ZERO PRODUCT PRESERVERS OF C*-ALGEBRAS

NGAI-CHING WONG

Dedicated to Professor Bingren Li on the occasion of his 65th birthday (1941.10.7 -)

ABSTRACT. Let $\theta: \mathscr{A} \to \mathscr{B}$ be a zero-product preserving bounded linear map between C*-algebras. Here neither \mathscr{A} nor \mathscr{B} is necessarily unital. In this note, we investigate when θ gives rise to a Jordan homomorphism. In particular, we show that \mathscr{A} and \mathscr{B} are isomorphic as Jordan algebras if θ is bijective and sends zero products of self-adjoint elements to zero products. They are isomorphic as C*-algebras if θ is bijective and preserves the full zero product structure.

1. Introduction

Let \mathscr{M} and \mathscr{N} be algebras over a field \mathbb{F} and $\theta: \mathscr{M} \to \mathscr{N}$ a linear map. We say that θ is a zero-product preserving map if $\theta(a)\theta(b)=0$ in \mathscr{N} whenever ab=0 in \mathscr{M} . The canonical form of a linear zero product preserver, $\theta=h\varphi$, arises from an element h in the center of \mathscr{N} and an algebra homomorphism $\varphi: \mathscr{M} \to \mathscr{N}$. In [6], we see that in many interesting cases zero-product preserving linear maps arise in this way.

We are now interested in the C^* -algebra case. There are 4 different versions of zero products: ab=0, $ab^*=0$, $a^*b=0$ and $ab^*=a^*b=0$. Surprisingly, the original version ab=0 is the least, if any, geometrically meaningful, while the others mean a,b have orthogonal initial spaces, or orthogonal range spaces, or both. Using the orthogonality conditions, the author showed in [11] that a bounded linear map $\theta: \mathscr{A} \to \mathscr{B}$ between C*-algebras is a triple homomorphism if and only if θ preserves the fourth disjointness $ab^*=a^*b=0$ and $\theta^{**}(1)$ is a partial isometry. Here, the triple product of a C*-algebra is defined by $\{a,b,c\}=(ab^*c+cb^*a)/2$, and $\theta^{**}:\mathscr{A}^{**}\to\mathscr{B}^{**}$ is the bidual map of θ . See also [3] for a similar result dealing with the case ab=ba=0. We shall deal with the first and original case in this note. The other cases will be dealt with in a subsequent paper.

There is a common starting point of all these 4 versions. Namely, we can consider first the zero products ab = 0 of self-adjoint elements a, b in \mathscr{A}_{sa} . In [10] (see also [9]), Wolff shows that if $\theta : \mathscr{A} \to \mathscr{B}$ is a bounded linear map between unital C^* -algebras preserving the involution and zero products of self-adjoint elements in \mathscr{A} then $\theta = \theta(1)J$ for a Jordan *-homomorphism J from \mathscr{A} into \mathscr{B}^{**} . In [6], the involution preserving assumption is successfully removed. Modifying the arguments in [6], we will further relax the condition that the C^* -algebras are unital in this

Date: January 1, 2007; to appear in Contemporary Math.

²⁰⁰⁰ Mathematics Subject Classification. 46L40, 47B48.

 $Key\ words\ and\ phrases.$ zero-product preservers, algebra homomorphisms, Jordan homomorphisms, C*-algebras.

This work is partially supported by Taiwan NSC grant 95-2115-M-110-001-.

note. In particular, we show that \mathscr{A} and \mathscr{B} are isomorphic as Jordan algebras if θ is bijective and sends self-adjoint elements with zero products in \mathscr{A} to elements (not necessarily self-adjoint, though) with zero products in \mathscr{B} . They are isomorphic as C*-algebras if θ is bijective and preserves the full zero product structure.

2. Results

In the following, \mathscr{A}, \mathscr{B} are always C*-algebras not necessarily with identities. \mathscr{A}_{sa} denotes the (real) Jordan-Banach algebra consisting of all self-adjoint elements of \mathscr{A}

Recall that a linear map J between two algebras is said to be a *Jordan homomorphism* if J(xy+yx)=J(x)J(y)+J(y)J(x) for all x,y. If the underlying field has characteristic not 2, this condition is equivalent to that $J(x^2)=(Jx)^2$ for all x in the domain. We also have the identity J(xyx)=J(x)J(y)J(x) for all x,y in this case

Lemma 2.1. Let $J: \mathscr{A}_{sa} \longrightarrow \mathscr{B}$ be a bounded Jordan homomorphism. Then J sends zero products in \mathscr{A}_{sa} to zero products in \mathscr{B} .

