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ADAPTED LIST COLORING OF GRAPHS AND HYPERGRAPHS∗

A. V. KOSTOCHKA† AND XUDING ZHU‡

Abstract. We introduce and study adapted list coloring of graphs and hypergraphs. This is a
generalization of ordinary list coloring and adapted coloring, and has more applications than these.
We prove that the upper bounds on the adaptable choosability of graphs and uniform hypergraphs
in terms of maximum degree are sufficiently stronger than those on the ordinary choosability, while
the bounds in terms of degeneracy are the same. We also characterize simple graphs with adaptable
choosability 2.

Key words. adapted coloring, list coloring, degree conditions

AMS subject classification. 05C15

DOI. 10.1137/070698385

1. Introduction. Hell and Zhu [6] introduced and studied the notion of adapted
coloring of graphs.

Definition 1.1. Let H be a multihypergraph (i.e., parallel hyperedges are al-
lowed), and let F : E(H) → {1, 2, . . . , k} be an edge k-coloring of H (not required
to be proper). A vertex k-coloring c : V → {1, 2, . . . , k} of H is adapted to F if for
every color j, the preimage c−1(j) does not contain any hyperedge of color j. In other
words, if an edge e of H has color j, then it cannot have all its vertices colored with j.

While the multiplicity of edges does not matter in the ordinary vertex coloring, it
does in the adapted coloring. If every (hyper)edge of G has multiplicity k and F colors
these edges with all distinct k colors, then any vertex k-coloring of G adapted to this
edge coloring is an ordinary proper k-coloring. But choosing different edge colorings
yields different problems that have more applications than the ordinary vertex color-
ing. In particular, adaptable vertex coloring has applications to matrix partitions of
graphs, trigraph homomorphisms, and full constraint satisfaction problems [3, 4, 5, 7].

The adaptable chromatic number is defined in a natural way.
Definition 1.2. Let G be a multihypergraph. The adaptable chromatic number

χad(G) of G is the minimum integer k such that for every edge k-coloring F of G,
there is a vertex k-coloring of G adapted to F .

Hell and Zhu [6] proved that a nonempty graph G has χad(G) ≤ 2 if and only
if G has an edge e such that G − e is bipartite. Thus graphs with χad(G) ≤ 2 can
be determined in polynomial time. However, for k ≥ 3, it is NP-hard to determine
whether a graph G has χad(G) ≤ k. It was also shown in [6] that for any positive
integers k and g, there are graphs G of girth at least g such that χad(G) = χ(G) = k.

In this paper, we introduce and study a logical generalization of the adapted
coloring—adapted list coloring. We will show a rather general application and derive
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several properties of such coloring.
Definition 1.3. Let H be a multihypergraph and F : E(H) → N be any edge

coloring of H (not required to be proper). Let a list assignment L : V (H) → 2N be
a function that assigns a list L(v) ⊂ N to every vertex v of H. A vertex coloring
c of V (H) is an L-coloring adapted to F if for every v ∈ V (H), c(v) ∈ L(v), and
for every color j, the preimage c−1(j) does not contain any hyperedge of color j. An
adapted list coloring of H is an L-coloring of H adapted to F for a list L and an
edge coloring F .

Adapted list coloring can model the following rather general problem. There are
jobs J1, . . . , Jn to be made and people (or machines) P1, . . . , Pm who can perform these
jobs. Some people can do several jobs, but everybody has his/her own limits. For
every job Ji, there is the list L(i) of people who can perform this job. For every person
Pl, there are inclusion minimal sets el,1, . . . , el,kl

such that Pl cannot perform all jobs
in the set el,i at the same time. The question is whether we can assign to each Pl a
set c(l) of jobs not containing any of the sets el,1, . . . , el,kl

so that each job is assigned
to somebody who can perform it. This is exactly a list adapted coloring question: Let
H be the hypergraph with V (H) = {J1, . . . , Jn} and E(G) =

⋃m
l=1{el,1, . . . , el,kl

}.
The people are the colors, and each vertex Ji is given a list L(i) of admissible colors.
Let F be the edge coloring of H such that F (el,j) = l for every l = 1, . . . ,m and
j = 1, . . . , kl. By definition, H has a coloring c adapted to F with c(Ji) ∈ L(i)
exactly when there is a proper job assignment in the original problem.

