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Abstract. In this paper, using the concept of w-distances on a metric space,
we first prove a generalized fixed point theorem for mappings without con-

tinuity in a complete metric space. Using this result, we obtain new and
well-known fixed point theorems in a complete metric space.

1. Introduction

Let X be a metric space with metric d. A function p : X × X → [0,∞) is said
to be a w-distance [8] on X if the following are satisfied:

(i) p(x, z) ≤ p(x, y) + p(y, z) for all x, y, z ∈ X;
(ii) for any x ∈ X, p(x, ·) : X → [0,∞) is lower semicontinuous;
(iii) for any ε > 0, there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ imply

d(x, y) ≤ ε.

Using the concept of w-distances, Kada, Suzuki and Takahashi [8] improved Caristi’s
fixed point theorem [1], Ekeland’s variational principle [4] and the nonconvex min-
imization theorem according to Takahashi [15].

Let (X, d) be a metric space. A mapping T : X → X is said to be contractive
if there exists r ∈ [0, 1) such that d(Tx, Ty) ≤ r d(x, y) for all x, y ∈ X. Such a
mapping is also called r-contractive. A mapping T : X → X is said to be Kannan
[9] if there exists α ∈ [0, 1

2 ) such that

d(Tx, Ty) ≤ α{d(x, Tx) + d(y, Ty)}

for all x, y ∈ X. A mapping T : X → X is said to be contractively nonspreading
[2, 19, 7] if there exists β ∈ [0, 1

2 ) such that

d(Tx, Ty) ≤ β{d(x, Ty) + d(y, Tx)}

for all x, y ∈ X. A mapping T : X → X is called contractively hybrid [6] if there
exists γ ∈ [0, 1

3 ) such that

d(Tx, Ty) ≤ r{d(Tx, y) + d(Ty, x) + d(x, y)}

for all x, y ∈ X. Recently, motivated by generalized hybrid mappings [10] in a
Hilbert space, Hasegawa, Komiya and Takahashi [6] introduced the concept of
contractively generalized hybrid mappings on metric spaces, and studied fixed point
theorems for such mappings on complete metric spaces. Let (X, d) be a metric
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space. A mapping T : X → X is called contractively generalized hybrid [6] if there
exist α, β ∈ R and r ∈ [0, 1) such that

αd(Tx, Ty)+(1 − α)d(x, Ty)(1.1)

≤ r{βd(Tx, y) + (1 − β)d(x, y)}

for all x, y ∈ X. Such a mapping T is also called contractively (α, β, r)-generalized
hybrid; see also [3, 13]. For example, a ontractively (α, β, r)-generalized hybrid
mapping is r-contractive for α = 1 and β = 0. It is contractively nonspreading for
α = 1 + r and β = 1. Furthermore, it is ontractively hybrid for α = 1 + r

2 and
β = 1

2 ; see Hasegawa, Komiya and Takahashi [6].
In this paper, motivated by w-distances and Hasegawa, Komiya and Takahashi

[6], we first prove a generalized fixed point theorem for mappings without continuity
in a complete metric space. Using this result, we obtain new and well-known fixed
point theorems in a complete metric space.

2. Preliminaries

Throughout this paper, we denote by N and R the sets of positive integers and
real numbers, respectively. Let X be a metric space with metric d. Then we denote
by W (X) the set of all w-distances on X. A w-distance p on X is called symmetric
if p(x, y) = p(y, x) for all x, y ∈ X. We denote by W0(X) the set of all symmetric
w-distances on X. Note that the metric d is an element of W0(X). We also know
that there are many important examples of w-distances on X; see [8, 16]. We
denote by WC1(X) the set of all mappings T of X into itself such that there exist
p ∈ W (X) and r ∈ [0, 1) satisfying

p(Tx, Ty) ≤ rp(x, y)

for all x, y ∈ X. Such a mapping T is called p-contractive. Shioji, Suzuki and
Takahashi [14] also introduced the sets WC2(X), WC0(X), WK1(X), WK2(X)
and WK0(X) of mappings of X into itself as follows:

T ∈ WC2(X) if and only if there exist p ∈ W (X) and r ∈ [0, 1) such that

p(Tx, Ty) ≤ rp(y, x) for all x, y ∈ X;

T ∈ WC0(X) if and only if there exist p ∈ W0(X) and r ∈ [0, 1) such that

p(Tx, Ty) ≤ rp(x, y) for all x, y ∈ X;

