-colorable graphs of arbitrarily large
girth. An explicit construction of such graphs for general H remains open.

For a pair of integers k, d such that k > 2d, let G¢ be the graph which has
vertices {0,1,---,k—1} and in which ij is an edge if and only if d < |i—j| <
k —d. A G¢-coloring of a graph G is also called a (k, d)-coloring of G. The
circular chromatic number x.(G) of a graph G is defined to be the infimum
of the ratios k/d for which there exists a (k,d)-coloring of G. The circular
chromatic number is a generalization of the chromatic number, introduced
by A. Vince [11] in 1988, as the star chromatic number. It is known [11]
that for any graph G we have x(G) — 1 < x.(G) < x(G). Therefore x.(G)
is indeed a refinement of x(G), and thus x(G) is an integral approximation
of x.(G). For a given rational number r > 2, the question whether there
exist graphs of arbitrarily large girth and circular chromatic number r was
investigated in [13], and a positive answer was obtained by using probabilistic
method. Recently, Kirsch [3] gave constructive proof of the result that there
exist graphs G of arbitrarily large odd girth with x.(G) = r, by using the
categorical product of graphs. We note that this result also follows from
Corollary 2.

Corollary 3 ([3]) For any rational k/d > 2 and any integer g, there is a
graph G of odd girth at least g such that x.(G) = k/d.

Proof. Suppose k/d > 2, and that k,d are coprime. It was proved in
[1, 11, 14] that G¢ does not admit homomorphisms to any of its proper
subgraphs, i.e., G¢ is a core. It was proved in [10] that if a graph G is
uniquely G¢-colorable, then x.(G) = k/d. Thus Corollary 3 follows from
Corollary 2. [ |

Next we present a different method of constructing triangle free graphs
which are uniquely n-colorable. Earlier methods of constructing such graphs
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were given by Nesetfil [7], and Greenwell and Lovdsz [2]. The method given
here is a slight modification of the method given by Zhou in [12] that con-
structs triangle free graphs with circular chromatic number n for any integer
n. Note that uniquely n-colorable graphs have circular chromatic number n
([10]), therefore the result below is a strengthening of the above mentioned
result of [12].

Given an integer m let G;(m) be the sets of graphs constructed recursively
as follows:

The set G;(m) consists of all the graphs which have at least m vertices
and no edges. Suppose G;(m) is defined, and the vertex set of each graph
G € G;(m) is the union of i independent sets V; U Vo U ---V;. Then for
each graph G € G;(m), let G' be any graph constructed as follows: for each
independent set X of G such that |[XNV;| =2for j =1,2,---,4, add vertices
Ty, Ta, -+, Tp(x), where k(X) > 1, and join each z; to all the 2i vertices of
X. Here the number k(X) is an arbitrary integer which is at least 1, and
k(X) can be different from k(Y) when X # Y. All the added vertices form
an independent set of G;;1(m), which is denoted by V;;1. The set G;i1(m)
consists of all the graphs G’ constructed from graphs G € G;(m) in such a
way.

We shall prove that when m is large enough, then each graph G € G,,(m)
is uniquely n-colorable. To be precise, we have the following result:

Theorem 2 If m > 4n(n — 2) + 1, then for any graph G € G,(m), G is
triangle free and uniquely n-colorable graph.

Proof. It can be proved easily by induction on n that each graph G in G,,(m)
is triangle free. We shall also prove by induction on n that each graph G in
Gn(m) is uniquely n-colorable. When n =1 or 2, this is trivial.

Suppose the statement above is false and that n is the minimum integer
for which there is a graph G € G,(m) which is not uniquely n-colorable,
where m > 4n(n — 2) + 1.

Note that there is a trivial n-coloring of G, i.e., the coloring ¢ defined as
c(x) =i for all x € V;. Since G is not uniquely n-colorable, there is another
n-coloring ¢’ of G.

By the pigeon hole principle, there is an index j such that [VyNd~!(5)] >
4(n — 2) + 1. Without loss of generality, we assume that |V, N ¢~'(1)] >
4n—2)+1. Let Vi =Vind™(1). For j =2,3,---,n, we define the sets
Vi as follows:



Vo ={reVa:|N(z)n V| >1},
where N(z) is the set of vertices of G adjacent to x.

Suppose V)7 is defined for all j* < j. Then

Vi={zcV;:|N@@)nVji|=2forj=2,---,j — Land [N(z) N V| > 1}.

We denote by H the subgraph of G induced by the subset U7,V of
vertices.

First we show that H is a member of G, 1(4(n — 1)(n — 3) +1).

It follows trivially from the definition that |V;| > 4(n—1)(n—3)+1. To
prove that H € G,, 1(4(n — 1)(n — 3) + 1), it suffices to show the following:

(1): for any integer 2 < 7 < n — 1, and for any independent set X of
Vo UV U -+~ UV such that [X NV =2 for j =2,3,---,i, there exists a
vertex ¥ € V%, such that x is adjacent to each element of X;

(2): each vertex of V%, is adjacent to exactly two vertices of V* for
J=2,3,--+,i, and that these 2(i — 1) vertices form an independent set of H.

Statement (2) follows from the definition. To prove (1), we first show
that there are two vertices of Vi, say u and v, such that at least one of u,v
is in V}* and that X U {u,v} is an independent set of G. This follows from
the fact that each vertex of X is adjacent to at most two vertices of V|* and
that [V*] > 4(n —2) + 1.

By the way that we construct the graph G, there is a vertex x € V; 4
which is adjacent to each vertex of X U {u,v}. By definition, 2 € V.
This proves that H is indeed a member of G, ;(m). Hence H is uniquely

(n — 1)-colorable by the induction hypothesis.

As each vertex of H is adjacent to a vertex of V; N ¢(1), none of the
vertices of H is colored by color 1 by ¢’. Therefore the restriction of ¢’ to
H is the unique (n — 1)-coloring of H. Without loss of generality, we may
assume that ¢(x) =i for each x € V;* and for i =2,3,-- -, n.

Let  be any vertex of V;. We shall show that for each i = 2,3,---,n,
there is a vertex z € V;* such that z is adjacent to z. By the definition of V;*,
this amounts to proving that there is an independent set X such that z € X
and XNV #£0, [XNVi|=2and [XNV|=2for j=2,3,---,i— 1. The
existence of such an independent set is trivial. Indeed, we may choose any
y e Vi —{z}. Let



Se = {v € V : v is not adjacent to x and y}.

Then sy = |Sy| > (“/1*2‘_2). Arbitrarily take two vertices, say s, 2, of Ss.
Let

Ss = {v € V5" : v is not adjacent to any of {x,y, s, y2}}.
An argument similar to that in the third previous paragraph shows that
S — 2
s3 = |Ss| > < 2 5 > Repeat this process, we will find an independent set

X = {z,y,72,92,%3,Y3, -+, Ti_1,Yi—1} such that z;,y; € V* and y € V}".
Hence there is a vertex z € V;* such that z is adjacent to each vertex of X,
and hence adjacent to x. Therefore ¢/(z) # i fori = 2,3, ---,n, which implies
that ¢/(z) = 1. As z is an arbitrary vertex of V}, we conclude that V;* = Vi,
and hence V' =V} for j = 1,2,3,---,n. This implies that ¢ = ¢, contrary
to our assumption that ¢ is another n-coloring of G. i
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