There are other natural applications of adapted list coloring, but in this paper
we will concentrate on the properties of this coloring.

Definition 1.4. We say that a (multi)hypergraph G is adaptably k-choosable if
for every edge coloring F and for every list assignment L with |L(v)| = k for all v,
there exists an L-coloring of G adapted to F . The minimum integer k, for which G
is adaptably k-choosable, is called the adaptable choosability of G and is denoted by
chad(G).

It follows from the definition that if G has an L-coloring adapted to F , then
every subgraph H of G also has an L-coloring adapted to F . Let ch(G) denote the
(ordinary) choosability of G. Then we have χad(G) ≤ chad(G) ≤ ch(G).

One may expect that for most graphs, the adaptable choosability is significantly
less than the ordinary choosability. This is indeed the case. Moreover, for every
multigraph G, chad(G) ≤ �√8Δ(G)�. For large Δ(G) this bound is much better than
the Brooks’ bound for ordinary coloring. However, the situation with degeneracy is
quite different. Our first main result says that there are many d-degenerate graphs
G with χad(G) = d + 1. Every such graph G must have χ(G) = ch(G) = chad(G) =
χad(G). Furthermore, all this holds for hypergraphs.

Theorem 1.5. For any integers g ≥ 3, r ≥ 2, and d ≥ 1, there is an r-uniform
hypergraph H of girth at least g that is d-degenerate and chad(H) = χad(H) = d+1.

Graphs G with ch(G) ≤ 2 were characterized by Erdős, Rubin, and Taylor [2].
Graphs G with χad(G) ≤ 2 were characterized by Hell and Zhu [6]. Our second
main result is a characterization of adaptably 2-choosable simple graphs. Of course,
it is enough to describe adaptably 2-choosable multigraphs without vertices of degree
0 and 1.

Theorem 1.6. A simple connected graph G with minimum degree at least 2 is
adaptably 2-choosable if and only if G consists of two or three internally disjoint paths
connecting two distinct vertices of G.

Theorem 1.6 yields a polynomial time algorithm that decides whether a given
graph is adaptably 2-choosable.
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We use standard notation. For a vertex x of a multihypergraph G, EG(x) (or
E(x) if G is clear from the context) is the set of hyperedges of G containing x, and
d(x) = |E(x)| is the degree of x. By Δ(G) we denote the maximum degree of G.

For brevity, we will often say “a (k, F )-coloring” instead of “a vertex k-coloring
adapted to F” and “an (L,F )-coloring” instead of “an L-coloring adapted to F .”

In the next section we give upper bounds on adaptable choosability in terms of
maximum degree, in section 3 we construct many d-degenerate uniform hypergraphs
with adaptable choosability d + 1, and in the last section we characterize adaptably
2-choosable graphs.

2. Adaptable choosability and maximum degree. Erdős and Lovász used
their famous Local Lemma to prove the following bound.

Theorem 2.1 (see [1, Theorem 2]). A (k + 1)-chromatic r-uniform hypergraph
contains an edge which is intersected by at least kr−1/4 other edges. Thus, the degree
of at least one vertex is > kr−1/4r.

Practically repeating their proof word by word for adaptable list coloring, one
gets the following result.

Proposition 2.2. If G is an r-uniform (multi)hypergraph and Δ(G) ≤ kr/4r,
then chad(G) ≤ k. In particular, chad(G) ≤ �√8Δ(G)� for every (multi)graph G.

For every fixed r, the order of magnitude of this bound is close to the best possible,

for example, for complete r-uniform hypergraphs, K
(r)
n .

Proposition 2.3. If n is large in comparison with r and

Δ(K(r)
n ) ≥ 2r kr ln k,(1)

then chad(K
(r)
n ) ≥ χad(K

(r)
n ) > k. In particular, chad(Kn) ≥ χad(Kn) > 0.5

√
n/ lnn.

