Southeast Asian Bulletin of Mathematics (0000) 00: 000-5

Southeast Asian Bulletin of Mathematics © SEAMS. 2004

Triple homomorphisms of C*-algebras

Ngai-Ching Wong

Department of Applied Mathematics, National Sun Yat-sen University, and National Center for Theoretical Sciences, Kaohsiung, 80424, Taiwan, R.O.C. E-mail: wong@math.nsysu.edu.tw

In memory of our beloved friend, Kosita Beidar.

AMS Mathematical Subject Classification (2000): 46L05, 46B04, 47B48, 17C65

Abstract. In this note, we will discuss what kind of operators between C*-algebras preserves Jordan triple products $\{a, b, c\} = (ab^*c + cb^*a)/2$. These include especially isometries and disjointness preserving operators.

Keywords: C*-algebras, Jordan triples, isometries, disjointness preserving operators.

1. Introduction

Recall that a Banach algebra A is an algebra with a norm $\|\cdot\|$ such that $\|ab\| \leq \|a\|\|b\|$, and every Cauchy sequence converges. A complex Banach algebra A is a C*-algebra if there is an involution * defined on A such that $\|a^*a\| = \|a\|^2$. A special example is B(H), the algebra of all bounded linear operators on a (complex) Hilbert space H. By the Gelfand-Naimark-Sakai Theorem, C*-algebras are exactly those norm closed *-subalgebras of B(H). An abelian C*-algebra A can also be represented as the algebra $C_0(X)$ of continuous functions on a locally compact Hausdorff space X vanishing at infinity. X is compact if and only if A is unital.

It is well known that the algebraic structure determines the geometric (norm) structure of a C*-algebra A. Indeed, the norm of a self-adjoint element a of A coincides with the spectral radius of a, and the latter is a pure algebraic object. In general, the norm of an arbitrary element a of A is equal to $||a^*a||^{1/2}$, and a^*a is self-adjoint. For an abelian C*-algebra $A = C_0(X)$, we note that the underlying space X can be considered as the maximal ideal space of A consisting of complex homomorphisms (= linear and multiplicative functionals) of A. The topology of X is the hull-kernel topology, and thus be solely determined by the

Triple homomorphisms of C*-algebras

algebraic structure of A.

In this note, we will discuss how much the algebraic structure can be recovered if we know the norm, or other, structure of a C*-algebra. In particular, isometries and disjointness preserving operators of C*-algebras preserve triple products $\{a, b, c\} = (ab^*c + cb^*a)/2$.

The author is very grateful to our late friend, Kosita Beidar, from whom he learnt how to look at a seemingly pure analytic problem from the point of view of an algebraist.

2. The geometric structure determines the algebraic structure

Suppose $T : A \longrightarrow B$ is an isometric linear embedding between C*-algebras. That is, ||Tx|| = ||x|| for all x in A. We are interested in knowing what kind of algebraic structure T inherits from A to its range, which is in general just a Banach subspace of B. We begin with two famous results.

Theorem 2.1. (Banach and Stone; see, e.g., [5]) Let X and Y be locally compact Hausdorff spaces. Let $T : C_0(X) \longrightarrow C_0(Y)$ be a surjective linear isometry. Then T is a weighted composition operator

$$Tf = h \cdot f \circ \varphi, \quad \forall f \in C_0(X),$$

where h is a continuous scalar function on Y with $|h(y)| \equiv 1$, and φ is a homeomorphism from Y onto X. Consequently, two abelian C*-algebras are isomorphic as Banach spaces if, and only if, they are isomorphic as *-algebras.

