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Abstract. In this paper, we first consider three classes of nonlinear mappings

in Banach spaces which contain the class of 2-generalized hybrid mappings
defined by Maruyama, Takahashi and Yao [22] in a Hilbert space. Then, we
prove fixed point theorems for these classes of nonlinear mappings in Banach

spaces.

1. Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset of
H. Let T be a mapping of C into itself. Then we denote by F (T ) the set of fixed
points of T . A mapping T : C → C is said to be nonexpansive, nonspreading [20],
and hybrid [28] if

∥Tx − Ty∥ ≤ ∥x − y∥ ,

(1.1) 2∥Tx − Ty∥2 ≤ ∥Tx − y∥2 + ∥Ty − x∥2

and

(1.2) 3∥Tx − Ty∥2 ≤ ∥x − y∥2 + ∥Tx − y∥2 + ∥Ty − x∥2

for all x, y ∈ C, respectively. These mappings are deduced from a firmly nonex-
pansive mapping in a Hilbert space; see [28]. A mapping F : C → C is said to be
firmly nonexpansive if

∥Fx − Fy∥2 ≤ ⟨x − y, Fx − Fy⟩

for all x, y ∈ C; see, for instance, Browder [5] and Goebel and Kirk [9]. From
Baillon [3], and Takahashi and Yao [32], we know the following nonlinear ergodic
theorem for nonlinear mappings in a Hilbert space.

Theorem 1.1. Let H be a Hilbert space, let C be a nonempty closed convex subset
of H and let T be a mapping of C into itself such that F (T ) is nonempty. Suppose
that T satisfies one of the following:

(i) T is nonexpansive;
(ii) T is nonspreading;
(iii) T is hybrid;
(iv) 2∥Tx − Ty∥2 ≤ ∥x − y∥2 + ∥Tx − y∥2, ∀x, y ∈ C.
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Then, for any x ∈ C,

Snx =
1
n

n−1∑
k=0

T kx

converges weakly to a fixed point of T .

Motivated by such a theorem, Aoyama, Iemoto, Kohsaka and Takahashi [2] in-
troduced a class of nonlinear mappings called λ-hybrid containing the classes of
nonexpansive mappings, nonspreading mappings, and hybrid mappings in a Hilbert
space. Kocourek, Takahashi and Yao [17] also introduced a more broad class of non-
linear mappings than the class of λ-hybrid mappings in a Hilbert space. A mapping
T : C → C is called generalized hybrid [17] if there are α, β ∈ R such that

α∥Tx − Ty∥2 + (1 − α)∥x − Ty∥2 ≤ β∥Tx − y∥2 + (1 − β)∥x − y∥2

for all x, y ∈ C. Very recently, Maruyama, Takahashi and Yao [22] introduced a
broad class of nonlinear mappings containing the class of generalized hybrid map-
pings defined by Kocourek, Takahashi and Yao [17] in a Hilbert space. A mapping
T : C → C is called 2-generalized hybrid if there are α1, α2, β1, β2 ∈ R such that

α1∥T 2x−Ty∥2 + α2∥Tx − Ty∥2 + (1 − α1 − α2)∥x − Ty∥2

≤ β1∥T 2x − y∥2 + β2∥Tx − y∥2 + (1 − β1 − β2)∥x − y∥2

for all x, y ∈ C. Then, they proved fixed point theorems and weak convergence
theorems for 2-generalized hybrid mappings in a Hilbert space; see also Takahashi
and Termwuttipong [30].

In this paper, motivated by Maruyama, Takahashi and Yao [22], we introduce
three classes of nonlinear mappings in Banach spaces which contain the class of
2-generalized hybrid mappings in a Hilbert space. Then, we prove fixed point
theorems for these classes of nonlinear mappings in Banach spaces.

2. Preliminaries

Let E be a real Banach space with norm ∥ · ∥ and let E∗ be the topological dual
space of E. We denote the value of y∗ ∈ E∗ at x ∈ E by ⟨x, y∗⟩. When {xn} is a
sequence in E, we denote the strong convergence of {xn} to x ∈ E by xn → x and
the weak convergence by xn ⇀ x. The modulus δ of convexity of E is defined by

δ(ϵ) = inf
{

1 − ∥x + y∥
2

: ∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥x − y∥ ≥ ϵ

}
for every ϵ with 0 ≤ ϵ ≤ 2. A Banach space E is said to be uniformly convex if
δ(ϵ) > 0 for every ϵ > 0. A uniformly convex Banach space is strictly convex and
reflexive. Let C be a nonempty subset of a Banach space E. A mapping T : C → C
is nonexpansive if ∥Tx − Ty∥ ≤ ∥x − y∥ for all x, y ∈ C. A mapping T : C → C is
quasi-nonexpansive if F (T ) ̸= ∅ and ∥Tx−y∥ ≤ ∥x−y∥ for all x ∈ C and y ∈ F (T ),
where F (T ) is the set of fixed points of T . If C is a nonempty closed convex subset
of a strictly convex Banach space E and T : C → C is quasi-nonexpansive, then
F (T ) is closed and convex; see Itoh and Takahashi [15]. Let E be a Banach space.
The duality mapping J from E into 2E∗

is defined by

Jx = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}
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for every x ∈ E. Let U = {x ∈ E : ∥x∥ = 1}. The norm of E is said to be Gâteaux
differentiable if for each x, y ∈ U , the limit

(2.1) lim
t→0

∥x + ty∥ − ∥x∥
t

exists. In the case, E is called smooth. We know that E is smooth if and only if J is
a single-valued mapping of E into E∗. We also know that E is reflexive if and only
if J is surjective, and E is strictly convex if and only if J is one-to-one. Therefore, if
E is a smooth, strictly convex and reflexive Banach space, then J is a single-valued
bijection. The norm of E is said to be uniformly Gâteaux differentiable if for each
y ∈ U , the limit (2.1) is attained uniformly for x ∈ U . It is also said to be Fréchet
differentiable if for each x ∈ U , the limit (2.1) is attained uniformly for y ∈ U . A
Banach space E is called uniformly smooth if the limit (2.1) is attained uniformly
for x, y ∈ U . It is known that if the norm of E is uniformly Gâteaux differentiable,
then J is uniformly norm to weak∗ continuous on each bounded subset of E, and
if the norm of E is Fréchet differentiable, then J is norm to norm continuous. If
E is uniformly smooth, J is uniformly norm to norm continuous on each bounded
subset of E. For more details, see [25, 26]. The following results are in [25, 26].