Proof. Let Δ = Δ(K
(r)
n ). By definition,

Δ =

(
n− 1

r − 1

)
≤ nr−1/(r − 1)!.(2)

Let k be the largest integer satisfying (1), and let m = �n/k�. Consider a random

k-coloring F of the edges of K
(r)
n , where each of the edges is colored uniformly and

independently from all the other edges with one of the colors 1, . . . , k. Let Gi be the
hypergraph formed by the edges of color i, i = 1, . . . , k. We will prove that

with positive probability, the independence number of every Gi is less than m.(3)

That would imply that for some edge k-coloring F of K
(r)
n , in any vertex k-

coloring of K
(r)
n adapted to F , each color can appear at most m− 1 times, and hence

K
(r)
n simply has no such coloring. So, we are now proving (3).

For each i, the probability that Gi has an independent set of size m is at most(
n
m

)
(1 − 1

k )(
m
r ). Hence, (3) will hold if

(
n

m

)(
1 − 1

k

)(mr )
<

1

k
.(4)



4 A. V. KOSTOCHKA AND XUDING ZHU

Since m ≥ n/k, the left-hand side of (4) is at most

(ne
m

)m

exp

{−1

k

(
m

r

)}
≤ exp

{
m

(
ln ek − 1

rk

(
m− 1

r − 1

))}
.

Therefore, (4) will hold for large n if

0.1 + ln ek <
1

rk

(
m− 1

r − 1

)
.(5)

By (2), for n (and hence m and k) large in comparison with r,

1

rk

(
m− 1

r − 1

)
≥ 0.9

1

rk

mr−1

(r − 1)!
≥ 0.9

rk

nr−1

(r − 1)!kr−1
≥ 0.9

rkr
Δ.

Thus (5) will hold for large n if

0.9Δ > rkr(0.1 + ln ek).(6)

By the definition of k for large n, 0.1 + ln ek < 1.1 ln k. Hence, to satisfy (6), it is
enough that 0.9Δ > 1.1r kr ln k, which follows from (1).

For a positive integer k, let f(k) (respectively, fm(k)) be the largest Δ such
that chad(G) ≤ k for every simple graph (respectively, multigraph) G with maximum
degree at most Δ. It follows from Propositions 2.2 and 2.3 that k2/8 ≤ fm(k) ≤
f(k) ≤ 4k2 ln k. It is also interesting to find better estimates of fm(k) and f(k) for
small k. Theorem 1.6 yields fm(2) = f(2) = 2. Theorem 2.4 below provides another
upper bound for chad(G) when k is small.

Theorem 2.4. If G is a multigraph with maximum degree Δ, then chad(G) ≤
�Δ/2� + 1.

Proof. Let F be an arbitrary edge coloring of G. We shall prove that if each vertex
x of G is given a list L(x) of at least �d(x)/2� + 1 permissible colors, then G has an
(L,F )-coloring. (Recall that “(L,F )-coloring” means “L-coloring adapted to F”.)
We prove this by induction on the number of edges of G. Without loss of generality,
we assume that G is connected. If G has a vertex of degree 1, then |L(x)| ≥ 2.
Therefore, any (L,F )-coloring of G − x can be extended to an (L,F )-coloring of G.
If G is a cycle, then the conclusion follows from Theorem 1.6 in section 4. If G has
a vertex x of degree 3, then |L(x)| ≥ 3. Assume e ∈ E(x) and F (e) = j. Remove
color j from L(x) to obtain a list assignment L′ of G − e. By induction hypothesis,
G− e has an (L′, F )-coloring c. Since c(x) 	= F (e), c is also an (L,F )-coloring of G.
Assume that G has a vertex x of degree d(x) ≥ 4 with |L(x)| = �d(x)/2� + 1 < d(x).
If for some edge e ∈ E(x), F (e) 	∈ L(x), then an (L,F )-coloring of G − e is also an
(L,F )-coloring of G. Thus we assume that F (e) ∈ L(x) for all e ∈ E(x). Then there
are two edges e, e′ ∈ E(x) with F (e) = F (e′) = j. Remove color j from L(x) to
obtain a list assignment L′ of G−{e, e′}. By induction hypothesis, G−{e, e′} has an
(L′, F )-coloring c. Since c(x) 	= F (e) = F (e′), c is also an (L,F )-coloring of G.

