Adapted list colouring of planar graphs

Louis Esperet* Mickaël Montassier ${ }^{\dagger}$ Xuding Zhu ${ }^{\ddagger}$

Abstract

Given a (possibly improper) edge-colouring F of a graph G, a vertex colouring of G is adapted to F if no colour appears at the same time on an edge and on its two endpoints. If for some integer k, a graph G is such that given any list assignment L to the vertices of G, with $|L(v)| \geq k$ for all v, and any edgecolouring F of G, G admits a colouring c adapted to F where $c(v) \in L(v)$ for all v, then G is said to be adaptably k-choosable. In this note, we prove that K_{5}-minor-free graphs are adaptably 4 -choosable, which implies that planar graphs are adaptably 4-colourable and answers a question of Hell and Zhu. We also prove that triangle-free planar graphs are adaptably 3-choosable and give negative results on planar graphs without 4-cycle, planar graphs without 5 -cycle, and planar graphs without triangles at distance t, for any $t \geq 0$.

Keywords: Adapted colouring, list colouring, planar graphs.
Mathematical Subject Classification: 05C15

1 Introduction

The concept of adapted colouring of a graph was introduced by Hell and Zhu in [9], and has strong connections with matrix partition of graphs, graph homomorphisms, and full constraint satisfaction problems $[4,6,7,10]$. The more general problem of adapted list colouring of hypergraphs was then considered by Kostochka and Zhu in [11], where an application to job assignment problems was also given.

[^0]In this note, we study adapted list colourings of simple graphs. Let G be a simple graph (that is, without loops nor multiple edges), and let $F: E(G) \rightarrow \mathbb{N}$ be a (possibly improper) colouring of the edges of G. A k-colouring $c: V(G) \rightarrow\{1, \ldots, k\}$ of the vertices of G is adapted to F if for every $u v \in E(G), c(u) \neq c(v)$ or $c(v) \neq F(u v)$. In other words, the same colour never appears on an edge and both its endpoints. If there is an integer k such that for any edge colouring F of G, there exists a vertex k-colouring of G adapted to F, we say that G is adaptably k-colourable. The smallest k such that G is adaptably k-colourable is called the adaptable chromatic number of G, denoted by $\chi_{a d}(G)$.

Note that in [9] and [11], the authors require that the edge colouring F is a k-colouring. Even though we enable F to take any integer value, it is easy to see that our definition is equivalent to the original definition (whereas its extension to adapted list colouring is more natural). Let $L: V(G) \rightarrow 2^{\mathbb{N}}$ be a list assignment to the vertices of a graph G, and F be a (possibly improper) edge colouring of G. We say that a colouring c of G adapted to F is an L-colouring adapted to F if for any vertex $v \in V(G)$, we have $c(v) \in L(v)$. If for any edge colouring F of G and any list assignment L with $|L(v)| \geq k$ for all $v \in V(G)$ there exists an L-colouring of G adapted to F, we say that G is adaptably k-choosable. The smallest k such that G is adaptably k-choosable is called the adaptable choice number of G, denoted by $\mathrm{ch}_{a d}(G)$.

Since a proper vertex k-colouring of a graph G is adapted to any edge colouring of G, we clearly have $\chi_{a d}(G) \leq \chi(G)$ and $\operatorname{ch}_{a d}(G) \leq \operatorname{ch}(G)$ for any graph G, where $\chi(G)$ is the usual chromatic number of G, and $\operatorname{ch}(G)$ is the usual choice number of G. Using the Four-Colour Theorem and a theorem of Thomassen [13], this proves that for any planar graph $G, \chi_{a d}(G) \leq 4$ and $\mathrm{ch}_{a d}(G) \leq 5$. In [9], Hell and Zhu proved that there exist planar graphs that are not adaptably 3 -colourable, and asked whether it would be possible to prove that every planar graph is adaptably 4 -colourable without using the Four-Colour Theorem.

A graph H is called a minor of G if a copy of H can be obtained by contracting edges and/or deleting vertices and edges of G. A graph is said to be H-minor-free if it does not have H as a minor. Planar graphs are known to be a proper subclass of K_{5}-minor-free graphs. In this note, we answer to the question of Hell and Zhu by proving the following stronger statement:

Theorem 1 Every K_{5}-minor-free graph is adaptably 4-choosable.