T ∈ WK1(X) if and only if there exist p ∈ W (X) and α ∈ [0, 1/2) such that

p(Tx, Ty) ≤ α{p(Tx, x) + p(Ty, y)} for all x, y ∈ X;

T ∈ WK2(X) if and only if there exist p ∈ W (X) and α ∈ [0, 1/2) such that

p(Tx, Ty) ≤ α{p(Tx, x) + p(y, Ty)} for all x, y ∈ X;

T ∈ WK0(X) if and only if there exist p ∈ W0(X) and α ∈ [0, 1/2) such that

p(Tx, Ty) ≤ α{p(Tx, x) + p(Ty, y)} for all x, y ∈ X.

In particular, a mapping T ∈ WK1(X) is called p-Kannan. The following lemma
was proved in [14].
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Lemma 2.1 ([14]). Let X be a metric space with metric d, let p be a w-distance
on X, let T be a mapping of X into itself and let u be a point in X such that

lim
m,n→∞

p(Tmu, Tnu) = 0.

Then for every x ∈ X, limk→∞ p(T ku, x) and limk→∞ p(x, T ku) exist. Moreover,
let β and γ be functions from X to [0,∞) defined by

β(x) = lim
k→∞

p(T ku, x) and γ(x) = lim
k→∞

p(x, T ku).

Then the following hold:
(i) β is lower semicontinuous on X;
(ii) for every ε > 0, there exists δ > 0 such that β(x) ≤ δ and β(y) ≤ δ imply

d(x, y) ≤ ε. In particular, the set {x ∈ X : β(x) = 0} consists of at most
one point;

(iii) the functions q0 and q1 from X × X to [0,∞) defined by

q0(x, y) = β(x) + β(y) and q1(x, y) = γ(x) + β(y)

are w-distances on X.

Shioji, Suzuki and Takahashi [14] proved the following theorem from Lemma 2.1.

Theorem 2.2 ([14]). Let (X, d) be a metric space. Then

WC1(X) = WC0(X) = WK1(X) = WK0(X) ⊂ WC2(X) = WK2(X).

Iemoto, Takahashi and Yingtaweesittikul [7] also introduced the following class
of mappings of X into itself. Let p be a w-distance on X. A mapping T : X → X
is called p-contractively nonspreading if there exists α ∈ [0, 1/2) such that

p(Tx, Ty) ≤ α{p(Tx, y) + p(x, Ty)} ∀x, y ∈ X.

In [7], they proved the following result from Lemma 2.1.

Theorem 2.3 ([7]). Let (X, d) be a metric space and let p be a w-distance on
X such that p(x, x) = 0 for all x ∈ X. Let T be a p-contractively nonspreading
mapping of X into itself. Then T is in WC0(X).

Let ℓ∞ be the Banach space of bounded sequences with the supremum norm. A
linear functional µ on ℓ∞ is called a mean if µ(e) = ∥µ∥ = 1, where e = (1, 1, 1, ....).
For x = (x1, x2, x3, ....), the value µ(x) is also denoted by µn(xn). A mean µ on ℓ∞

is called a Banach limit if it satisfies µn(xn) = µn(xn+1). If µ is a Banach limit on
ℓ∞, then for x = (x1, x2, x3, ...) ∈ ℓ∞,

lim inf
n→∞

xn ≤ µn(xn) ≤ lim sup
n→∞

xn.

In particular, if x = (x1, x2, x3, ...) ∈ ℓ∞ and xn → a ∈ R, then we have µ(x) =
µn(xn) = a. For details, we can refer [16].

3. Generalized fixed point theorem

In this section, we prove a fixed point theorem for mappings with w-distances in
complete metric spaces. Before proving it, we need the following lemma proved by
Kada, Suzuki and Takahashi [8]; see also [16].
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Lemma 3.1 ([8]). Let (X, d) be a complete metric space and let p be a w-distance
on X. Let {xn} and {yn} be sequences in X. Let {αn} and {βn} be sequences in
[0,∞) converging to 0, and let x, y, z ∈ X. Then the following hold:

(i) If p(xn, y) ≤ αn and p(xn, z) ≤ βn for all n ∈ N, then y = z. In particular,
if p(x, y) = 0 and p(x, z) = 0, then y = z;

(ii) if p(xn, yn) ≤ αn and p(xn, z) ≤ βn for all n ∈ N, then the sequence {yn}
converges to z;

(iii) if p(xn, xm) ≤ αn for all n, m ∈ N with m > n, then the sequence {xn} is
a Cauchy sequence;

(iv) if p(y, xn) ≤ αn for all n ∈ N, then {xn} is a Cauchy sequence.