Lemma 2.1. Let E be a Banach space and let J be the duality mapping on E.
Then, for any x, y ∈ E,

∥x∥2 − ∥y∥2 ≥ 2⟨x − y, j⟩,
where j ∈ Jy.

Lemma 2.2. Let E be a smooth Banach space and let J be the duality mapping
on E. Then, ⟨x − y, Jx − Jy⟩ ≥ 0 for all x, y ∈ E. Further, if E is strictly convex
and ⟨x − y, Jx − Jy⟩ = 0, then x = y.

Let E be a smooth Banach space. The function ϕ : E×E → (−∞,∞) is defined
by

(2.2) ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩ + ∥y∥2

for x, y ∈ E, where J is the duality mapping of E; see [1] and [16]. We have from
the definition of ϕ that

(2.3) ϕ(x, y) = ϕ(x, z) + ϕ(z, y) + 2⟨x − z, Jz − Jy⟩
for all x, y, z ∈ E. From (∥x∥ − ∥y∥)2 ≤ ϕ(x, y) for all x, y ∈ E, we can see that
ϕ(x, y) ≥ 0. Further, we can obtain the following equality:

(2.4) 2⟨x − y, Jz − Jw⟩ = ϕ(x,w) + ϕ(y, z) − ϕ(x, z) − ϕ(y, w)

for x, y, z, w ∈ E. If E is additionally assumed to be strictly convex, then from
Lemma 2.2 we have

(2.5) ϕ(x, y) = 0 ⇐⇒ x = y.

The following result was proved by Xu [35].

Lemma 2.3 (Xu [35]). Let E be a uniformly convex Banach space and let r > 0.
Then there exists a strictly increasing, continuous and convex function g : [0,∞) →
[0,∞) such that g(0) = 0 and

∥λx + (1 − λ)y∥2 ≤ λ∥x∥2 + (1 − λ)∥y∥2 − λ(1 − λ)g(∥x − y∥)
for all x, y ∈ Br and λ with 0 ≤ λ ≤ 1, where Br = {z ∈ E : ∥z∥ ≤ r}.
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Let l∞ be the Banach space of bounded sequences with supremum norm. Let
µ be an element of (l∞)∗ (the dual space of l∞). Then, we denote by µ(f) the
value of µ at f = (x1, x2, x3, . . . ) ∈ l∞. Sometimes, we denote by µn(xn) the
value µ(f). A linear functional µ on l∞ is called a mean if µ(e) = ∥µ∥ = 1, where
e = (1, 1, 1, . . . ). A mean µ is called a Banach limit on l∞ if µn(xn+1) = µn(xn).
We know that there exists a Banach limit on l∞. If µ is a Banach limit on l∞, then
for f = (x1, x2, x3, . . . ) ∈ l∞,

lim inf
n→∞

xn ≤ µn(xn) ≤ lim sup
n→∞

xn.

In particular, if f = (x1, x2, x3, . . . ) ∈ l∞ and xn → a ∈ R, then we have µ(f) =
µn(xn) = a. For a proof of existence of a Banach limit and its other elementary
properties, see [25].

Using Lemma 2.3 and properties of means, Takahashi and Jeong [29] proved the
following result.

Lemma 2.4 (Takahashi and Jeong [29]). Let C be a nonempty closed convex subset
of a uniformly convex Banach space E, let {xn} be a bounded sequence in E and
let µ be a mean on l∞. If g : E → R is defined by

g(z) = µn∥xn − z∥2, ∀z ∈ E,

then there exists a unique z0 ∈ C such that g(z0) = min{g(z) : z ∈ C}.

3. Fixed Point Theorem 1

Let E be a Banach space and let C be a nonempty subset of E. A mapping
T : C → C is said to be firmly nonexpansive if

∥Tx − Ty∥2 ≤ ⟨x − y, j⟩,

for all x, y ∈ C, where j ∈ J(Tx − Ty); see Bruck [6]. A mapping T : C → C is
called generalized hybrid [11] if there are α, β ∈ R such that

(3.1) α∥Tx − Ty∥2 + (1 − α)∥x − Ty∥2 ≤ β∥Tx − y∥2 + (1 − β)∥x − y∥2

for all x, y ∈ C. Such a mapping T is also called an (α, β)-generalized hybrid
mapping in a Banach space. Using Lemma 2.1, Takahashi and Yao [34] proved the
following result.

Proposition 3.1. Let E be a Banach space and let C be a nonempty subset of E.
Let T : C → C be a firmly nonexpansive mapping and let λ ∈ [0, 1]. Then, T is
(2 − λ, 1 − λ)-generalized hybrid, i.e.,

(2 − λ)∥Tx − Ty∥2 + (λ − 1)∥x − Ty∥2 ≤ (1 − λ)∥Tx − y∥2 + λ∥x − y∥2

for all x, y ∈ C.