Observe that this does not hold for the usual list colouring, since Voigt [15] proved that there exist planar graphs which are not 4-choosable.

Triangle-free planar graphs are known to be 3-colourable [5, 14] and 4-choosable (it is easy to prove that they are 3-degenerate using Euler Formula). On the other hand Voigt [16] proved that there exist triangle-free planar graphs that are not 3-choosable. In Section 3, we prove the following theorem:

Theorem 2 Every triangle-free planar graph is adaptably 3-choosable.

In Section 4, we investigate a problem related to a question of Havel [8]. We prove that for all t, there exist planar graph without triangles at distance less than t, which are not adaptably 3 -choosable. In Sections 5 and 6 , we prove that there exist planar graphs without 4 -cycles, and planar graph without 5 -cycles, which are not adaptably 3 -colourable. These negative results seem to indicate that it may be hard to have a weaker hypothesis in Theorem 2.

$2 \quad K_{5}$-minor-free graphs

Theorem 1 is a consequence of Lemma 2.3 in this section. Note that the adaptable 4 -choosability of planar graphs can be deduced directly from Lemma 2.1.

Lemma 2.1 Let G be an edge-coloured plane graph, and let $C=\left(v_{1}, \ldots, v_{k}\right)$ be its outer face. Let ϕ be an adapted colouring of v_{1} and v_{2}. Suppose finally that any vertex $v \in C$ distinct from v_{1} and v_{2} has a colour list $L(v)$ of size at least three and every vertex $v \in V(G) \backslash C$ has a colour list $L(v)$ of size at least four. Then the colouring ϕ can be extended to an adapted L-colouring of G.

Proof. We prove this lemma by induction on $|V(G)|$. If $|V(G)|=3$, the assertion is trivial. Suppose now that $|V(G)| \geq 4$ and assume that the assertion is true for any smaller graphs.

Since the subgraph G_{C} of G induced by C is an outerplanar graph, it contains two vertices v_{i} and v_{j} of degree at most two which are not adjacent in G_{C} and which are not cut-vertices of G_{C}. These vertices v_{i} and v_{j} are neither cut-vertices of G nor incident to a chord of C, and one of them (say v_{i}), is distinct from v_{1} and v_{2}. Let $\alpha \in L\left(v_{i}\right)$ be a colour distinct from the colours of the edges $v_{i} v_{i+1}, v_{i} v_{i-1}$. For each neighbour x of v_{i} not in C, we remove the colour α from the colour list of x. Applying the induction hypothesis to $G \backslash v_{i}$ and then colouring v_{i} with α yields an adapted list colouring of G.

Lemma 2.2 Let G be an edge-coloured plane graph. Suppose that every vertex v of G has a list $L(v)$ of size at least four. Let H be a subgraph of G isomorphic to K_{2} or
K_{3}, and let ϕ be an adapted L-colouring of H. Then ϕ can be extended to an adapted L-colouring of G.

Proof. Let G be a counterexample with minimum order. If H is isomorphic to K_{2}, then consider a face incident to H as the outer face and apply Lemma 2.1 to this planar embedding of G.

Assume now that H is isomorphic to K_{3} and $V(H)=\{u, v, w\}$. If H is a separating 3-cycle, then let G_{1} (resp. G_{2}) be the graph induced by the vertices of H and the vertices inside (resp. outside) of H. By the minimality of G, extending ϕ to G_{1} and to G_{2} yields an adapted L-colouring of G. Suppose now that H is not a separating 3 -cycle, and assume that H bounds the outer face of G. Let $G^{\prime}=G \backslash w$ and let L^{\prime} be the list assignment defined by $L^{\prime}(x)=L(x) \backslash\{\phi(w)\}$ for every vertex x adjacent to w (and distinct from u, v) and by $L^{\prime}(x)=L(x)$ for any other vertex distinct from u and v. Lemma 2.1 applied to G^{\prime} allows to extend ϕ to G.