Theorem 3.2. Let (X, d) be a complete metric space, let p ∈ W0(X) and let {xn}
be a sequence in X such that {p(xn, x)} is bounded for some x ∈ X. Let T be a
mapping of X into itself. Suppose that there exist a real number r ∈ [0, 1) and a
mean µ on ℓ∞ such that

µnp(xn, Ty) ≤ rµnp(xn, y), ∀y ∈ X.

Then, the following hold:

(i) T has a unique fixed point u in X;
(ii) for every z ∈ X, the sequence {Tnz} converges to u.

Proof. Since {p(xn, x)} is bounded for some x ∈ X, we have that, for any y ∈ X,
{p(xn, y)} is bounded. In fact, we have that, for any n ∈ N,

p(xn, y) ≤ p(xn, x) + p(x, y) ≤ sup
m∈N

p(xm, x) + p(x, y) < ∞.

Using a mean µ on ℓ∞, we can define a function g : X → R as follows:

g(y) = µnp(xn, y), ∀y ∈ X.

For any z ∈ X, consider a sequence {Tnz} in X. We have that, for any m, n ∈ N,

p(Tmz, Tm+1z) ≤ p(Tmz, xn) + p(xn, Tm+1z).

Since µ is a mean on ℓ∞ and p is symmetric, we have that, for any m ∈ N,

p(Tmz, Tm+1z) ≤ µnp(Tmz, xn) + µnp(xn, Tm+1z)

= µnp(xn, Tmz) + µnp(xn, Tm+1z)

≤ rµnp(xn, Tm−1z) + rµnp(xn, Tmz)

≤ . . .(3.1)

≤ rmµnp(xn, z) + rmµnp(xn, T z)

≤ rmµnp(xn, z) + rm+1µnp(xn, z)

= rm(1 + r)µnp(xn, z)

= rm(1 + r)g(z).
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We have from (3.1) that, for any l,m ∈ N with m > l,

p(T lz, Tmz) ≤ p(T lz, T l+1z) + p(T l+1z, T l+2z) + · · · + p(Tm−1z, Tmz)

≤ rl(1 + r)g(z) + rl+1(1 + r)g(z) + · · · + rm−1(1 + r)g(z)

≤ rl(1 + r)g(z) + rl+1(1 + r)g(z) + · · · + rm−1(1 + r)g(z) + . . .(3.2)

= rl(1 + r)g(z)(1 + r + r2 + r3 + . . . )

= rl(1 + r)g(z)
1

1 − r

and rl(1 + r)g(z) 1
1−r → 0 as l → ∞. We have from Lemma 3.1 that {Tmz} is a

Cauchy sequence in X. Since X is complete, we have that {Tmz} converges. Let
Tmz → u. We know from the definition of p that, for any n ∈ N, y 7→ p(xn, y) is
lower semicontinuous. Using this, we have that, for any n ∈ N,

p(xn, u) ≤ lim inf
m→∞

p(xn, Tmz)

and hence

(3.3) g(u) = µnp(xn, u) ≤ µn

(
lim inf
m→∞

p(xn, Tmz)
)

.

On the other hand, we have from (3.2) that, for any l,m, n ∈ N with m > l,

p(xn, Tmz) ≤ p(xn, T lz) + p(T lz, Tmz)

≤ p(xn, T lz) + rl(1 + r)g(z)
1

1 − r

and hence

lim sup
m→∞

p(xn, Tmz) ≤ p(xn, T lz) + rl(1 + r)g(z)
1

1 − r
.

Applying µ to both sides of the inequality, we have that

µn

(
lim sup
m→∞

p(xn, Tmz)
)

≤ µnp(xn, T lz) + rl(1 + r)g(z)
1

1 − r
.

Letting l → ∞, we get that

(3.4) µn

(
lim sup
m→∞

p(xn, Tmz)
)

≤ lim inf
l→∞

µnp(xn, T lz).

We have from (3.3) and (3.4) that

g(u) = µnp(xn, u) ≤ µn

(
lim inf
m→∞

p(xn, Tmz)
)

≤ µn

(
lim sup
m→∞

p(xn, Tmz)
)

≤ lim inf
m→∞

µnp(xn, Tmz)(3.5)

= lim inf
m→∞

g(Tmz)

≤ lim sup
m→∞

g(Tmz).