Theorem 2.4 implies that fm(3) ≥ 4. Figure 1 shows an edge 3-colored multigraph
G with Δ(G) = 5 that has no vertex 3-coloring adaptable to the given edge coloring.
Indeed, assume it has such a 3-coloring c. Then either c(v) 	= 1 or c(v′) 	= 1. By the
left-right symmetry, we may assume that c(v) 	= 1. Now by the up-down symmetry,
we may assume that c(v) = 2. Then c(x) 	= 2 and c(y) 	= 2. Since edge xy has color
1, at least one of x and y (say, x) should be colored with 3. Thus all three vertices
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Fig. 1. A multigraph G with chad(G) ≥ 4.

below x can be colored with only 1 or 2, but the double edges between these vertices
forbid any two of them to have the same color.

This example shows that fm(3) = 4. We also have an example showing that
f(3) ≤ 5, but were not able to determine whether f(3) is 4 or 5.

3. Adaptable choosability of d-degenerate graphs. While the upper bounds
on adaptable choosability of graphs in terms of maximum degree are significantly bet-
ter than those on ordinary choosability, this is not the case for bounds in terms of
degeneracy. Recall that a multihypergraph G is d-degenerate if each subhypergraph
G′ of G has a vertex of degree at most d. It is obvious that ch(G) ≤ d + 1 for every
d-degenerate G. Since chad(G) ≤ ch(G), we have chad(G) ≤ d+1. In [6], examples of
d-degenerate graphs G with χad(G) = d+ 1 are given. It is also shown in [6] that for
any positive integer d, there are graphs of large girth with χad(G) = χ(G) = d + 1.
However, these graphs are far from being d-degenerate. In this section, we prove The-
orem 1.5, which is a common strengthening and generalization of these results in [6].
But first we prove a weaker statement.

Proposition 3.1. For any integers g ≥ 3, r ≥ 2, and k ≥ 1, there is an
r-uniform hypergraph G with girth at least g and chad(G) ≥ k.

Proof. Let n be large in comparison with g, r, and k. Consider the random
r-uniform n-vertex hypergraph H(n, r, k) with colored edges (and labeled vertices)
obtained in the following way: Every r-element subset e of {1, . . . , n} independently
of all other such r-tuples with probability 1 − (ln lnn)/nr−1 is not in H(n, r, k), and
for each i = 1, . . . , k, with probability ln lnn/knr−1, e is an edge in H(n, r, k) colored
with color i.

Let F denote the obtained edge coloring, and let Hi be the subhypergraph of
H(n, r, k) induced by the edges of color i, i = 1, . . . , k. We will prove using a standard
argument that with positive probability both (i) and (ii) below hold:

(i) there is a set S of at most n/3 vertices such that H(n, r, k) − S has no cycles
of length g or less;

(ii) independence number of every Hi is at most n/2k.
If we prove this, then there is a hypergraph H ′ for which both (i) and (ii) hold.

Hence, the hypergraph H ′′ = H ′ − S has at least 2n/3 vertices and in any (k, F )-
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coloring of H ′′ each color can be used for at most n/2k vertices. Thus H ′′ has no
such coloring.

First, consider property (i). For given two vertices v and w, the probability that
H(n, r, k) has at least two edges containing both v and w is at most

(n−2
r−2)∑
t=2

(
ln lnn

nr−1

)t ((n−2
r−2

)
t

)
≤

(n−2
r−2)∑
t=2

1

t!

(
ln lnn

(r − 2)!n

)t

≤
(

ln lnn

n

)2

.

Since there are
(
n
2

)
such pairs {v, w}, the expectation E2 of the number of the cycles

of length two in H(n, r, k) is at most 0.5(ln lnn)2. Similarly, for 3 ≤ j ≤ g, the expec-
tation Ej of the number of the cycles of length j in H(n, r, k) is at most (ln lnn)j/j.
Therefore, the expectation E0 of the number of the cycles of all lengths from 2 to g
in H(n, r, k) is at most (ln lnn)g. Hence for n large, (i) holds with probability at least
1 − 3(ln lnn)g/n > 0.9.

Similar to the proof of Proposition 2.3, for each 1 ≤ i ≤ k, the probability that
Hi has an independent set of size m = �n/2k� is at most

(
n

m

)(
1 − ln lnn

knr−1

)(mr )
≤

(
ne

m
exp

{
− ln lnn

knr−1

(
m− 1

r − 1

)
/r

})m

.