Proof. Let a, b be self-adjoint elements in \mathscr{A} and ab = 0. We want to prove that J(a)J(b) = 0. Without loss of generality, we can assume that $a \geq 0$. Let a' in A_{sa} satisfy that $a'^2 = a$. We have a'b = 0. By the identities 0 = J(a'ba') = J(a')J(b)J(a') and 0 = J(a'b + ba') = J(a')J(b) + J(b)J(a'), we have $J(a)J(b) = J(a'^2)J(b) = J(a')^2J(b) = 0$.

Recall that when we consider \mathscr{A}^{**} as the enveloping W*-algebra of \mathscr{A} , the multiplier algebra $M(\mathscr{A})$ of \mathscr{A} is the C*-subalgebra of \mathscr{A}^{**} ,

$$M(\mathscr{A}) = \{ x \in \mathscr{A}^{**} : x \mathscr{A} \subseteq \mathscr{A} \text{ and } \mathscr{A} x \subseteq \mathscr{A} \}.$$

Elements in $M(\mathscr{A})_{sa}$ can be approximated by both monotone increasing and decreasing bounded nets from $\mathscr{A}_{sa} = \mathscr{A}_{sa} \oplus \mathbb{R}1$ (see, e.g., [5]). In case \mathscr{A} is unital, $M(\mathscr{A}) = \mathscr{A}$.

Lemma 2.2. Let $\theta: \mathscr{A}_{sa} \to \mathscr{B}$ be a bounded linear map sending zero products in \mathscr{A}_{sa} to zero products in \mathscr{B} . Then the restriction of θ^{**} induces a bounded linear map, denoted again by θ , from $M(\mathscr{A})_{sa}$ into \mathscr{B}^{**} , which sends zero products in $M(\mathscr{A})_{sa}$ to zero products in \mathscr{B}^{**} .

Proof. First we consider the case $b \in \mathscr{A}_{sa}$, and p is an open projection in \mathscr{A}^{**} such that pb = 0. For any self-adjoint element c in the hereditary C*-subalgebra $h(p) = p\mathscr{A}^{**}p \cap \mathscr{A}$ of \mathscr{A} , we have cb = 0 and thus $\theta(c)\theta(b) = 0$. By the weak* continuity of θ^{**} , we have $\theta^{**}(p\mathscr{A}_{sa}^{**}p)\theta(b) = 0$. In particular, $\theta^{**}(p)\theta(b) = 0$.

Let a,b be self-adjoint elements in $M(\mathscr{A})$ with ab=0. We want to prove that $\theta(a)\theta(b)=0$. Without loss of generality, we can assume both a,b are positive. Let $0\leq a_{\alpha}+\lambda_{\alpha}\uparrow a$ be a monotone increasing net from $\tilde{\mathscr{A}}_{sa}$. Since $0\leq b(a_{\alpha}+\lambda_{\alpha})b\uparrow bab=0$, we have $(a_{\alpha}+\lambda_{\alpha})b=0$ for all α . Similarly, there is a monotone increasing net $0\leq b_{\beta}+s_{\beta}\uparrow b$ from $\tilde{\mathscr{A}}_{sa}$ such that $(a_{\alpha}+\lambda_{\alpha})(b_{\beta}+s_{\beta})=0$ for all β . We can assume the real scalar $\lambda_{\alpha}\neq 0$. Then $s_{\beta}=0$ for all β . In particular, we see that a_{α} commutes with all b_{β} . In the abelian C*-subalgebra of $M(\mathscr{A})$ generated by a_{α} , b_{β} and 1, we see that $a_{\alpha}+\lambda_{\alpha}$ can be approximated in norm by finite real linear combinations of open projections disjoint from b_{β} . By the first paragraph, we have $\theta(a_{\alpha}+\lambda_{\alpha})\theta(b_{\beta})=0$.

By the weak* continuity of θ^{**} again, we see that $\theta(a_{\alpha} + \lambda_{\alpha})\theta(b) = \lim_{\beta} \theta(a_{\alpha} + \lambda_{\alpha})\theta(b)$ $\lambda_{\alpha}\theta(b_{\beta})=0$ for each α , and then $\theta(a)\theta(b)=\lim_{\alpha}\theta(a_{\alpha}+\lambda_{\alpha})\theta(b)=0$.

With Lemma 2.2, results in [6] concerning zero product preservers of unital C*algebras can be extended easily to the non-unital case. We restate [6, Lemmas 4.4] and 4.5] below, but now here \mathcal{A} does not necessarily have an identity.

Lemma 2.3. Let $\theta: \mathscr{A} \to \mathscr{B}$ be a bounded linear map sending zero products in \mathscr{A}_{sa} to zero products in \mathscr{B} . For any a in $M(\mathscr{A})$, we have

- (i) $\theta(1)\theta(a) = \theta(a)\theta(1)$,
- (ii) $\theta(1)\theta(a^2) = (\theta(a))^2$.