Furthermore, from

g(Tmz) = µnp(xn, Tmz) ≤ rµnp(xn, Tm−1z) ≤ · · · ≤ rmµnp(xn, z) = rmg(z),
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we have that

(3.6) lim sup
m→∞

g(Tmz) ≤ 0.

Therefore, we obtain from (3.5) and (3.6) that g(u) ≤ 0. This implies that

g(u) = µnp(xn, u) = 0.

We show that u is a fixed point of T . Since

p(Tu, u) ≤ p(Tu, xn) + p(xn, u)

for all n ∈ N, we have

p(Tu, u) ≤ µnp(xn, Tu) + µnp(xn, u)

≤ rµnp(xn, u) + µnp(xn, u)
= r0 + 0 = 0

and hence p(Tu, u) = 0. We also have that

p(Tu, Tu) ≤ p(Tu, xn) + p(xn, Tu)

for all n ∈ N. From this, we have that

p(Tu, Tu) ≤ µnp(xn, Tu) + µnp(xn, Tu)

≤ rµnp(xn, u) + rµnp(xn, u)
= r0 + r0 = 0

and hence p(Tu, Tu) = 0. We have from Lemma 3.1 that Tu = u. We show that
such a fixed point u is unique. Let Tu = u and Tv = v. Since 0 ≤ r < 1 and

µnp(xn, u) = µnp(xn, Tu) ≤ rµnp(xn, u),

we obtain µnp(xn, u) = 0. Similarly, we have µnp(xn, v) = 0. Since

p(u, v) ≤ p(u, xn) + p(xn, v)

for all n ∈ N, we have

p(u, v) ≤ µnp(xn, u) + µnp(xn, v)
= 0 + 0 = 0

and hence p(u, v) = 0. Furthermore, since

p(u, u) ≤ p(u, xn) + p(xn, u)

for all n ∈ N, we have

p(u, u) ≤ µnp(xn, u) + µnp(xn, u)
= 0 + 0 = 0

and p(u, u) = 0. We have from Lemma 3.1 that u = v. This completes the
proof. ¤

As a direct consequence of Theorem 3.2, we obtain the following theorem proved
by Hasegawa, Komiya and Takahashi [6].
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Theorem 3.3 ([6]). Let (X, d) be a complete metric space and let T be a mapping
of X into itself. Suppose that there exist a real number r with 0 ≤ r < 1 and an
element x ∈ X such that {Tnx} is bounded and

µnd(Tnx, Ty) ≤ rµnd(Tnx, y), ∀y ∈ X

for some mean µ on l∞. Then, the following hold:
(i) T has a unique fixed point u in X;
(ii) for every z ∈ X, the sequence {Tnz} converges to u.

Proof. We know that the metric d is one of symmetric w-distances on X; see [8, 16].
We also have that {d(Tnx, x)} is bounded because {Tnx} is bounded. Thus we have
the desired result from Theorem 3.2. ¤

4. Applications

In this section, using Theorem 3.2, we prove new and well-known fixed point
theorems in a complete metric space. We first prove a fixed point theorem for
generalized hybrid mappings with w-distances in a metric space. Let (X, d) be a
metric space and let p be a w-distance on X. A mapping T : X → X is called
p-contractively generalized hybrid if there exist α, β ∈ R and r ∈ [0, 1) such that

(4.1) αp(Tx, Ty) + (1 − α)p(x, Ty) ≤ r{βp(Tx, y) + (1 − β)p(x, y)}

for all x, y ∈ X. We call such a mapping T a p-contractively (α,β,r)-generalized
hybrid mapping. We know that the class of the mappings above covers well-known
mappings in a metric space. For example, a p-contractively (α,β,r)-generalized
hybrid mapping T is p-contractive for α = 1 and β = 0, i.e., there exists r ∈ [0, 1)
such that

p(Tx, Ty) ≤ rp(x, y), ∀x, y ∈ X.

Theorem 4.1. Let (X, d) be a complete metric space and let p be a symmetric
w-distance on X. Let T : X → X be a p-contractively generalized hybrid mapping.
Then T has a fixed point in X if and only if {p(Tnx, x)} is bounded for some x ∈ X.
In this case, the following hold:

(i) T has a unique fixed point u in X;
(ii) for every z ∈ X, the sequence {Tnz} converges to u.