For fixed r and k and large n, the mth root of the right-hand side is at most

2ke exp

{
−0.5

ln lnn

knr−1

nr−1

r!kr−1

}
≤ 6k

(kr)r

lnn
<

1

2k
.

It follows that with probability at least 0.9 − k
2k = 0.4, both (i) and (ii) hold for

H(n, r, k).
Now we are ready to prove Theorem 1.5. For convenience, we restate it here.
Theorem 1.5. For any integers g ≥ 3, r ≥ 2, and d ≥ 1, there is an r-uniform

d-degenerate hypergraph G with girth at least g and chad(G) = χad(G) = d + 1.
Proof. As observed above, χad(G) ≤ chad(G) ≤ ch(G) ≤ d + 1 for every d-

degenerate G. So, it suffices to show that there is an r-uniform d-degenerate hyper-
graph G′ of girth at least g with χad(G

′) > d, i.e., G′ has a edge d-coloring F ′ such
that G′ has no vertex (d, F ′)-coloring.

We prove this by induction on d. When d = 1, for each r, let Gr be the hypergraph
that contains one edge of size r and nothing else. Clearly, χad(Gr) = 2.

Assume that the conclusion is true for degeneracy d − 1 and all r and g. Given
positive integers r and g, let H be an r-uniform (d−1)-degenerate hypergraph of girth
at least g with χad(H) = d. Let n = |V (H)| and r′ = n(r − 1). By Proposition 3.1,
there exists an r′-uniform hypergraph G = (V,E) of girth at least g with χad(G) ≥ d+
1. Let G′ be the hypergraph constructed as follows. For each edge s = {v1, v2, . . . , vr′}
of G, add a disjoint copy of H, called Hs (including the vertices and edges). The
vertices of Hs are {u1,s, u2,s, . . . , un,s}. Partition these vertices in s into n parts,
X1, X2, . . . , Xn, each of cardinality r− 1. Add the edges {vj,s} ∪Xj (j = 1, 2, . . . , n).
We denote the subhypergraph of G′ induced by s ∪ V (Hs) by Gs (see Figure 2).

Since χad(H) = d, there is a (d − 1)-edge coloring F of H such that H has no
(d − 1, F )-coloring. Since χad(G) ≥ d + 1, there is an edge d-coloring Q of G such
that G has no (d,Q)-coloring.

Define edge d-coloring F ′ of G′ as follows. Let e be a hyperedge of G′. Then e is
contained in Gs for some hyperedge s of G. Assume that Q(s) = j. If e is a hyperedge
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H_s

s

Fig. 2. The part of G′ corresponding to an edge s of G.

of Hs, then let

F ′(e) =

{
F (e) if F (e) 	= j,
d if F (e) = j.

If e is of the form {vi,e} ∪ Xi, then let F ′(e) = i. We shall show that G′ has no
(d, F ′)-coloring. Assume to the contrary that c′ : V (G′) → {1, 2, . . . , d} is such a
coloring. Since χad(G) = d + 1, there is a hyperedge s = {v1, v2, . . . , vr′} of G such
that c′(v1) = c′(v2) = · · · = c′(vr′) = Q(s). If c(vi,s) = Q(s) for any i ∈ {1, 2, . . . , n},
then {vi,s}∪Xi is a hyperedge of G′ of color Q(s), and all the vertices of this hyperedge
are colored by Q(s), which is a contradiction. If c′(vi,s) 	= Q(s) for all i ∈ {1, 2, . . . , n},
then the restriction of c′ to the copy Gs of G is a (d− 1, F )-coloring, contrary to our
assumption.

By construction, G′ is d-degenerate and has girth at least g. This proves Theo-
rem 1.5.

4. Adaptably 2-choosable graphs. The next observation will be quite helpful.
Proposition 4.1. Let G be a multihypergraph, L be a list assignment for the

vertices of G, and F be an edge coloring of G. If G has no (L,F )-coloring, but after
deleting any edge or vertex the resulting multihypergraph G′ has, then

(a) for every e ∈ E(G), color F (e) is present in the list of every v ∈ e;
(b) for every v ∈ V (G), every color in L(v) is a color of some edge containing v.
Proof. If F (e) is not present in the list of some vertex v ∈ e and G − e has an

(L,F )-coloring, then this coloring is also an (L,F )-coloring of G. If L(v) contains a
color α that is not a color of any edge containing v, and G− v has an (L,F )-coloring
c, then letting c(v) = α we get an (L,F )-coloring of G.

