ZERO PRODUCT PRESERVERS OF C*-ALGEBRAS

NGAI-CHING WONG
Dedicated to Professor Bingren Li on the occasion of his 65th birthday (1941.10.7 -)

Abstract

Let $\theta: \mathscr{A} \rightarrow \mathscr{B}$ be a zero-product preserving bounded linear map between C^{*}-algebras. Here neither \mathscr{A} nor \mathscr{B} is necessarily unital. In this note, we investigate when θ gives rise to a Jordan homomorphism. In particular, we show that \mathscr{A} and \mathscr{B} are isomorphic as Jordan algebras if θ is bijective and sends zero products of self-adjoint elements to zero products. They are isomorphic as C^{*}-algebras if θ is bijective and preserves the full zero product structure.

1. Introduction

Let \mathscr{M} and \mathscr{N} be algebras over a field \mathbb{F} and $\theta: \mathscr{M} \rightarrow \mathscr{N}$ a linear map. We say that θ is a zero-product preserving map if $\theta(a) \theta(b)=0$ in \mathscr{N} whenever $a b=0$ in \mathscr{M}. The canonical form of a linear zero product preserver, $\theta=h \varphi$, arises from an element h in the center of \mathscr{N} and an algebra homomorphism $\varphi: \mathscr{M} \rightarrow \mathscr{N}$. In [6], we see that in many interesting cases zero-product preserving linear maps arise in this way.

We are now interested in the C^{*}-algebra case. There are 4 different versions of zero products: $a b=0, a b^{*}=0, a^{*} b=0$ and $a b^{*}=a^{*} b=0$. Surprisingly, the original version $a b=0$ is the least, if any, geometrically meaningful, while the others mean a, b have orthogonal initial spaces, or orthogonal range spaces, or both. Using the orthogonality conditions, the author showed in [11] that a bounded linear $\operatorname{map} \theta: \mathscr{A} \rightarrow \mathscr{B}$ between C^{*}-algebras is a triple homomorphism if and only if θ preserves the fourth disjointness $a b^{*}=a^{*} b=0$ and $\theta^{* *}(1)$ is a partial isometry. Here, the triple product of a C^{*}-algebra is defined by $\{a, b, c\}=\left(a b^{*} c+c b^{*} a\right) / 2$, and $\theta^{* *}: \mathscr{A}^{* *} \rightarrow \mathscr{B}^{* *}$ is the bidual map of θ. See also [3] for a similar result dealing with the case $a b=b a=0$. We shall deal with the first and original case in this note. The other cases will be dealt with in a subsequent paper.

There is a common starting point of all these 4 versions. Namely, we can consider first the zero products $a b=0$ of self-adjoint elements a, b in $\mathscr{A}_{s a}$. In [10] (see also [9]), Wolff shows that if $\theta: \mathscr{A} \rightarrow \mathscr{B}$ is a bounded linear map between unital C^{*}-algebras preserving the involution and zero products of self-adjoint elements in \mathscr{A} then $\theta=\theta(1) J$ for a Jordan $*$-homomorphism J from \mathscr{A} into $\mathscr{B}^{* *}$. In [6], the involution preserving assumption is successfully removed. Modifying the arguments in [6], we will further relax the condition that the C^{*}-algebras are unital in this

[^0]note. In particular, we show that \mathscr{A} and \mathscr{B} are isomorphic as Jordan algebras if θ is bijective and sends self-adjoint elements with zero products in \mathscr{A} to elements (not necessarily self-adjoint, though) with zero products in \mathscr{B}. They are isomorphic as C^{*}-algebras if θ is bijective and preserves the full zero product structure.

2. Results

In the following, \mathscr{A}, \mathscr{B} are always C^{*}-algebras not necessarily with identities. $\mathscr{A}_{s a}$ denotes the (real) Jordan-Banach algebra consisting of all self-adjoint elements of \mathscr{A}.

Recall that a linear map J between two algebras is said to be a Jordan homomorphism if $J(x y+y x)=J(x) J(y)+J(y) J(x)$ for all x, y. If the underlying field has characteristic not 2 , this condition is equivalent to that $J\left(x^{2}\right)=(J x)^{2}$ for all x in the domain. We also have the identity $J(x y x)=J(x) J(y) J(x)$ for all x, y in this case.
Lemma 2.1. Let $J: \mathscr{A}_{s a} \longrightarrow \mathscr{B}$ be a bounded Jordan homomorphism. Then J sends zero products in $\mathscr{A}_{\text {sa }}$ to zero products in \mathscr{B}.
Proof. Let a, b be self-adjoint elements in \mathscr{A} and $a b=0$. We want to prove that $J(a) J(b)=0$. Without loss of generality, we can assume that $a \geq 0$. Let a^{\prime} in $A_{s a}$ satisfy that ${a^{\prime}}^{2}=a$. We have $a^{\prime} b=0$. By the identities $0=J\left(a^{\prime} b a^{\prime}\right)=$ $J\left(a^{\prime}\right) J(b) J\left(a^{\prime}\right)$ and $0=J\left(a^{\prime} b+b a^{\prime}\right)=J\left(a^{\prime}\right) J(b)+J(b) J\left(a^{\prime}\right)$, we have $J(a) J(b)=$ $J\left(a^{\prime 2}\right) J(b)=J\left(a^{\prime}\right)^{2} J(b)=0$.