Lemma 2.3 Let G be an edge maximal K_{5}-minor-free graph. Suppose that every vertex v of G has a list $L(v)$ of size at least four. Let H be a subgraph of G isomorphic to K_{2} or K_{3}, and let ϕ be an adapted L-colouring of H. Then ϕ can be extended to an adapted L-colouring of G.

Proof. Let G be a counterexample with minimum order. Then G is not isomorphic to the Wagner graph (which is 3-regular, and hence adaptably L-colourable given a precolouring of H), and by Lemma 2.2, G is not a planar triangulation. It follows from Wagner's theorem [17], that $G=G_{1} \cup G_{2}$ where G_{1}, G_{2} are proper subgraphs of G such that $G_{1} \cap G_{2}$ is isomorphic to K_{2} or K_{3}. Clearly, $H \subseteq G_{1}$ or $H \subseteq G_{2}$. Without loss of generality, assume that $H \subseteq G_{1}$. By minimality of G, we can extend ϕ to G_{1}. This gives an adapted colouring to $G_{1} \cap G_{2}$ which can be extended to G_{2}, by the minimality of G. This yields an extension of ϕ to an adapted L-colouring of G.

3 Triangle-free planar graphs

Theorem 2 is a consequence of the following theorem:

Theorem 3 Suppose G is an edge-coloured simple triangle-free plane graph, $C=$ $\left(v_{1}, v_{2}, \cdots, v_{k}\right)$ is the outer face. Suppose L is a list assignment that assigns to each vertex x a set $L(x)$ of 3 permissible colours, except that some vertices on C have only 2 permissible colours. However, each edge of G has at least one end vertex x which has 3 permissible colours. Then G is adaptably L-colourable.

Proof. We may assume G is connected and prove the theorem by induction on the number of vertices. If $|V(G)| \leq 4$, then the theorem is obviously true.

Assume $|V(G)| \geq 5$. A path $P=\left(v_{i}, x, v_{j}\right)$ is called a long chord of C connecting v_{i} and v_{j}, if $v_{i}, v_{j} \in C, x \notin C$ and $\left|L\left(v_{i}\right)\right|+\left|L\left(v_{j}\right)\right|=5$. Let \mathcal{P} be the set of chords, long chords, and cut-vertices of C. Suppose $P \in \mathcal{P}$ is a chord (v_{i}, v_{j}) or a long chord $\left(v_{i}, x, v_{j}\right)$ connecting v_{i} and v_{j}. We denote by A_{P} and B_{P} the two components of $C-\left\{v_{i}, v_{j}\right\}$, and assume that $\left|A_{P}\right| \leq\left|B_{P}\right|$. If $P \in \mathcal{P}$ is a cut-vertex of C, we denote by A_{P} the smallest component of $C-P$. Let $P^{*} \in \mathcal{P}$ be a chord, long chord, or cut-vertex, for which $\left|A_{P^{*}}\right|$ is minimum.

Claim $A_{P^{*}}$ contains a vertex v_{t} which is not a cut-vertex, such that $\left|L\left(v_{t}\right)\right|=3$ and v_{t} is not contained in any chord or long chord of C.

First observe that $A_{P^{*}}$ does not contain any cut-vertex, since otherwise this would contradict the minimality of P^{*}. Assume that P^{*} is a cut-vertex v. Then $A_{P^{*}}$ contains at least two adjacent vertices v_{i} and v_{i+1}, and both of them are neither contained in a chord nor in a long chord of C by the minimality of P^{*}. By the hypothesis, there is a $t \in\{i, i+1\}$ such that $\left|L\left(v_{t}\right)\right|=3$.

Assume $P^{*}=\left(v_{i}, x, v_{j}\right)$ is a long chord, $\left|L\left(v_{j}\right)\right|=2$ and $A_{P^{*}}=$ $\left(v_{i+1}, v_{i+2}, \cdots, v_{j-1}\right)$. Then $\left|L\left(v_{j-1}\right)\right|=3$, for otherwise $v_{j} v_{j-1}$ is an edge of G connecting two vertices each with 2 permissible colours, in contrary to our assumption. Since G is triangle-free, v_{j-1} is not adjacent to x. If v_{j-1} is contained in a chord or a long chord P^{\prime}, then we would have $A_{P^{\prime}} \subset A_{P^{*}}$ and hence $\left|A_{P^{\prime}}\right|<\left|A_{P^{*}}\right|$, in contrary to our choice of P^{*}.