We notice from Proposition 3.1 that the classes of nonexpansive mappings, non-
spreadind mappings and hybrid mappings in the sense of norm are deduced from
the class of firmly nonexpansive mappings in a Banach space. Motivated by Bruck
[6], Takahashi and Yao [34], and Maruyama, Takahashi and Yao [22], in this section,
we introduce a broad class of nonlinear mappings in a Banach space containing the
class of 2-generalized hybrid mappings defined by Maruyama, Takahashi and Yao
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[22] in a Hilbert space. Let E be a Banach space and let C be a nonempty sub-
set of E. Then, a mapping T : C → C is called 2-generalized hybrid if there are
α1, α2, β1, β2 ∈ R such that

α1∥T 2x−Ty∥2 + α2∥Tx − Ty∥2 + (1 − α1 − α2)∥x − Ty∥2(3.2)

≤ β1∥T 2x − y∥2 + β2∥Tx − y∥2 + (1 − β1 − β2)∥x − y∥2

for all x, y ∈ C. We call such a mapping an (α1, α2, β1, β2)-generalized hybrid
mapping. We observe that the mapping above covers several well-known mappings.
For example, a (0, α2, 0, β2)-generalized hybrid mapping is nonexpansive for α2 = 1
and β2 = 0, nonspreading in the sense of norm for α2 = 2 and β2 = 1, and hybrid
for α2 = 3

2 and β2 = 1
2 ; see (1.1) and (1.2). A (0, α2, 0, β2)-generalized hybrid

mapping is an (α2, β2)-generalized hybrid mapping in the sense of Hsu, Takahashi
and Yao [11]. We can also show that if x = Tx, then for any y ∈ C,

α1∥x−Ty∥2 + α2∥x − Ty∥2 + (1 − α1 − α2)∥x − Ty∥2

≤ β1∥x − y∥2 + β2∥x − y∥2 + (1 − β1 − β2)∥x − y∥2

and hence ∥x − Ty∥ ≤ ∥x − y∥. This means that a 2-generalized hybrid mapping
with a fixed point is quasi-nonexpansive in a Banach space. Now, we prove a fixed
point theorem for 2-generalized hybrid mappings in a Banach space. Before proving
it, we need the following lemma which was proved by Hsu, Takahashi and Yao [11].
This lemma was proved by using Lemma 2.4.

Lemma 3.1. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E and let T be a mapping of C into itself. Let {xn} be a bounded
sequence of E and let µ be a mean on l∞. If

µn∥xn − Ty∥2 ≤ µn∥xn − y∥2

for all y ∈ C, then T has a fixed point in C.

Theorem 3.2. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E and let T : C → C be a 2-generalized hybrid mapping. Then T has
a fixed point in C if and only if {Tnz} is bounded for some z ∈ C.

Proof. Since T : C → C is a 2-generalized hybrid mapping, there are α1, α2, β1, β2 ∈
R such that

α1∥T 2x−Ty∥2 + α2∥Tx − Ty∥2 + (1 − α1 − α2)∥x − Ty∥2

≤ β1∥T 2x − y∥2 + β2∥Tx − y∥2 + (1 − β1 − β2)∥x − y∥2

for all x, y ∈ C. If F (T ) ̸= ∅, then {Tnz} = {z} for z ∈ F (T ). So, {Tnz} is
bounded. Conversely, take z ∈ C such that {Tnz} is bounded. Let µ be a Banach
limit. Then, for any y ∈ C and n ∈ N ∪ {0}, we have

α1∥Tn+2z−Ty∥2 + α2∥Tn+1z − Ty∥2 + (1 − α1 − α2)∥Tnz − Ty∥2

≤ β1∥Tn+2z − y∥2 + β2∥Tn+1z − y∥2 + (1 − β1 − β2)∥Tnz − y∥2

for any y ∈ C. Since {Tnz} is bounded, we can apply a Banach limit µ to both
sides of the above inequality. Then, we have

µn(α1∥Tn+2z − Ty∥2 + α2∥Tn+1z − Ty∥2 + (1 − α1 − α2)∥Tnz − Ty∥2)

≤ µn(β1∥Tn+2z − y∥2 + β2∥Tn+1z − y∥2 + (1 − β1 − β2)∥Tnz − y∥2).
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So, we obtain

α1µn∥Tn+2z − Ty∥2 + α2µn∥Tn+1z − Ty∥2 + (1 − α1 − α2)µn∥Tnz − Ty∥2

≤ β1µn∥Tn+2z − y∥2 + β2µn∥Tn+1z − y∥2 + (1 − β1 − β2)µn∥Tnz − y∥2

and hence

α1µn∥Tnz − Ty∥2 + α2µn∥Tnz − Ty∥2 + (1 − α1 − α2)µn∥Tnz − Ty∥2

≤ β1µn∥Tnz − y∥2 + β2µn∥Tnz − y∥2 + (1 − β1 − β2)µn∥Tnz − y∥2.

This implies
µn∥Tnz − Ty∥2 ≤ µn∥Tnz − y∥2

for all y ∈ C. By Lemma 3.1, T has a fixed point in C. ¤

As a direct consequence of Theorem 3.2, we have the following result.

Theorem 3.3. Let C be a nonempty bounded closed convex subset of a uniformly
convex Banach space E and let T be a 2-generalized hybrid mapping from C to
itself. Then T has a fixed point.

Using Theorem 3.2, we can also prove the following well-known fixed point theo-
rems. We first prove a fixed point theorem for nonexpansive mappings in a Banach
space.

Theorem 3.4. Let E be a uniformly convex Banach space and let C be a nonempty
closed convex subset of E. Let T : C → C be a nonexpansive mapping, i.e.,

∥Tx − Ty∥ ≤ ∥x − y∥, ∀x, y ∈ C.