Proof. Since T : X → X is a p-contractively generalized hybrid mapping, there
exist α, β ∈ R and r ∈ [0, 1) such that

(4.2) αp(Tx, Ty) + (1 − α)p(x, Ty) ≤ r{βp(Tx, y) + (1 − β)p(x, y)}

for all x, y ∈ X. If F (T ) ̸= ∅, then {Tnu} = {u} for u ∈ F (T ). So, {p(Tnu, u)} =
{p(u, u)} is bounded. We show the reverse. Take x ∈ X such that {p(Tnx, x)} is
bounded. Then we have that, for any y ∈ X and n ∈ N, {p(Tnx, y)} is bounded.
In fact, we have that

(4.3) p(Tnx, y) ≤ p(Tnx, x) + p(x, y) ≤ sup
m∈N

p(Tmx, x) + p(x, y) < ∞.

We also have from (4.2) that, for any y ∈ X,

αp(Tn+1x, Ty)+(1 − α)p(Tnx, Ty)

≤ r{βp(Tn+1x, y) + (1 − β)p(Tnx, y)}.
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Applying a Banach limit µ to both sides of the inequality, we have

µn(αp(Tn+1x, Ty) + (1 − α)p(Tnx, Ty))

≤ µn(r{βp(Tn+1x, y) + (1 − β)p(Tnx, y)}).
Then, we obtain

αµnp(Tn+1x, Ty)+(1 − α)µnp(Tnx, Ty)

≤ rβµnp(Tn+1x, y) + r(1 − β)µnp(Tnx, y)

and hence

αµnp(Tnx, Ty)+(1 − α)µnp(Tnx, Ty)

≤ rβµnp(Tnx, y) + r(1 − β)µnp(Tnx, y).

This implies that
µnp(Tnx, Ty) ≤ rµnp(Tnx, y)

for all y ∈ X. By Theorem 3.2, T has a unique fixed point u in X. Furthermore,
for any z ∈ X, the sequence {Tnz} converges to u. ¤

Using Theorem 4.1, we prove a fixed point theorem for p-contractive mappings
in a complete metric space.

Theorem 4.2. Let (X, d) be a complete metric space and let p be a w-distance on
X. Let T : X → X be a p-contractive mapping, i.e., there exists a real number r
with 0 ≤ r < 1 such that

p(Tx, Ty) ≤ rp(x, y)
for all x, y ∈ X. Then, the following hold:

(i) T has a unique fixed point u in X;
(ii) for every z ∈ X, the sequence {Tnz} converges to u.

Proof. Putting α = 1 and β = 0 in (4.2), we have that

p(Tx, Ty) ≤ rp(x, y)

for all x, y ∈ X. From Theorem 2.2, we have WC1(X) = WC0(X). Then there
exist a symmetric q ∈ W0(X) and a real number λ ∈ [0, 1) such that

(4.4) q(Tx, Ty) ≤ λq(x, y), ∀x, y ∈ X.

Take x ∈ X and n ∈ N. Replacing x by Tn−1x and y by Tnx in (4.4), we have that

(4.5) q(Tnx, Tn+1x) ≤ λq(Tn−1x, Tnx).

Thus we have that, for any n ∈ N,

q(x, Tnx) ≤ q(x, Tx) + q(Tx, T 2x) + · · · + q(Tn−1x, Tnx)

≤ q(x, Tx) + λq(x, Tx) + · · · + λn−1q(x, Tx)

≤ q(x, Tx) + λq(x, Tx) + · · · + λn−1q(x, Tx) + . . .

= q(x, Tx)(1 + λ + · · · + λn−1 + . . . )

= q(x, Tx)
1

1 − λ

and hence {q(x, Tnx)} = {q(Tnx, x)} is bounded. We also have that

(4.6) µnq(Tnx, Ty) = µnq(Tn+1x, Ty) ≤ λµnq(Tnx, y), ∀y ∈ X.

Therefore, we have the desired result from Theorem 4.1. ¤
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The following is a fixed point theorem for p-Kannan mappings in a complete
metric space.

Theorem 4.3. Let (X, d) be a complete metric space and let p be a w-distance on
X. Let T ∈ WK1(X), i.e., there exists α ∈ [0, 1/2) such that

p(Tx, Ty) ≤ α{p(Tx, x) + p(Ty, y)} for all x, y ∈ X.