Assume $P^{*}=\left(v_{i}, v_{j}\right)$ is a chord, and $A_{P^{*}}=\left(v_{i+1}, v_{i+2}, \cdots, v_{j-1}\right)$. Since G is triangle-free, $v_{i+1} \neq v_{j-1}$. Since each edge of G has at least one end vertex x which has 3 permissible colours, there exists $t \in\{i+1, i+2\}$ such that $\left|L\left(v_{t}\right)\right|=3$. By the same argument as above, v_{t} is not contained in any chord or long chord of C. This completes the proof of the claim.

Let $v_{t} \in C$ be a vertex which is not a cut-vertex, such that $\left|L\left(v_{t}\right)\right|=3$ and v_{t} is not contained in any chord or long chord of C. Let $\alpha \in L\left(v_{t}\right)$ be a colour distinct from the colours of the two edges $v_{t-1} v_{t}$ and $v_{t} v_{t+1}$. Let $G^{\prime}=G-v_{t}$ and let L^{\prime} be a list assignment of G^{\prime} defined as $L^{\prime}(x)=L(x)-\{\alpha\}$ if x is a neighbour of v_{t} distinct from v_{t-1}, v_{t+1}, and $L^{\prime}(x)=L(x)$ otherwise. Then $L^{\prime}(x)$ contains 3 colours for each interior vertex x of G^{\prime} and $L^{\prime}(x)$ contains at least 2 colours for each vertex x on the outer face of G^{\prime}, since v_{t} is not contained in any chord of C. Moreover, since v_{t} is not contained in any long chord of C, it follows that each edge of G^{\prime} has at least one end vertex x which has 3 permissible colours. By induction hypothesis, G^{\prime} is adaptably L^{\prime}-colourable. Any L^{\prime}-colouring of G^{\prime} can be extended to an L-colouring of G by colouring v_{t} with colour α. So G is adaptably L-colourable.

Figure 1: The construction of H_{k}.

4 Planar graphs without triangles at distance k

The distance between two triangles $x y z$ and $u v w$ is the minimum distance between a vertex of $\{x, y, z\}$ and a vertex of $\{u, v, w\}$. For any graph G, we denote by $d_{t}(G)$ the minimum distance between two triangles of G. If G contains at most one triangle, we take $d_{t}(G)$ to be infinite. Havel [8] asked the following question: is it true that for some k, every planar graph G with $d_{t}(G) \geq k$ is 3-colourable? Havel showed that such an integer k is at least 2, disproving a conjecture of Grűnbaum. In [1], Aksionov and L.S Mel'nikok proved that such a k is at least 4, and conjectured that the real value should be 5 .

Since triangle-free planar graphs are adaptably 3-choosable, it is interesting to see if anything can be said about a relaxation similar to Havel's problem : is there an integer k, such that any planar graph G with $d_{t}(G) \geq k$ is adaptably 3 -choosable? In the following, we prove that such a k does not exist: more precisely, for every k we construct a planar graph where every two triangles are at distance at least $2 k$ apart, which is not adaptably 3 -choosable.

Let us define the distance between two faces \mathcal{F}_{1} and \mathcal{F}_{2} of a graph as the minimum distance between a vertex of \mathcal{F}_{1} and a vertex of \mathcal{F}_{2}. A face containing exactly k vertices is called a k-face. In the following, we construct inductively the plane graph H_{i}, such that the following is verified at each step:
(a) H_{i} is triangle-free.

Figure 2: $H(a, b)$.
(b) H_{i} contains exactly two 5 -faces (the outer face and another face, say \mathcal{F}_{i}). Moreover, the distance between these two faces is exactly i.
(c) Assume that the outer face is coloured with five distinct colours a, b, c, d and e in clockwise order. Then there exist an edge-colouring F_{i} of H_{i} and a list assignment L_{i} with $\left|L_{i}(v)\right|=3$ for every vertex v which is not incident to the outer face, such that H_{i} has a unique L_{i}-colouring adapted to F_{i}. Moreover, this colouring is such that \mathcal{F}_{i} is coloured with a, b, c, d and e in clockwise order.