Here is a sketch of the proof. Let $T^*: M(Y) \longrightarrow M(X)$ be the dual map of T, which is again a surjective linear isometry from the Banach space $M(Y) = C_0(Y)^*$ of all bounded Radon measures on Y onto that on X. Restricting T^* to the dual unit balls, which are weak^{*} compact and convex, we get an affine homeomorphism. Since the extreme points of the dual unit balls are exactly unimodular scalar multiples of point masses together with zero, T^* sends a point mass δ_y to $\lambda \delta_x$. Here $y \in Y$, $x \in X$ and $|\lambda| = 1$. We write $x = \varphi(y)$ and $\lambda = h(y)$ to indicate that x and λ depend on y. It follows that

$$Tf(y) = T^*(\delta_y)(f) = h(y)\delta_{\varphi(y)}(f) = h(y)f(\varphi(y)).$$

In other words, $Tf = h \cdot f \circ \varphi$, $\forall f \in C_0(X)$. It is then routine to see that h is unimodular and continuous on Y, and that φ is a homeomorphism from Y onto X.

Theorem 2.2. (Kadison [6]) Let A and B be C*-algebras. Let $T : A \longrightarrow B$ be a surjective linear isometry. Then there is a unitary element u in $\tilde{B} = B \oplus \mathbb{C}1$, the unitalization of B, and a Jordan *-isomorphism $J : A \longrightarrow B$ such that

$$Ta = uJ(a), \quad \forall a \in A.$$

Consequently, two C^* -algebras are isomorphic as Banach spaces if, and only if, they are isomorphic as Jordan *-algebras.

Recall that a Jordan *-isomorphism J preserves linear sums, involutions and Jordan products: $a \circ b = (ab + ba)/2$. It is easy to see that the abelian case can also be written in this form with u = h and $Jf = f \circ \varphi$. In general, the product of a pair of elements in A can be decomposed into two parts $ab = a \circ b + [a, b]$, the sum of the Jordan product and the Lie product [a, b] = (ab - ba)/2. It is plain that $a \circ b = b \circ a$ is commutative and [a, b] = -[b, a] is anti-commutative. However they are not associative. The Kadison theorem states that the norm structure of a C*-algebra determines completely its Jordan structure.

It is interesting to note that Jordan products are determined by squares:

$$a \circ b = \frac{(a+b)^2 - a^2 - b^2}{2}, \quad \forall a, b \in A.$$

A similar algebraic structure exists in C*-algebras, namely, the Jordan triple products:

$$\{a, b, c\} = \frac{ab^*c + cb^*a}{2}.$$

There is also a polar identity for triples:

$$\{a, b, c\} = \frac{1}{8} \sum_{\alpha^2 = 1} \sum_{\beta^4 = 1} \alpha \beta \{a + \alpha b + \beta c\}^{(3)},$$

Hence, a linear map T between C*-algebras preserves triple products if and only if it preserves cubes $a^{(3)} = \{a, a, a\} = aa^*a$.

Kaup [7] rephrased Kadison theorem: a linear surjection between C*-algebras $T: A \longrightarrow B$ is an isometry if and only if it preserves triple products. A geometric proof of the Kadison Theorem is given by Dang, Friedman and Russo [2]. It goes first to note that a norm exposed face of the dual unit ball U_{B^*} is of the form $F_u = \{\varphi \in B^* : \|\varphi\| = \varphi(u) \leq 1\}$ for a unique partial isometry u in B^{**} . For two φ, ψ in B^* , they are said to be orthogonal to each other if they have polar decompositions $\varphi = u|\varphi|, \psi = v|\psi|$ such that $u \perp v$, i.e., $u^*v = uv^* = 0$. This amounts to say that $\|\varphi \pm \psi\| = \|\varphi\| + \|\psi\|$. Two faces F_u, F_v are orthogonal if and only if $u \perp v$. Then they verify that the adjoint T^* of the surjective linear isometry T maps faces to faces and preserves orthogonality. Consequently, T sends orthogonal partial isometries $\sum_j \lambda_j u_j$. Then its cube $a^{(3)}$ can also be approximated by $\sum_j \lambda_j^{(3)} u_j$. It follows that $T(a^{(3)})$ and $(Ta)^{(3)}$ can both be approximated by $\sum_j \lambda_j^{(3)} Tu_j$. Hence $T(a^{(3)}) = (Ta)^{(3)}$, and thus T preserves triple products by the polar identity.