Given a coloring F of the edges of a hypergraph G, there is a unique list as-
signment L such that both (a) and (b) in Proposition 4.1 hold. We will denote this
list assignment by LG,F and will say that it respects F . Furthermore, instead of
“(LG,F , F )-coloring of G” we will simply say “F -coloring of G.” For a vertex x of G,
let F (x) = {F (e) : e ∈ E(x)}.

Lemma 4.2. Let P = (v0, v1, . . . , vn) be a path and F be any edge coloring of P .
Then P has no F -coloring.

Proof. Let L = LP,F . For i = 1, . . . , n, let ei = vi−1vi. Assume that c is
an F -coloring of P . Then L(v0) = {F (e1)} and hence c(v0) = F (e1). This forces
L(v1) 	= {F (e1)}. Since L respects F , we must have F (e2) 	= F (e1) and c(v1) = F (e2).
Repeating this argument, we conclude that c(vi) = F (ei+1) for i = 0, 1, . . . , n−1. But
L(vn) = {F (en)} and hence c(vn) = F (en) = c(vn−1), contrary to our assumption
that c is an F -coloring of P .

Corollary 4.3. Let C be a cycle and F be an edge coloring of P . If for some
vertex x ∈ V (C), |LC,F (x)| = 1, then C has no F -coloring.

Proof. Let L = LC,F . Split the vertex x of C into two vertices x′, x′′ with each
of x′, x′′ incident to one edge in E(x), and let L(x′) = L(x′′) = L(x). The resulting
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graph is a path P , and F can be viewed as an edge coloring of P . Any F -coloring of
C is also an F -coloring of P . Thus the conclusion follows from Lemma 4.2.

Lemma 4.4. If G is a subdivision of K4, then G is not adaptably 2-choosable.
Proof. Consider first the case that no two adjacent edges are subdivided, i.e., that

the subdivided edges form a matching of K4. Then the set of nonsubdivided edges
of K4 contains a 4-cycle C4. Let F be an edge coloring of G such that the edges of
this 4-cycle are colored by color 1. The other edges of G are colored arbitrarily so
that each vertex is incident to edges of two distinct colors. For example, the first two
graphs in Figure 3 are colored in this way. Let L = LG,F . Assume that G has an
F -coloring c.

Let the four vertices of the 4-cycle C4 be v1, v2, v3, v4 (these four vertices are also
the only vertices of G of degree 3) in this order. Then either neither of v1 and v3 is
colored by color 1, or neither of v2 and v4 is colored by 1. Without loss of generality,
assume that neither of v1 and v3 is colored by 1. Then the restriction of c to the path
P1,3 of G connecting v1 and v3 is an (L′, F )-coloring of P1,3, where L′ = LP1,3,F . This
contradicts Lemma 4.2.

1 31

1
1

2
3

4

11

1
1

2

3 4 5 4

1

12

1

1 4

Fig. 3. Some subdivisions of K4.

Next, assume that G has two adjacent edges that are subdivided. Let H be the
third graph in Figure 3. Then G is a subdivision of H.

Let F be an edge coloring F of a multigraph Q and L = LG,F . We say that F is
difficult if the following hold:

(i) |L(v)| = 2 for each v ∈ V (Q).
(ii) For each color j, the edges of color j induce a tree Tj .
(iii) Q has no (L,F )-coloring.
The edge coloring F of graph H in Figure 3 is difficult: (i) and (ii) are obvious. To

see that (iii) holds, observe that if the top vertex is colored by 1, then the vertex at the
center and the leftmost vertex must both be colored by 2, which is a contradiction.
If the top vertex is colored by 3, then the rightmost vertex must be colored by 4,
which forces both degree 2 vertices of H be colored by 1, which in turn forces the
vertex at the center and the leftmost vertex be both colored by 2; which is again a
contradiction.

Claim 4.1. Suppose that a multigraph Q has a difficult coloring and Q′ is obtained
from Q by subdividing one edge. Then Q′ has a difficult coloring.