Let H_{0} be a 5 -cycle. Then the three properties are trivially verified. Assume that for some $i \geq 1, H_{i-1}$ also verifies these properties. Fix five different colours a, b, c, d, and e (in clockwise order) on the vertices of the outer face of H_{i-1}. By property (3), there exist an edge-colouring F_{i-1} of H_{i-1} and a list assignment L_{i-1} with lists of size three, such that H_{i-1} has a unique L_{i-1}-colouring adapted to F_{i-1}. In this colouring, the vertices u, v, w, x, and y of the 5 -face \mathcal{F}_{i-1} are coloured with a, b, c, d and e respectively. Let H_{i} be the graph obtained from H_{i-1} by adding five new vertices inside \mathcal{F}_{i-1}, as depicted in Figure 1. This figure also shows how to extend F_{i-1} and L_{i-1} to an edge-colouring F_{i} and a list-assignment L_{i} of H_{i}.

Since u and w are coloured with a and c respectively, the new vertex v^{\prime} adjacent to u and w must be coloured with b. The new vertex w^{\prime} adjacent to v^{\prime} and x must be coloured with c; the new vertex x^{\prime} adjacent to w^{\prime} and y must be coloured with d; the new vertex y^{\prime} adjacent to x^{\prime} and y must be coloured with e, and the new vertex u^{\prime} adjacent to y^{\prime} and v^{\prime} must be coloured with a. The graph H_{i} is still triangle-free, and only contains two 5 -faces: the outer face and $\mathcal{F}_{i}=u^{\prime} v^{\prime} w^{\prime} x^{\prime} y^{\prime}$. Moreover these two faces are at distance exactly $i-1+1=i$. Hence, the graph H_{i} verifies properties (a), (b), and (c). We denote by G_{i} the graph obtained from H_{i} by adding inside the face \mathcal{F}_{i} a 3 -vertex z adjacent to u^{\prime}, w^{\prime}, and x^{\prime}. We give the edges $z u^{\prime}, z w^{\prime}$ and $z x^{\prime}$ colours a, c, and d respectively, and we assign the list $\{a, c, d\}$ to z. Observe that the graph G_{i} contains only one triangle (which is at distance i from the outer face), and
that the colouring of the outer face cannot be extended to an adapted list-colouring of G_{i}.

Let $H(a, b)$ be the edge-coloured graph depicted in Figure 2. Assume that x and y are coloured with a and b respectively. Then u and v must be coloured with 3, and w must be coloured either 1 or 2 . If it is coloured with 1 , the 5 -face $x z w y u$ has its vertices coloured with $a, 2,1, b$ and 3 . Otherwise, the 5 -face $x v y w z^{\prime}$ has its vertices coloured with $a, 3, b, 2,1$. Let $G(a, b)$ be the graph obtained from $H(a, b)$ by plugging the widget G_{k} in each of the two 5 -faces (that is, each of these two faces becomes the outer face of a graph G_{k}). Using what has been done before, we know that with a suitable edge-colouring of the two widgets, there exists a list assignment with lists of size three, such that the colouring of $H(a, b)$ cannot be extended to a colouring of $G(a, b)$. Hence, if x and y are coloured with a and b respectively, this cannot be extended to an adapted list colouring of $G(a, b)$.

Consider 9 copies of $G(a, b)$, with $(a, b) \in\{4,5,6\} \times\{7,8,9\}$, and identify all the vertices x (resp. y) of these copies into a single vertex x^{*} (resp y^{*}). Assign the colour lists $\{4,5,6\}$ and $\{7,8,9\}$ to x^{*} and y^{*} respectively. Assume that there exists an adapted list colouring f of this graph, then there exist no adapted list colouring of the copy of $G\left(f\left(x^{*}\right), f\left(y^{*}\right)\right)$, which is a contradiction. Hence, this planar graph is not adaptably 3 -choosable, and any two triangles are at distance at least $2 k$ apart.