Suppose that there exists an element x ∈ C such that {Tnx} is bounded. Then, T
has a fixed point in C.

Proof. In Theorem 3.2, a (0, 1, 0, 0)-generalized hybrid mapping of C into itself is
nonexpansive. By Theorem 3.2, T has a fixed point in C. ¤

The following is a fixed point theorem for nonspreading mappings in a Banach
space.

Theorem 3.5 ([11]). Let H be a uniformly convex Banach space and let C be a
nonempty closed convex subset of E. Let T : C → C be a nonspreading mapping,
i.e.,

2∥Tx − Ty∥2 ≤ ∥Tx − y∥2 + ∥Ty − x∥2, ∀x, y ∈ C.

Suppose that there exists an element x ∈ C such that {Tnx} is bounded. Then, T
has a fixed point in C.

Proof. In Theorem 3.2, a (0, 2, 0, 1)-generalized hybrid mapping of C into itself is
nonspreading. By Theorem 3.2, T has a fixed point in C. ¤

The following is a fixed point theorem for hybrid mappings in a Banach space.

Theorem 3.6 ([11]). Let E be a uniformly convex Banach space and let C be a
nonempty closed convex subset of E. Let T : C → C be a hybrid mapping, i.e.,

3∥Tx − Ty∥2 ≤ ∥x − y∥2 + ∥Tx − y∥2 + ∥Ty − x∥2, ∀x, y ∈ C.

Suppose that there exists an element x ∈ C such that {Tnx} is bounded. Then, T
has a fixed point in C.
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Proof. In Theorem 3.2, a (0, 3
2 , 0, 1

2 )-generalized hybrid mapping of C into itself
is hybrid in the sense of Takahashi [28]. By Theorem 3.2, T has a fixed point in
C. ¤

We can also prove the following fixed point theorem in a Banach space.

Theorem 3.7. Let E be a uniformly convex Banach space and let C be a nonempty
closed convex subset of E. Let T : C → C be a mapping such that

2∥Tx − Ty∥2 ≤ ∥x − y∥2 + ∥Tx − y∥2, ∀x, y ∈ C.

Suppose that there exists an element x ∈ C such that {Tnx} is bounded. Then, T
has a fixed point in C.

Proof. In Theorem 3.2, a (0, 1, 0, 1
2 )-generalized hybrid mapping of C into itself is

the mapping in our theorem. By Theorem 3.2, T has a fixed point in C. ¤

Finally, we prove the following fixed point theorem in a Banach space.

Theorem 3.8. Let E be a uniformly convex Banach space and let C be a nonempty
closed convex subset of E. Let T : C → C be a mapping such that

∥T 2x − Ty∥2 + ∥Tx − Ty∥2 + ∥x − Ty∥2 ≤ 3∥x − y∥2, ∀x, y ∈ C.

Suppose that there exists an element x ∈ C such that {Tnx} is bounded. Then, T
has a fixed point in C.

Proof. In Theorem 3.2, consider a ( 1
3 , 1

3 , 0, 0)-generalized hybrid mapping T of C
into itself. Then, we have that

1
3
∥T 2x − Ty∥2 +

1
3
∥Tx − Ty∥2 +

1
3
∥x − Ty∥2 ≤ ∥x − y∥2, ∀x, y ∈ C.

This is equivalent to the mapping in our theorem:

∥T 2x − Ty∥2 + ∥Tx − Ty∥2 + ∥x − Ty∥2 ≤ 3∥x − y∥2, ∀x, y ∈ C.

By Theorem 3.2, T has a fixed point in C. ¤

Remark 1. Let E be a Banach space and let C be a nonempty closed convex
subset of E. Let n ∈ N. Then, a mapping T : C → C is called n-generalized hybrid
if there are α1, α2, . . . , αn, β1, β2, . . . , βn ∈ R such that

n∑
k=1

αk∥Tn+1−kx − Ty∥2 + (1 −
n∑

k=1

αk)∥x − Ty∥2(3.3)

≤
n∑

k=1

βk∥Tn+1−kx − y∥2 + (1 −
n∑

k=1

βk)∥x − y∥2

for all x, y ∈ C. We call such a mapping an (α1, α2, . . . , αn, β1, β2, . . . , βn)-generalized
hybrid mapping. As in the proof of Theorem 3.2, we can prove a fixed point theorem
for n-generalized hybrid mappings in a uniformly convex Banach space.
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4. Fixed Point Theorem 2

Let E be a smooth Banach space and let C be a nonempty closed convex subset
of E. A mapping T : C → C is called 2-generalized nonspreading if there are
α1, α2, β1, β2, γ1, γ2, δ1, δ2 ∈ R such that

α1ϕ(T 2x, Ty) + α2ϕ(Tx, Ty) + (1 − α1 − α2)ϕ(x, Ty)

+ γ1{ϕ(Ty, T 2x) − ϕ(Ty, x)} + γ2{ϕ(Ty, Tx) − ϕ(Ty, x)}(4.1)

≤ β1ϕ(T 2x, y) + β2ϕ(Tx, y) + (1 − β1 − β2)ϕ(x, y)

+ δ1{ϕ(y, T 2x) − ϕ(y, x)} + δ2{ϕ(y, Tx) − ϕ(y, x)}

for all x, y ∈ C, where ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2 for x, y ∈ E. We call such a
mapping an (α1, α2, β1, β2, γ1, γ2, δ1, δ2)-generalized nonspreading mapping. Let T
be an (α1, α2, β1, β2, γ1, γ2, δ1, δ2)-generalized nonspreading mapping. Observe that
if F (T ) ̸= ∅, then ϕ(u, Ty) ≤ ϕ(u, y) for all u ∈ F (T ) and y ∈ C. Indeed, putting
x = u ∈ F (T ) in (4.1), we obtain

α1ϕ(u, Ty) + α2ϕ(u, Ty) + (1 − α1 − α2)ϕ(u, Ty)

+ γ1{ϕ(Ty, u) − ϕ(Ty, u)} + γ2{ϕ(Ty, u) − ϕ(Ty, u)}
≤ β1ϕ(u, y) + β2ϕ(u, y) + (1 − β1 − β2)ϕ(u, y)

+ δ1{ϕ(y, u) − ϕ(y, u)} + δ2{ϕ(y, u) − ϕ(y, u)}.