Proof. Assume Q′ is obtained from Q by inserting a vertex w on an edge e∗ = uv
of Q. In other words, e∗ is subdivided into two edges e′ = uw and e′′ = wv. Assume
that e∗ has color j. Let Tj be the tree induced by the edges of color j. Let T ′

j be the
tree obtained from Tj by subdividing the edge e∗ into e′ = wu and e′′ = wv. Vertex
w separates E(T ′

j) into two parts, say E1 (containing e′) and E2 (containing e′′). Let
j′ be a new color (a color not used on any edge of Q). Let F ′ be the edge coloring of
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Q′ defined as follows:

F ′(e) =

⎧⎨
⎩

j if e ∈ E1,
j′ if e ∈ E2,
F (e) otherwise.

Now we show that F ′ is a difficult coloring of Q′. It is obvious that (i) and (ii) hold.
Assume to the contrary that c′ is an LQ′,F ′-coloring of Q′ adaptable to F ′. Let c be
the L-coloring of Q defined as

c(x) =

{
j if c′(x) = j or j′,
c′(x) otherwise.

Observe that c′(w) ∈ {j, j′}, and hence either c′(u) 	= j or c′(v) 	= j′. In either case,
the ends u and v of the edge e∗ cannot both have color j. This implies that c is an
(L,F )-coloring of Q, contrary to our assumption that Q is not F -colorable.

By repeatedly applying Claim 4.1, we derive that each subdivision of H has a
difficult edge coloring, and hence is not adaptably 2-choosable. This completes the
proof of Lemma 4.4.

It follows from Lemma 4.4 that adaptably 2-choosable graphs are K4-minor free,
i.e., series-parallel graphs.

Lemma 4.5. If a connected multigraph G has two cycles of length at least 3 that
have at most one vertex in common, then G is not adaptably 2-choosable.

Proof. Assume G has two cycles C1 and C2 of length at least 3 that have at
most one vertex in common. Let P be a shortest path connecting C1 and C2. Let
{v} = V (P ) ∩ V (C1) and {v′} = V (P ) ∩ V (C2). This includes the case that v′ = v.

Let G′ be the subgraph of G induced by V (C1 ∪ C2 ∪ P ). Let F be an edge
coloring of G′ such that (1) the two edges of C1 incident with v are colored with 1,
(2) the two edges of C2 incident with v′ are colored with 2, and (3) the remaining
edges are colored so that each vertex is incident to edges of two distinct colors (for
example, all other edges may have different colors). We shall show that there is no
F -coloring of G′. Assume to the contrary that c is such a coloring. If c(v) = 1, then
the restriction of c to C1 is an F -coloring of C1, contrary to Corollary 4.3. Similarly,
if c(v′) = 2, then the restriction of c to C2 is an F -coloring of C2. If c(v) 	= 1 and
c(v′) 	= 2, then the restriction of c to the path P is an F -coloring of P , a contradiction
to Lemma 4.2.

Lemma 4.6. If a simple graph G consists of four internally vertex-disjoint paths
P1, P2, P3, and P4 connecting two vertices u, v, then G is not adaptably 2-choosable.

Proof. If P is a path not of length 2, then there is a proper edge coloring of P
with at most three colors, such that the two end edges (which can be the same edge if
P has length 1) are colored with the same color. If P is a path not of length 1, then
there is a proper edge coloring of P with at most three colors, such that the two end
edges are colored with two given distinct colors.

Case 1. At least two of the paths are not of length 2. Since at most one of
P1, . . . , P4 has length 1, we can renumber our paths so that P1 and P2 are not of length
1, and P3 and P4 are not of length 2. Color properly the edges of P1 (respectively, P2)
so that the edge incident to u is colored by 1 (respectively, by 2), and the edge incident
to v is colored by 2 (respectively, by 1). Color the edges of P3 (respectively, P4) so that
both end edges are colored by 1 (respectively, by 2). We have L(u) = L(v) = {1, 2}. If
c is an F -coloring of G, then c(u), c(v) ∈ {1, 2}. If c(u) = c(v) = 1, then the restriction
of c to P3 is an F -coloring of P3, contrary to Lemma 4.2. If c(u) = c(v) = 2, then we
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get a contradiction by considering path P4. If c(u) = 1 and c(v) = 2, then we obtain
a contradiction with the edge coloring of P1, and if c(u) = 2 and c(v) = 1, then we
obtain a contradiction with the edge coloring of P2.