5 Planar graphs without 4-cycles

In this section, we prove that there exist planar graphs without 4-cycles, which are not adaptably 3 -colourable. Let $H(a, b, c)$ be the edge-coloured graph depicted in Figure 3. Consider that $\{a, b, c\}=\{1,2,3\}$, and assume that the vertices u and v of $H(a, b, c)$ are coloured with a and b respectively. Then at least one of the vertices w and w^{\prime} is coloured with c. By symmetry, we can assume that w is coloured with c. Then x must be coloured with a, y must be coloured with c, and z and z^{\prime} must be coloured with b. It is easy to check that in this situation, the remaining subgraph induced the vertices at distance one or two from z and z^{\prime} cannot be adaptably coloured. Hence, if u and v are coloured with a and b, this colouring cannot be extended to an adapted 3 -colouring of $H(a, b, c)$.

For every $1 \leq a \leq 3$, let b and c be the two colours from $\{1,2,3\}$ distinct from a. We denote by G_{a} the edge-coloured graph obtained from $H(a, b, c)$ and $H(a, c, b)$ by contracting the two vertices u (resp. v) into a single vertex u^{*} (resp. v^{*}). Observe that in any adapted 3 -colouring of G_{a}, if u^{*} is coloured with a then v^{*} is also coloured with a.

Figure 3: $H(a, b, c)$.

Figure 4: A planar graph without 4-cycle, which is not adaptably 3-colourable.

Figure 5: $H_{1}(a)$ and $H_{2}(a, b)$.

Consider now an adapted 3-colouring of the construction of Figure 4, which does not contain any 4 -cycle. If the vertex u is coloured with $1 \leq i \leq 3$, then the two vertices x_{i} and y_{i} are both coloured with i, which is a contradiction since they are linked by an edge coloured with i. Hence, this graph is not adaptably 3 -colourable.

6 Planar graphs without 5-cycles

In this section, we prove that there exist planar graphs without 5 -cycles, which are not adaptably 3 -colourable. For any $\{a, b, c\}=\{1,2,3\}$, let $H_{1}(a)$ and $H_{2}(a, b)$ be the two C_{5}-free planar graphs depicted in Figure 5. It is easy to check that in $H_{1}(a)$, if the vertices u and v are coloured with a, then this colouring cannot be extended to an adapted colouring of $H_{1}(a)$. Similarly in $H_{2}(a, b)$, if u and v are coloured respectively with a and $b(a \neq b)$, then this colouring cannot be extended to an adapted colouring of $H_{2}(a, b)$.

Consider the three graphs $H_{1}(a)$ for $1 \leq a \leq 3$, and the six graphs $H_{2}(a, b)$ with $1 \leq a \neq b \leq 3$. Contract the nine vertices u (resp. v) of these graphs into a single vertex u^{*} (resp. v^{*}). Assume that there exists an adapted 3-colouring f of this graph. If $f\left(u^{*}\right)=f\left(v^{*}\right)$ then the copy of $H_{1}\left(f\left(u^{*}\right)\right)$ is not adaptably 3 -colourable, which is a contradiction. Otherwise $f\left(u^{*}\right) \neq f\left(v^{*}\right)$ and the copy of $H_{2}\left(f\left(u^{*}\right), f\left(v^{*}\right)\right)$ is not adaptably 3 -colourable, which is also a contradiction. Hence, this graph is planar and without 5 -cycles, but is not adaptably 3 -colourable.

It is noted by Tsai-Lien Wong that the argument above can be easily adapted to prove the following result:

For any integer $k \geq 5$, there is a planar graph G without cycles of length t for any
$5 \leq t \leq k$ such that G is not adaptably 3-colourable.

7 Conclusion

In this note, we proved that triangle-free planar graphs are adaptably 3-choosable, whereas C_{4}-free planar graphs and C_{5}-free planar graphs are not even adaptably 3 colourable. We also showed that for any $k \geq 0$, there exist planar graphs without triangles at distance k which are not adaptably 3 -choosable. However, the question remains open for adapted colouring:

Question 7.1 Is there an integer k, such that every planar graph G with $d_{t}(G) \geq k$ is adaptably 3-colourable?