If $\theta(1)$ is invertible then $\theta = \theta(1)J$ for a bounded Jordan homomorphism J from \mathscr{A} into \mathscr{B} .

Theorem 2.4. Two C^* -algebras $\mathscr A$ and $\mathscr B$ are isomorphic as Jordan algebras if and only if there is a bounded bijective linear map θ between them sending zero products in \mathscr{A}_{sa} to zero products in \mathscr{B} . If θ is just surjective, then \mathscr{B} is isomorphic to the C^* -algebra $\mathscr{A}/\ker\theta$ as Jordan algebras.

Proof. One way follows from Lemma 2.1. Conversely, suppose $\theta(\mathscr{A}) = \mathscr{B}$. Since $\theta(1)\theta(a^2) = \theta(a)^2$ for all a in \mathscr{A} and $\mathscr{B} = \mathscr{B}^2$, we have $\theta(1)\mathscr{B} = \mathscr{B}$. Thus, the central element $\theta(1)$ is invertible. Lemma 2.3 applies, by noting that closed Jordan ideals of C*-algebras are two-sided ideals [7].

In case θ preserves all zero products in \mathscr{A} , we have the following non-unital version of [6, Theorem 4.11].

Theorem 2.5. Let θ be a surjective bounded linear map from a C^* -algebra $\mathscr A$ onto a C^* -algebra \mathscr{B} . Suppose that $\theta(a)\theta(b)=0$ for all $a,b\in\mathscr{A}$ with ab=0. Then $\theta(1)$ is a central element and invertible in $M(\mathcal{B})$. Moreover, $\theta = \theta(1)\varphi$ for a surjective algebra homomorphism φ from \mathscr{A} onto \mathscr{B} .

Proof. First, we have already seen in the proof of Theorem 2.4 that $\theta(1)$ is a central element and invertible in $M(\mathcal{B})$. Second, we observe that to utilize the results [6, Theorems 4.12 and 4.13] of Brešar [4], and [6, Lemma 4.14] of Akemann and Pedersen [2], one does not need to assume \mathscr{A} or \mathscr{B} is unital. Together with our new Theorem 2.4, which is a non-unital version of [6, Theorem 4.6], we can now make use of the same proof of [6, Theorem 4.11] to establish the assertion.

Motivated by the theory of Banach lattices (see, e.g., [1]), we call two C*-algebras being d-isomorphic if there is a bounded bijective linear map between them sending zero-products to zero-products. We end this note with the following

Corollary 2.6. Two C*-algebras are d-isomorphic if and only if they are *-isomorphic.

Proof. The conclusion follows from Theorem 2.5 and a result of Sakai [8, Theorem 4.1.20] stating that two algebraic isomorphic C*-algebras are indeed *-isomorphic.

References

- [1] Y. A. Abramovich, Multiplicative representations of disjointness preserving operators, Indag. Math. 45 (1983), 265-279.
- [2] C. A. Akemann and G. K. Pedersen, Ideal perturbations of elements in C*-algebras, Math. Scand. 41 (1977), 117-139.

- [3] J. Alaminos, M. Brešar, J. Extremera, and A. R. Villena, Characterizing homomorphisms and derivations on C^* -algebras, Proc. Edinburgh Math. Soc., to appear.
- [4] M. Brešar, Jordan mappings of semiprime rings, J. Algebra 127 (1989), 218–228.
- [5] L. G. Brown, Semicontinuity and multipliers of C*-algebras, Can. J. Math., XL(4) (1988), 865–988.
- [6] M. A. Chebotar, W.-F. Ke, P.-H. Lee and N.-C. Wong, Mappings preserving zero products, Studia Math. 155(1) (2003), 77–94.
- [7] P. Civin and B. Yood, Lie and Jordan structures in Banach algebras, Pacific J. Math. 15 (1965), 775–797.
- [8] S. Sakai, C^* -algebras and W^* -algebras, Spinger-Verlag, New York, 1971.
- [9] J. Schweizer, Interplay Between Noncommutative Topology and Operators on C*-Algebras, Ph. D. Dissertation, Eberhard-Karls-Universitat, Tubingen, Germany, 1997.
- [10] M. Wolff, Disjointness preserving operators on C*-algebras, Arch. Math. 62 (1994), 248–253.
- [11] N.-C. Wong, Triple homomorphisms of C^* -algebras, Southeast Asian Bull. Math. **29**(2) (2005), 401–407.

DEPARTMENT OF APPLIED MATHEMATICS, NATIONAL SUN YAT-SEN UNIVERSITY, AND NATIONAL CENTER FOR THEORETICAL SCIENCES, KAOHSIUNG, 80424, TAIWAN, R.O.C.

 $E\text{-}mail\ address{:}\ \mathtt{wong@math.nsysu.edu.tw}$