So, we have that

(4.2) ϕ(u, Ty) ≤ ϕ(u, y)

for all u ∈ F (T ) and y ∈ C. Further, if E is a Hilbert space, then we have
ϕ(x, y) = ∥x − y∥2 for x, y ∈ E. So, from (4.1) we obtain the following:

α1∥T 2x − Ty∥2 + α2∥Tx − Ty∥2 + (1 − α1 − α2)∥x − Ty∥2

+ γ1{∥Ty − T 2x∥2 − ∥Ty − x∥2} + γ2{∥Ty − Tx∥2 − ∥Ty − x∥2}
≤ β1∥T 2x − y∥2 + β2∥Tx − y∥2 + (1 − β1 − β2)∥x − y∥2

+ δ1{∥y − T 2x∥2 − ∥y − x∥2} + δ2{∥y − Tx∥2 − ∥y − x∥2}

for all x, y ∈ C. This implies that

(α1 + γ1)∥T 2x − Ty∥2 + (α2 + γ2)∥Tx − Ty∥2

+ {1 − (α1 + γ1) − (α2 + γ2)}∥x − Ty∥2

≤ (β1 + δ1)∥T 2x − y∥2 + (β2 + δ2)∥Tx − y∥2

+ {1 − (β1 + δ1) − (β2 + δ2)}∥x − y∥2

for all x, y ∈ C. That is, T is a 2-generalized hybrid mapping [22] in a Hilbert
space. Now, using the technique developed by [24], we prove a fixed point theorem
for 2-generalized nonspreading mappings in a Banach space.

Theorem 4.1. Let E be a smooth, strictly convex and reflexive Banach space
and let C be a nonempty closed convex subset of E. Let T be a 2-generalized
nonspreading mapping of C into itselt. Then, the following are equivalent:

(a) F (T ) ̸= ∅;
(b) {Tnx} is bounded for some x ∈ C.
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Proof. Let T be a 2-generalized nonspreading mapping of C into itself. Then, there
are α1, α2, β1, β2, γ1, γ2, δ1, δ2 ∈ R such that

α1ϕ(T 2x, Ty) + α2ϕ(Tx, Ty) + (1 − α1 − α2)ϕ(x, Ty)

+ γ1{ϕ(Ty, T 2x) − ϕ(Ty, x)} + γ2{ϕ(Ty, Tx) − ϕ(Ty, x)}(4.3)

≤ β1ϕ(T 2x, y) + β2ϕ(Tx, y) + (1 − β1 − β2)ϕ(x, y)

+ δ1{ϕ(y, T 2x) − ϕ(y, x)} + δ2{ϕ(y, Tx) − ϕ(y, x)}

for all x, y ∈ C. If F (T ) ̸= ∅, then we have from (5.3) that ϕ(u, Ty) ≤ ϕ(u, y) for
all u ∈ F (T ) and y ∈ C. Taking a fixed point u of T , we have ϕ(u, Tnx) ≤ ϕ(u, x)
for all n ∈ N and x ∈ C. This implies that for every x ∈ C, the sequence {Tnx} is
bounded. So, (a) =⇒ (b). Let us show (b) =⇒ (a). Suppose that there exists x ∈ C
such that {Tnx} is bounded. Then replacing x by T kx in (4.3), where k ∈ N∪{0},
we have that for any y ∈ C,

α1ϕ(T k+2x, Ty) + α2ϕ(T k+1x, Ty) + (1 − α1 − α2)ϕ(T kx, Ty)

+ γ1{ϕ(Ty, T k+2x) − ϕ(Ty, T kx)} + γ2{ϕ(Ty, T k+1x) − ϕ(Ty, T kx)}

≤ β1ϕ(T k+2x, y) + β2ϕ(T k+1x, y) + (1 − β1 − β2)ϕ(T kx, y)

+ δ1{ϕ(y, T k+2x) − ϕ(y, T kx)} + δ2{ϕ(y, T k+1x) − ϕ(y, T kx)}(4.4)

= β1{ϕ(T k+2x, Ty) + ϕ(Ty, y) + 2⟨T k+2x − Ty, JTy − Jy⟩}

+ β2{ϕ(T k+1x, Ty) + ϕ(Ty, y) + 2⟨T k+1x − Ty, JTy − Jy⟩}

+ (1 − β1 − β2){ϕ(T kx, Ty) + ϕ(Ty, y) + 2⟨T kx − Ty, JTy − Jy⟩}

+ δ1{ϕ(y, T k+2x) − ϕ(y, T kx)} + δ2{ϕ(y, T k+1x) − ϕ(y, T kx)}.