We note that the above (geometric) proof of the Kadison theorem quite depends on the fact the range of the isometry is again a C*-algebra. Extending Triple homomorphisms of C*-algebras

the Holsztynski theorem [3, 5], Chu and Wong [1] studied non-surjective linear isometries between C*-algebras.

Theorem 2.3. (Chu and Wong [1]) Let A and B be C*-algebras and let T be a linear isometry from A into B. There is a largest closed projection p in B^{**} such that $T(\cdot)p: A \longrightarrow B^{**}$ is a Jordan triple homomorphism and

$$T(ab^*c + cb^*a)p = T(a)T(b)^*T(c)p + T(c)T(b)^*T(a)p, \quad \forall a, b, c \in A.$$

When A is abelian, we have ||T(a)p|| = ||a|| for all a in A. In particular, T reduces locally to a Jordan triple isomorphism on the JB*-triple generated by any a in A, by a closed projection p_a .

Beside the triple technique, the proof of above theorem also makes use of the concept of representing elements in a C*-algebra as special sections of a continuous field of Hilbert spaces developed in [8]. It is still geometric.

3. Disjointness preserving operators are triple homomorphisms

In this section, we do not assume the operator T is isometric. Although the following statement might have been known to experts, we provide a new and short proof here as we do not find any in the literature. For simplicity of notations, we also write T for its bidual map $T^{**}: A^{**} \longrightarrow B^{**}$.

Theorem 3.1. Let $T : A \longrightarrow B$ be a bounded linear map between C^* -algebras. Then T is a triple homomorphism if and only if T sends partial isometries to partial isometries.

Proof. One direction is trivial. Suppose T sends partial isometries to partial isometries. Let u, v be two partial isometries in A. Observe that they are orthogonal to each other, namely, $u^*v = uv^* = 0$, if and only if they have orthogonal initial spaces and orthogonal range spaces. This amounts to say that $u + \lambda v$ is a partial isometry for all scalar λ with $|\lambda| = 1$. Consequently, T sends orthogonal partial isometries to orthogonal partial isometries. For every a in A, approximate a in norm by a finite linear sum $\sum_n \lambda_n u_n$ of orthogonal partial isometries. Then its cube $a^{(3)} = aa^*a$ can also be approximated in norm by $\sum_n \lambda_n^{(3)} u_n$. It follows that Ta and $T(a^{(3)})$ can be approximated in norm by $\sum_n \lambda_n T u_n$ and $\sum_n \lambda_n^{(3)} T u_n$, respectively. This gives $T(a^{(3)}) = (Ta)^{(3)}$, $\forall a \in A$. By the polar identity, we see that T is a triple homomorphism.

We say that a linear map $T:A\longrightarrow B$ between C*-algebras is disjointness preserving if

 $a^*b = ab^* = 0$ implies $(Ta)^*(Tb) = (Ta)(Tb)^* = 0, \quad \forall a, b \in A.$

Clearly, T is disjointness preserving if and only if it preserves disjointness of partial isometries. It is clear that every triple homomorphism preserves disjointness. Looking at the well-known abelian case, that is, the Jarosz theorem [4, 5], we see that not every disjointness preserving map is a triple homomorphism. Indeed, let $T: C_0(X) \longrightarrow C_0(Y)$ be a bounded disjointness preserving linear map between abelian C*-algebras. Then there is a closed subset Y_0 of Y on which every Tf vanishes. On $Y_1 = Y \setminus Y_0$ there is a bounded continuous function h and a continuous map φ from Y_1 into X such that $Tf_{|Y_1} = h \cdot f \circ \varphi$ for all f in $C_0(X)$. Hence, T is a triple homomorphism if and only if T1 is a partial isometry in $C_0(Y)^{**}$. We end this note with a proof of this fact for the non-abelian case.

Theorem 3.2. Let $T : A \longrightarrow B$ be a bounded linear map between C*-algebras. Then T is a triple homomorphism if and only if T is disjointness preserving and T1 is a partial isometry.