Recall that when we consider $\mathscr{A}^{* *}$ as the enveloping W^{*}-algebra of \mathscr{A}, the multiplier algebra $M(\mathscr{A})$ of \mathscr{A} is the C^{*}-subalgebra of $\mathscr{A}^{* *}$,

$$
M(\mathscr{A})=\left\{x \in \mathscr{A}^{* *}: x \mathscr{A} \subseteq \mathscr{A} \text { and } \mathscr{A} x \subseteq \mathscr{A}\right\}
$$

Elements in $M(\mathscr{A})_{s a}$ can be approximated by both monotone increasing and decreasing bounded nets from $\tilde{\mathscr{A}}_{s a}=\mathscr{A}_{s a} \oplus \mathbb{R} 1$ (see, e.g., [5]). In case \mathscr{A} is unital, $M(\mathscr{A})=\mathscr{A}$.
Lemma 2.2. Let $\theta: \mathscr{A}_{\text {sa }} \rightarrow \mathscr{B}$ be a bounded linear map sending zero products in $\mathscr{A}_{\text {sa }}$ to zero products in \mathscr{B}. Then the restriction of $\theta^{* *}$ induces a bounded linear map, denoted again by θ, from $M(\mathscr{A})_{\text {sa }}$ into $\mathscr{B}^{* *}$, which sends zero products in $M(\mathscr{A})_{\text {sa }}$ to zero products in $\mathscr{B}^{* *}$.
Proof. First we consider the case $b \in \mathscr{A}_{s a}$, and p is an open projection in $\mathscr{A}^{* *}$ such that $p b=0$. For any self-adjoint element c in the hereditary C^{*}-subalgebra $h(p)=p \mathscr{A}^{* *} p \cap \mathscr{A}$ of \mathscr{A}, we have $c b=0$ and thus $\theta(c) \theta(b)=0$. By the weak* continuity of $\theta^{* *}$, we have $\theta^{* *}\left(p \mathscr{A}_{s a}^{* *} p\right) \theta(b)=0$. In particular, $\theta^{* *}(p) \theta(b)=0$.

Let a, b be self-adjoint elements in $M(\mathscr{A})$ with $a b=0$. We want to prove that $\theta(a) \theta(b)=0$. Without loss of generality, we can assume both a, b are positive. Let $0 \leq a_{\alpha}+\lambda_{\alpha} \uparrow a$ be a monotone increasing net from $\tilde{\mathscr{A}}_{s a}$. Since $0 \leq b\left(a_{\alpha}+\lambda_{\alpha}\right) b \uparrow$ $b a b=0$, we have $\left(a_{\alpha}+\lambda_{\alpha}\right) b=0$ for all α. Similarly, there is a monotone increasing net $0 \leq b_{\beta}+s_{\beta} \uparrow b$ from $\tilde{\mathscr{A}}_{s a}$ such that $\left(a_{\alpha}+\lambda_{\alpha}\right)\left(b_{\beta}+s_{\beta}\right)=0$ for all β. We can assume the real scalar $\lambda_{\alpha} \neq 0$. Then $s_{\beta}=0$ for all β. In particular, we see that a_{α} commutes with all b_{β}. In the abelian C^{*}-subalgebra of $M(\mathscr{A})$ generated by a_{α}, b_{β} and 1 , we see that $a_{\alpha}+\lambda_{\alpha}$ can be approximated in norm by finite real linear combinations of open projections disjoint from b_{β}. By the first paragraph, we have $\theta\left(a_{\alpha}+\lambda_{\alpha}\right) \theta\left(b_{\beta}\right)=0$.

By the weak* continuity of $\theta^{* *}$ again, we see that $\theta\left(a_{\alpha}+\lambda_{\alpha}\right) \theta(b)=\lim _{\beta} \theta\left(a_{\alpha}+\right.$ $\left.\lambda_{\alpha}\right) \theta\left(b_{\beta}\right)=0$ for each α, and then $\theta(a) \theta(b)=\lim _{\alpha} \theta\left(a_{\alpha}+\lambda_{\alpha}\right) \theta(b)=0$.

With Lemma 2.2, results in [6] concerning zero product preservers of unital C*algebras can be extended easily to the non-unital case. We restate [6, Lemmas 4.4 and 4.5] below, but now here \mathscr{A} does not necessarily have an identity.

Lemma 2.3. Let $\theta: \mathscr{A} \rightarrow \mathscr{B}$ be a bounded linear map sending zero products in $\mathscr{A}_{\text {sa }}$ to zero products in \mathscr{B}. For any a in $M(\mathscr{A})$, we have
(i) $\theta(1) \theta(a)=\theta(a) \theta(1)$,
(ii) $\theta(1) \theta\left(a^{2}\right)=(\theta(a))^{2}$.