This implies that

0 ≤ (β1 − α1){ϕ(T k+2x, Ty) − ϕ(T kx, Ty)}

+ (β2 − α2){ϕ(T k+1x, Ty) − ϕ(T kx, Ty)} + ϕ(Ty, y)

+ 2⟨β1T
k+2x + β2T

k+1x + (1 − β1 − β2)T kx − Ty, JTy − Jy⟩

− γ1{ϕ(Ty, T k+2x) − ϕ(Ty, T kx)} − γ2{ϕ(Ty, T k+1x) − ϕ(Ty, T kx)}

+ δ1{ϕ(y, T k+2x) − ϕ(y, T kx)} + δ2{ϕ(y, T k+1x) − ϕ(y, T kx)}(4.5)

= (β1 − α1){ϕ(T k+2x, Ty) − ϕ(T kx, Ty)}

+ (β2 − α2){ϕ(T k+1x, Ty) − ϕ(T kx, Ty)} + ϕ(Ty, y)

+ 2⟨T kx − Ty + β1(T k+2x − T kx) + β2(T k+1x − T kx), JTy − Jy⟩

− γ1{ϕ(Ty, T k+2x) − ϕ(Ty, T kx)} − γ2{ϕ(Ty, T k+1x) − ϕ(Ty, T kx)}

+ δ1{ϕ(y, T k+2x) − ϕ(y, T kx)} + δ2{ϕ(y, T k+1x) − ϕ(y, T kx)}.
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Summing up these inequalities (4.5) with respect to k = 0, 1, . . . , n − 1, we have

0 ≤ (β1 − α1){ϕ(Tn+1x, Ty) + ϕ(Tnx, Ty) − ϕ(Tx, Ty) − ϕ(x, Ty)}
+ (β2 − α2){ϕ(Tnx, Ty) − ϕ(x, Ty)} + nϕ(Ty, y)

+ 2⟨x + Tx + · · · + Tn−1x − nTy, JTy − Jy⟩
+ 2⟨β1(Tn+1x + Tnx − Tx − x) + β2(Tnx − x), JTy − Jy⟩(4.6)

− γ1{ϕ(Ty, T n+1x) + ϕ(Ty, T nx) − ϕ(Ty, Tx) − ϕ(Ty, x)}
− γ2{ϕ(Ty, T nx) − ϕ(Ty, x)}
+ δ1{ϕ(y, Tn+1x) + ϕ(y, Tnx) − ϕ(y, Tx) − ϕ(y, x)}
+ δ2{ϕ(y, Tnx) − ϕ(y, x)}.

Dividing by n in (4.6), we have

0 ≤ 1
n

(β1 − α1){ϕ(Tn+1x, Ty) + ϕ(Tnx, Ty) − ϕ(Tx, Ty) − ϕ(x, Ty)}

+
1
n

(β2 − α2){ϕ(Tnx, Ty) − ϕ(x, Ty)} + ϕ(Ty, y)

+ 2⟨Snx − Ty, JTy − Jy⟩

+
1
n

2⟨β1(Tn+1x + Tnx − Tx − x) + β2(Tnx − x), JTy − Jy⟩(4.7)

− 1
n

γ1{ϕ(Ty, T n+1x) + ϕ(Ty, T nx) − ϕ(Ty, Tx) − ϕ(Ty, x)}

− 1
n

γ2{ϕ(Ty, T nx) − ϕ(Ty, x)}

+
1
n

δ1{ϕ(y, Tn+1x)ϕ(y, Tnx) − ϕ(y, Tx) − ϕ(y, x)}

+
1
n

δ2{ϕ(y, Tnx) − ϕ(y, x)},

where Snx = 1
n

∑n−1
k=0 T kx. Since {Tnx} is bounded by assumption, {Snx} is

bounded. Thus we have a subsequence {Snix} of {Snx} such that {Snix} converges
weakly to a point u ∈ C. Letting ni → ∞ in (4.7), we obtain

0 ≤ ϕ(Ty, y) + 2⟨u − Ty, JTy − Jy⟩.
Putting y = u, we obtain

0 ≤ ϕ(Tu, u) + 2⟨u − Tu, JTu − Ju⟩
= ϕ(Tu, u) + ϕ(u, u) + ϕ(Tu, Tu) − ϕ(u, Tu) − ϕ(Tu, u)(4.8)

= −ϕ(u, Tu).

Hence we have ϕ(u, Tu) ≤ 0 and then ϕ(u, Tu) = 0. Since E is strictly convex, we
obtain u = Tu. Therefore F (T ) is nonempty. This completes the proof. ¤

Using Theorem 4.1, we have the following fixed point theorems in a Banach
space.

Theorem 4.2 (Kohsaka and Takahashi [20]). Let E be a smooth, strictly convex
and reflexive Banach space and let C be a nonempty closed convex subset of E. Let
T : C → C be a nonspreading mapping, i.e.,

ϕ(Tx, Ty) + ϕ(Ty, Tx) ≤ ϕ(Tx, y) + ϕ(Ty, x)
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for all x, y ∈ C. Then, the following are equivalent:
(a) F (T ) ̸= ∅;
(b) {Tnx} is bounded for some x ∈ C.

Proof. Putting α1 = β1 = γ1 = δ1 = 0, α2 = β2 = γ2 = 1 and δ2 = 0 in (4.3), we
obtain that

ϕ(Tx, Ty) + ϕ(Ty, Tx) ≤ ϕ(Tx, y) + ϕ(Ty, x)
for all x, y ∈ C. So, we have the desired result from Theorem 4.1. ¤

Theorem 4.3. Let E be a smooth, strictly convex and reflexive Banach space and
let C be a nonempty closed convex subset of E. Let T : C → C be a hybrid mapping
[28], i.e.,

2ϕ(Tx, Ty) + ϕ(Ty, Tx) ≤ ϕ(Tx, y) + ϕ(Ty, x) + ϕ(x, y)

for all x, y ∈ C. Then, the following are equivalent:
(a) F (T ) ̸= ∅;
(b) {Tnx} is bounded for some x ∈ C.