Proof. We verify the sufficiency only. By the polar identity it suffices to check that T sends the cube $a^{(3)}$ to the cube $(Ta)^{(3)}$ for every element a of A. Identify the JB*-triple of A generated by 1 and a with C(X) (see [7, Corollary 1.15]), where X is some compact set of complex numbers. Denote again by T the bidual map of T from $C(X)^{**}$ into B^{**} .

Let $X = \bigcup_n X_n$ be any finite Borel partition of X and pick an arbitrary point x_n from X_n . In particular,

$$1 = \sum_{n} 1_{X_n},$$

where 1_{X_n} is the characteristic function of the Borel set X_n . For $j \neq k$, we can find two sequences $\{f_m\}_m$ and $\{g_m\}_m$ in C(X) such that $f_{m+p}g_m = 0$ for $m, p = 0, 1, \ldots, f_m \to 1_{X_j}$ and $g_m \to 1_{X_k}$ pointwisely on X. By the weak^{*} continuity of T, we see that

$$T(1_{X_j})T(g_m)^* = \lim_{p \to \infty} T(f_{m+p})T(g_m)^* = 0$$
 for all $m = 1, 2, \dots$

Thus

$$T(1_{X_j})T(1_{X_k})^* = \lim_{m \to \infty} T(1_{X_j})T(g_m)^* = 0.$$

Similarly, we have

$$T(1_{X_i})^*T(1_{X_k}) = 0$$

Consequently, for each j we have

$$T(1)T(1_{X_j})^*T(1) = \sum_{m,n} T(1_{X_n})T(1_{X_j})^*T(1_{X_m}) = (T(1_{X_j}))^{(3)}.$$

This gives

$$\sum_{n} T(1_{X_n}) = T1 = (T1)^{(3)} = \sum_{n} (T(1_{X_n}))^{(3)}.$$

Triple homomorphisms of C*-algebras

Multiplying the above identity on the left by $T(1_{X_n})$ ^{*} and $(T(1_{X_n}))^{(3)}$ ^{*} respectively, we see that

$$(T(1_{X_n}) - (T(1_{X_n}))^{(3)})^* (T(1_{X_n}) - (T(1_{X_n}))^{(3)}) = 0.$$

Hence $T(1_{X_n})$ is a partial isometry for each n and orthogonal to the others. It follows that

$$(T(f))^{(3)} = \lim \left(\sum_{n} f(x_n) T(1_{X_n}) \right)^{(3)} = \lim \sum f(x_n)^{(3)} (T(1_{X_n}))^{(3)}$$
$$= \lim \sum f(x_n)^{(3)} T(1_{X_n}) = T(f^{(3)}),$$

for all f in C(X). This completes the proof.

References

- C.-H. Chu and N.-C. Wong, "Isometries between C*-algebras", Revista Matematica Iberoamericana, 20 (2004), no. 1, 87–105.
- [2] T. Dang, Y. Friedman and B. Russo, "Affine geometric proofs of the Banach Stone theorems of Kadison and Kaup", Rocky Mountain J. Math., 20 (1990), no. 2, 409– 428.
- [3] W. Holsztynski, "Continuous mappings induced by isometries of spaces of continuous functions", *Studia Math.* **26** (1966), 133-136.
- [4] K. Jarosz, "Automatic continuity of separating linear isomorphisms", Canad. Math. Bull. 33 (1990), 139–144.
- [5] J.-S. Jeang and N.-C. Wong, "Weighted composition operators of $C_0(X)$'s", J. Math. Anal. Appl. **201** (1996), 981–993.
- [6] R. V. Kadison, "Isometries of operator algebras", Ann. of Math. 54 (1951), 325– 338.
- [7] W. Kaup, "A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces", Math. Z. 138 (1983), 503–529.
- [8] N.-C. Wong, "Left quotients of a C*-algebra, I: Representation via vector sections", J. Operator Theory 32 (1994), 185–201.