If $\theta(1)$ is invertible then $\theta=\theta(1) J$ for a bounded Jordan homomorphism J from \mathscr{A} into \mathscr{B}.

Theorem 2.4. Two C^{*}-algebras \mathscr{A} and \mathscr{B} are isomorphic as Jordan algebras if and only if there is a bounded bijective linear map θ between them sending zero products in $\mathscr{A}_{\text {sa }}$ to zero products in \mathscr{B}. If θ is just surjective, then \mathscr{B} is isomorphic to the C^{*}-algebra $\mathscr{A} / \operatorname{ker} \theta$ as Jordan algebras.
Proof. One way follows from Lemma 2.1. Conversely, suppose $\theta(\mathscr{A})=\mathscr{B}$. Since $\theta(1) \theta\left(a^{2}\right)=\theta(a)^{2}$ for all a in \mathscr{A} and $\mathscr{B}=\mathscr{B}^{2}$, we have $\theta(1) \mathscr{B}=\mathscr{B}$. Thus, the central element $\theta(1)$ is invertible. Lemma 2.3 applies, by noting that closed Jordan ideals of C^{*}-algebras are two-sided ideals [7].

In case θ preserves all zero products in \mathscr{A}, we have the following non-unital version of [6, Theorem 4.11].

Theorem 2.5. Let θ be a surjective bounded linear map from a C^{*}-algebra \mathscr{A} onto $a C^{*}$-algebra \mathscr{B}. Suppose that $\theta(a) \theta(b)=0$ for all $a, b \in \mathscr{A}$ with $a b=0$. Then $\theta(1)$ is a central element and invertible in $M(\mathscr{B})$. Moreover, $\theta=\theta(1) \varphi$ for a surjective algebra homomorphism φ from \mathscr{A} onto \mathscr{B}.
Proof. First, we have already seen in the proof of Theorem 2.4 that $\theta(1)$ is a central element and invertible in $M(\mathscr{B})$. Second, we observe that to utilize the results [6, Theorems 4.12 and 4.13] of Brešar [4], and [6, Lemma 4.14] of Akemann and Pedersen [2], one does not need to assume \mathscr{A} or \mathscr{B} is unital. Together with our new Theorem 2.4, which is a non-unital version of [6, Theorem 4.6], we can now make use of the same proof of [6, Theorem 4.11] to establish the assertion.

Motivated by the theory of Banach lattices (see, e.g., [1]), we call two C*-algebras being d-isomorphic if there is a bounded bijective linear map between them sending zero-products to zero-products. We end this note with the following
Corollary 2.6. Two C^{*}-algebras are d-isomorphic if and only if they are $*$-isomorphic.
Proof. The conclusion follows from Theorem 2.5 and a result of Sakai [8, Theorem 4.1.20] stating that two algebraic isomorphic C^{*}-algebras are indeed $*$-isomorphic.

References

[1] Y. A. Abramovich, Multiplicative representations of disjointness preserving operators, Indag. Math. 45 (1983), 265-279.
[2] C. A. Akemann and G. K. Pedersen, Ideal perturbations of elements in C^{*}-algebras, Math. Scand. 41 (1977), 117-139.
[3] J. Alaminos, M. Brešar, J. Extremera, and A. R. Villena, Characterizing homomorphisms and derivations on C^{*}-algebras, Proc. Edinburgh Math. Soc., to appear.
[4] M. Brešar, Jordan mappings of semiprime rings, J. Algebra 127 (1989), 218-228.
[5] L. G. Brown, Semicontinuity and multipliers of C^{*}-algebras, Can. J. Math., XL(4) (1988), 865-988.
[6] M. A. Chebotar, W.-F. Ke, P.-H. Lee and N.-C. Wong, Mappings preserving zero products, Studia Math. 155(1) (2003), 77-94.
[7] P. Civin and B. Yood, Lie and Jordan structures in Banach algebras, Pacific J. Math. 15 (1965), 775-797.
[8] S. Sakai, C^{*}-algebras and W^{*}-algebras, Spinger-Verlag, New York, 1971.
[9] J. Schweizer, Interplay Between Noncommutative Topology and Operators on C*-Algebras, Ph. D. Dissertation, Eberhard-Karls-Universitat, Tubingen, Germany, 1997.
[10] M. Wolff, Disjointness preserving operators on C^{*}-algebras, Arch. Math. 62 (1994), 248-253.
[11] N.-C. Wong, Triple homomorphisms of C^{*}-algebras, Southeast Asian Bull. Math. 29(2) (2005), 401-407.

Department of Applied Mathematics, National Sun Yat-sen University, and National Center for Theoretical Sciences, Kaohsiung, 80424, Taiwan, R.O.C.

E-mail address: wong@math.nsysu.edu.tw

[^0]: Date: January 1, 2007; to appear in Contemporary Math.
 2000 Mathematics Subject Classification. 46L40, 47B48.
 Key words and phrases. zero-product preservers, algebra homomorphisms, Jordan homomorphisms, C^{*}-algebras.

 This work is partially supported by Taiwan NSC grant $95-2115-\mathrm{M}-110-001-$.