Proof. Putting α1 = β1 = γ1 = δ1 = 0, α2 = 1, β2 = γ2 = 1
2 and δ2 = 0 in (4.3),

we obtain that

2ϕ(Tx, Ty) + ϕ(Ty, Tx) ≤ ϕ(Tx, y) + ϕ(Ty, x) + ϕ(x, y)

for all x, y ∈ C. So, we have the desired result from Theorem 4.1. ¤

Theorem 4.4. Let E be a smooth, strictly convex and reflexive Banach space and
let C be a nonempty closed convex subset of E. Let T : C → C be a mapping such
that

αϕ(Tx, Ty) + (1 − α)ϕ(x, Ty) ≤ βϕ(Tx, y) + (1 − β)ϕ(x, y)
for all x, y ∈ C. Then, the following are equivalent:

(a) F (T ) ̸= ∅;
(b) {Tnx} is bounded for some x ∈ C.

Proof. Putting α1 = β1 = γ1 = δ1 = 0, α2 = α, β2 = β and γ2 = δ2 = 0 in (4.3),
we obtain that

αϕ(Tx, Ty) + (1 − α)ϕ(x, Ty) ≤ βϕ(Tx, y) + (1 − β)ϕ(x, y)

for all x, y ∈ C. So, we have the desired result from Theorem 4.1. ¤

As a direct consequence of Theorem 5.5, we have the following Kocourek, Taka-
hashi and Yao fixed point theorem [17] in a Hilbert space.

Theorem 4.5 (Kocourek, Takahashi and Yao [17]). Let C be a nonempty closed
convex subset of a Hilbert space H and let T : C → C be a generalized hybrid
mapping, i.e., there are α, β ∈ R such that

α∥Tx − Ty∥2 + (1 − α)∥x − Ty∥2 ≤ β∥Tx − y∥2 + (1 − β)∥x − y∥2

for all x, y ∈ C. Then, the following are equivalent:
(a) F (T ) ̸= ∅;
(b) {Tnx} is bounded for some x ∈ C.

Proof. We know that ϕ(x, y) = ∥x − y∥2 for all x, y ∈ C in Theorem 5.5. So, we
have the desired result from Theorem 5.5. ¤
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Finally, we prove the following fixed point theorem in a Banach space.

Theorem 4.6. Let E be a smooth, strictly convex and reflexive Banach space and
let C be a nonempty closed convex subset of E. Let T : C → C be a mapping such
that

ϕ(T 2x, Ty) + ϕ(Tx, Ty) + ϕ(x, Ty) ≤ 3ϕ(x, y)
for all x, y ∈ C. Then, the following are equivalent:

(a) F (T ) ̸= ∅;
(b) {Tnx} is bounded for some x ∈ C.

Proof. Putting α1 = α2 = 1
3 , β1 = β2 = 0, and γ1 = γ2 = δ1 = δ2 = 0 in (4.3), we

have that
1
3
ϕ(T 2x, Ty) +

1
3
ϕ(Tx, Ty) +

1
3
ϕ(x, Ty) ≤ ϕ(x, y)

for all x, y ∈ C. This is equivalent to the mapping in our theorem:

ϕ(T 2x, Ty) + ϕ(Tx, Ty) + ϕ(x, Ty) ≤ 3ϕ(x, y)

for all x, y ∈ C. So, we have the desired result from Theorem 4.1. ¤

Remark 2. Let E be a smooth Banach space and let C be a nonempty closed
convex subset of E. Let n ∈ N. Then, a mapping T : C → C is called n-generalized
nonspreading if there are α1, α2, . . . , αn, β1, β2, . . . , βn, γ1, γ2, . . . , γn, δ1, δ2, . . . , δn ∈
R such that

n∑
k=1

αkϕ(Tn+1−kx, Ty) + (1 −
n∑

k=1

αk)ϕ(x, Ty)

+
n∑

k=1

γk{ϕ(Ty, T n+1−kx) − ϕ(Ty, x)}(4.9)

≤
n∑

k=1

βkϕ(Tn+1−kx, y) + (1 −
n∑

k=1

βk)ϕ(x, y)

+
n∑

k=1

δk{ϕ(y, Tn+1−kx) − ϕ(y, x)}

for all x, y ∈ C. Such a mapping is called an (α1, α2, . . . , αn, β1, β2, . . . , βn,
γ1, γ2, . . . , γn, δ1, δ2, . . . , δn)-generalized nonspreading mapping. As in the proof
of Theorem 4.1, we can prove a fixed point theorem for n-generalized nonspreading
mappings in a smooth, strictly convex and reflexive Banach space.

5. Fixed Point Theorem 3

Let E be a smooth, strictly convex and reflexive Banach space and let C be a
nonempty subset of E. Let T be a mapping of C into itself. Define a mapping T ∗

as follows:
T ∗x∗ = JTJ−1x∗, ∀x∗ ∈ JC,

where J is the duality mapping on E and J−1 is the duality mapping on E∗. A
mapping T ∗ is called the duality mapping of T ; see [33] and [10]. It is easy to show
that T ∗ is a mapping of JC into itself. In fact, for x∗ ∈ JC, we have J−1x∗ ∈ C
and hence TJ−1x∗ ∈ C. So, we have

T ∗x∗ = JTJ−1x∗ ∈ JC.
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Then, T ∗ is a mapping of JC into itself. Furthermore, we define the duality mapping
T ∗∗ of T ∗ as follows:

T ∗∗x = J−1T ∗Jx, ∀x ∈ C.

It is easy to show that T ∗∗ is a mapping of C into itself. In fact, for x ∈ C, we have

T ∗∗x = J−1T ∗Jx = J−1JTJ−1Jx = Tx ∈ C.

So, T ∗∗ is a mapping of C into itself. We know the following result in a Banach
space; see [8] and [33].