Case 2. Each of P1, P2, and P3 has length 2 and the length of P4 is not 1. By
above we can color the edges of G so that (a) the edges incident to u in P1 and P2 are
colored with 1, and in P3 and P4 are colored with 2; (b) the edges incident to v in P1

and P3 are colored with 3, and in P2 and P4 are colored with 4. Now L(u) = {1, 2}
and L(v) = {3, 4}. Similarly to Case 1, each of the four paths forbids one of the four
possibilities (1, 3), (1, 4), (2, 3), and (2, 4) for the pair (c(u), c(v)).

Case 3. |E(P1)| = |E(P2)| = |E(P3)| = 2 and |E(P4)| = 1. For 1 ≤ i ≤ 3, let
wi be the central vertex of the path Pi. We let F (uv) = F (uw1) = F (w2v) = 1,
F (uw2) = F (uw3) = 2 and F (w1v) = F (w3v) = 3. It is easy to check that G has no
F -coloring for this F .

Now we are ready to prove Theorem 1.6. For convenience, we restate it here.
Theorem 1.6. A simple connected graph G with minimum degree at least 2 is

adaptably 2-choosable if and only if G consists of two or three internally disjoint paths
connecting two distinct vertices of G.

Proof. Assume first that a simple connected graph G with minimum degree at
least 2 is adaptably 2-choosable. By Lemma 4.4 G is series-parallel. Furthermore,
by Lemma 4.5, G is 2-connected and any two cycles of G have at least two vertices
in common. This implies that G has two vertices u and v such that for some k ≥ 2,
G consists of k internally vertex disjoint paths connecting u and v. By Lemma 4.6,
k ≤ 3. This proves the “only if” part of the theorem.

Suppose now that the “if” part of the theorem does not hold. Then there is an
inclusion minimal subgraph G of a graph G′ consisting of three internally disjoint
paths connecting some vertices u and v that has no L-coloring adapted to an edge-
coloring F , where |L(w)| = 2 for every w ∈ V (G). By Proposition 4.1, G has no
isolated or pendant vertices, and it is enough to consider F -colorings.

Let F be an edge coloring of G such that |F (x)| = 2 for each vertex x of G. Assume
F (u) = {a, b} and F (v) = {c, d} (where {a, b} and {c, d} need not be disjoint).

There are four distinct ways to color u and v, namely (c(u), c(v)) ∈ {(a, c), (a, d),
(b, c), (b, d)}. For each Pi, there is exactly one choice of the pair (c(u), c(v)) that
cannot be extended to a coloring of Pi adapted to F . Thus, if 2 ≤ k ≤ 3, then at
least one of the four choices of (c(u), c(v)) can be extended to a coloring adapted to
F for each of the u, v-paths.

Remark. Using the proof of the “only if” part of the theorem, one can characterize
also all adaptably 2-choosable multigraphs. The remaining argument is a simple case
analysis, so we just give a preliminary idea and state the characterization.

We need the following notion: a double x, y-path is a multigraph whose underlying
simple graph is an x, y-path and in which every edge has multiplicity two. If G has a
vertex x with only one neighbor y (does not matter how many edges connect x and
y) and G−x is adaptably 2-choosable, then G is also adaptably 2-choosable. Thus it
is enough to characterize adaptably 2-choosable multigraphs whose underlying simple
graphs have minimum degree at least two. Theorem 1.6 tells us that these underlying
graphs have very limited structure.

Theorem 4.7. A connected multigraph G whose underlying simple graph Gs has
minimum degree at least 2 is adaptably 2-choosable if and only if all of the following
holds:

(a) Gs consists of two or three internally disjoint paths connecting two distinct
vertices x and y of G;
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(b) all double x, y-paths have the same parity;
(c) if there are three internally disjoint x, y-paths P1, P2, and P3 such that P1 is

a double x, y-path of an odd length, then one of P2 and P3 has length 1;
(d) if there are three internally disjoint x, y-paths P1, P2, and P3 such that P1 is

a double x, y-path of an even length, then at least one of P2 and P3 has length
2.

This description is somewhat more sophisticated than Theorem 1.6, but it yields
a polynomial-time algorithm for recognition of adaptably 2-choosable multigraphs.
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