Then, the following hold:
(i) T has a unique fixed point u in X;
(ii) for every z ∈ X, the sequence {Tnz} converges to u.

Proof. From Theorem 2.2, we have WK1(X) = WC0(X). From Theorem 4.2, we
have the desired result. ¤

Using Theorems 4.2 and 2.3, we also have the following fixed point theorem.

Theorem 4.4. Let (X, d) be a complete metric space and let p be a w-distance
on X such that p(x, x) = 0 for all x ∈ X. Let T : X → X be p-contractively
nonspreading, i.e., there exists a real number γ with 0 ≤ γ < 1

2 such that

p(Tx, Ty) ≤ γ{p(Tx, y) + p(x, Ty)}

for all x, y ∈ X. Then, the following hold:
(i) T has a unique fixed point u in X;
(ii) for every z ∈ X, the sequence {Tnz} converges to u.

Proof. We know from Theorem 2.3 that the mapping T is in WC0(X). So, we have
the desired result from Theorem 4.2. ¤

Concerning that {p(Tnx, x)} is bounded for some x ∈ X in Theorem 4.1, we
have the following lemma.

Lemma 4.5. Let (X, d) be a complete metric space and let p be a w-distance on
X such that p(x, x) = 0 for all x ∈ X. Let T : X → X be a p-contractively
(α,β,r)-generalized hybrid mapping, i.e., there exist α, β ∈ R and r ∈ [0, 1) such
that

(4.7) αp(Tx, Ty) + (1 − α)p(x, Ty) ≤ r{βp(Tx, y) + (1 − β)p(x, y)}

for all x, y ∈ X. Furthermore, α, β and r satisfy

β ≥ 0, α − rβ > 0 and r <
α

1 + β
.

Then, {p(Tnx, x)} is bounded for all x ∈ X.

Proof. Take x ∈ X and n ∈ N. Replacing x by Tnx and y by Tn−1x in (4.7), we
have

αp(Tn+1x, Tnx)+(1 − α)p(Tnx, Tnx)(4.8)

≤ r{βp(Tn+1x, Tn−1x) + (1 − β)p(Tnx, Tn−1x)}.

From β ≥ 0 and (4.8), we have

αp(Tn+1x, Tnx) ≤ r{β(p(Tn+1x, Tnx)(4.9)

+ p(Tnx, Tn−1x)) + (1 − β)p(Tnx, Tn−1x)}
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and hence

(4.10) (α − rβ)p(Tn+1x, Tnx) ≤ rp(Tnx, Tn−1x).

From α − rβ > 0 we have

(4.11) p(Tn+1x, Tnx) ≤ r

α − rβ
p(Tnx, Tn−1x).

From r < α
1+β , we have r < α − rβ and

0 ≤ r

α − rβ
< 1.

Putting λ = r
α−rβ , we have that for any n ∈ N,

p(Tnx, x) ≤ p(Tnx, Tn−1x) + p(Tn−1x, Tn−2x) + · · · + p(T 2x, Tx) + p(Tx, x)

≤ λn−1p(Tx, x) + λn−2p(Tx, x) + · · · + λp(Tx, x) + p(Tx, x)

≤ p(Tx, x)(1 + λ + · · · + λn−1 + . . . )

= p(Tx, x)
1

1 − λ
.

Then the sequence {p(Tnx, x)} is bounded. ¤

Using Theorem 4.1 and Lemma 4.5, we prove the following fixed point theorem
proved by Hasegawa, Komiya and Takahashi [6].

Theorem 4.6 ([6]). Let (X, d) be a complete metric space and let T : X → X be
an (α,β,r)-contractively generalized hybrid mapping, i.e., there exist α, β ∈ R and
r ∈ [0, 1) such that

αd(Tx, Ty) + (1 − α)d(x, Ty) ≤ r{βd(Tx, y) + (1 − β)d(x, y)}

for all x, y ∈ X. Furthermore, α, β and r satisfy

β ≥ 0, α − rβ > 0 and r <
α

1 + β
.

Then, the following hold:

(i) T has a unique fixed point u in X;
(ii) for every z ∈ X, the sequence {Tnz} converges to u.

Proof. Since d(x, y) = d(y, x) and d(x, x) = 0 for all x, y ∈ X, we have the desired
result from Theorem 4.1 and Lemma 4.5. ¤
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