If the answer to this question is negative, it implies that the answer to the original problem of Havel is also negative, whereas a positive answer to the original problem of Havel would imply a positive answer to Question 7.1.

In 1976, Steinberg conjectured that planar graphs without cycles of length 4 and 5 are 3 -colourable (see [12] for a survey). We can ask the same for adapted 3 -colouring and adapted 3 -choosability :

Question 7.2 Are planar graphs without 4-cycles and 5-cycles adaptably 3colourable?

Question 7.3 Are planar graphs without 4-cycles and 5-cycles adaptably 3choosable?

A weaker version of the problem of Steinberg was proposed by Erdős in 1991: he asked what is the smallest i, such that every planar graph without cycles of length 4 to i is 3 -colourable? The same can be asked for adapted 3 -colouring and adapted 3 -choosability:

Question 7.4 What is the smallest i, such that every planar graph without cycles of length 4 to i is adaptably 3-colourable?

Question 7.5 What is the smallest i, such that every planar graph without cycles of length 4 to i is adaptably 3-choosable?

Note that by [3], the answer of Question 7.4 is at most 7, and by [2, 18], the answer of Question 7.5 is at most 9 .

References

[1] V.A. Aksionov and L.S Mel'nikok, Some counterexamples associated with the Three Color Problem, J. Combin. Theory Ser. B 28 (1980) 1-9.
[2] O.V. Borodin, Structural properties of plane graphs without adjacent triangles and an application to 3-colorings, J. Graph Theory 12 (1996) 183-186.
[3] O.V. Borodin, A.N. Glebov, A. Raspaud, and M.R. Salavatipour, Planar Graphs without Cycles of Length from 4 to 7 are 3-colorable, J. Combin. Theory Ser. B 93 (2005) 303-311.
[4] T. Feder and P. Hell, Full constraint satisfaction problems, SIAM J. Comput. 36 (2006) 230-246.
[5] H. Grőtzsch, Ein Dreifarbensatz für dreikreisfreie Netze auf der Kugel, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 8 (1959) 109-120.
[6] T. Feder, P. Hell, S. Klein, and R. Motwani, Complexity of list partitions, SIAM J. Discrete Math. 16 (2003) 449-478.
[7] T. Feder, P. Hell, D. Král, and J. Sgall, Two algorithms for list matrix partition, Proc. 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) 2005, 870-876.
[8] I. Havel, On a conjecture of B. Grünbaum, J. Combin. Theory 7 (1969) 184-186.
[9] P. Hell and X.Zhu, Adaptable chromatic number of graphs, European J. Combinatorics, to appear.
[10] P. Hell and J. Nešetřil, Graphs and homomorphisms, Oxford University Press, 2004.
[11] A. Kostochka and X. Zhu, Adapted list coloring of graphs and hypergraphs, SIAM J. Discrete Math., to appear.
[12] R. Steinberg, The state of the three color problem in. Quo Vadis, Graph Theory? Annals of Discrete Mathematics 55 (1993) 211-248.
[13] C. Thomassen, Every planar graph is 5-choosable, J. Combin. Theory Ser. B 62 (1994) 180-181.
[14] C. Thomassen, A short list color proof of Grötzsch's theorem, J. Combin. Theory Ser. B 88 (2003) 189-192.
[15] M. Voigt, List colourings of planar graphs, Discrete Math. 120 (1993), 215-219.
[16] M. Voigt, A not 3-choosable planar graph without 3-cycles, Discrete Math. 146 (1995) 325-328.
[17] K. Wagner, Über eine Eigenschaft der ebenen Komplexe, Math. Ann. 144 (1937) 570-590.
[18] L. Zhang and B. Wu, A note on 3-choosability of planar graphs without certain cycles, Discrete Math. 297 (2005) 206-209.

[^0]: *LaBRI, Université Bordeaux 1, France, E-mail address: esperet@labri.fr
 ${ }^{\dagger}$ LaBRI, Université Bordeaux 1, France, E-mail address: montassi@labri.fr
 ${ }^{\ddagger}$ Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan and National Center for Theoretical Sciences. E-mail address: zhu@math.nsysu.edu.tw. Partially supported by the National Science Council under grant NSC95-2115-M-110-013-MY3.