Lemma 5.1. Let E be a smooth, strictly convex and reflexive Banach space and
let C be a nonempty subset of E. Let T be a mapping of C into itself and let T ∗ be
the duality mapping of JC into itself. Then, the following hold:

(1) JF (T ) = F (T ∗);
(2) ∥Tnx∥ = ∥(T ∗)nJx∥ for each x ∈ C and n ∈ N.

Let E be a smooth Banach space, let J be the duality mapping from E into
E∗ and let C be a nonempty subset of E. Then, a mapping T : C → C is called
2-skew-generalized nonspreading if there are α1, α2, β1, β2, γ1, γ2, δ1, δ2 ∈ R such
that

α1ϕ(Ty, T 2x) + α2ϕ(Ty, Tx) + (1 − α1 − α2)ϕ(Ty, x)

+ γ1{ϕ(T 2x, Ty) − ϕ(x, Ty)} + γ2{ϕ(Tx, Ty) − ϕ(x, Ty)}(5.1)

≤ β1ϕ(y, T 2x) + β2ϕ(y, Tx) + (1 − β1 − β2)ϕ(y, x)

+ δ1{ϕ(T 2x, y) − ϕ(x, y)} + δ2{ϕ(Tx, y) − ϕ(x, y)}

for all x, y ∈ C, where ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩ + ∥y∥2 for x, y ∈ E. We call such
a mapping an (α1, α2, β1, β2, γ1, γ2, δ1, δ2)-skew-generalized nonspreading mapping.
Let T be an (α1, α2, β1, β2, γ1, γ2, δ1, δ2)-skew-generalized nonspreading mapping.
Observe that if F (T ) ̸= ∅, then ϕ(Ty, u) ≤ ϕ(y, u) for all u ∈ F (T ) and y ∈ C.
Indeed, putting x = u ∈ F (T ) in (5.1), we obtain

α1ϕ(Ty, u) + α2ϕ(Ty, u) + (1 − α1 − α2)ϕ(Ty, u)

+ γ1{ϕ(u, Ty) − ϕ(u, Ty)} + γ2{ϕ(u, Ty) − ϕ(u, Ty)}(5.2)

≤ β1ϕ(y, u) + β2ϕ(y, u) + (1 − β1 − β2)ϕ(y, u)

+ δ1{ϕ(u, y) − ϕ(u, y)} + δ2{ϕ(u, y) − ϕ(u, y)}.

So, we have that

(5.3) ϕ(Ty, u) ≤ ϕ(y, u)

for all u ∈ F (T ) and y ∈ C. Further, if E is a Hilbert space, then ϕ(x, y) = ∥x−y∥2

for all x, y ∈ E. So, from (5.1) we obtain the following:

α1∥Ty − T 2x∥2 + α2∥Ty − Tx∥2 + (1 − α1 − α2)∥Ty − x∥2

+ γ1{∥T 2x − Ty∥2 − ∥x − Ty∥2} + γ2{∥Tx − Ty∥2 − ∥x − Ty∥2}(5.4)

≤ β1∥y − T 2x∥2 + β2∥y − Tx∥2 + (1 − β1 − β2)∥y − x∥2

+ δ1{∥T 2x − y∥2 − ∥x − y∥2} + δ2{∥Tx − y∥2 − ∥x − y∥2}
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for all x, y ∈ C. This implies that

(α1 + γ1)∥T 2x − Ty∥2 + (α2 + γ2)∥Tx − Ty∥2

+ {1 − (α1 + γ1) − (α2 + γ2)}∥x − Ty∥2

≤ (β1 + δ1)∥T 2x − y∥2 + (β2 + δ2)∥Tx − y∥2

+ {1 − (β1 + δ1) − (β2 + δ2)}∥x − y∥2

for all x, y ∈ C. That is, T is a 2-generalized hybrid mapping [22] in a Hilbert
space. Now, we prove a fixed point theorem for 2-skew-generalized nonspreading
mappings in a Banach space. Before proving the theorem, we need the following
definition: Let ϕ∗ : E∗ × E∗ → (−∞,∞) be the function defined by

ϕ∗(x∗, y∗) = ∥x∗∥2 − 2⟨J−1y∗, x∗⟩ + ∥y∗∥2

for all x∗, y∗ ∈ E∗, where J is the duality mapping of E. It is easy to see that

(5.5) ϕ(x, y) = ϕ∗(Jy, Jx)

for all x, y ∈ E.

Theorem 5.2. Let E be a smooth, strictly convex and reflexive Banach space and
let C be a nonempty closed subset of E such that JC is closed and convex. Let T
be a 2-skew-generalized nonspreading mapping of C into itself. Then, the following
are equivalent:

(a) F (T ) ̸= ∅;
(b) {Tnx} is bounded for some x ∈ C.

Proof. Let T be a 2-skew-generalized nonspreading mapping of C into itself. Then,
there are α1, α2, β1, β2, γ1, γ2, δ1, δ2 ∈ R such that

α1ϕ(Ty, T 2x) + α2ϕ(Ty, Tx) + (1 − α1 − α2)ϕ(Ty, x)

+ γ1{ϕ(T 2x, Ty) − ϕ(x, Ty)} + γ2{ϕ(Tx, Ty) − ϕ(x, Ty)}(5.6)

≤ β1ϕ(y, T 2x) + β2ϕ(y, Tx) + (1 − β1 − β2)ϕ(y, x)

+ δ1{ϕ(T 2x, y) − ϕ(x, y)} + δ2{ϕ(Tx, y) − ϕ(x, y)}

for all x, y ∈ C. If F (T ) ̸= ∅, then ϕ(Ty, u) ≤ ϕ(y, u) for all u ∈ F (T ) and y ∈ C.
Taking a fixed point u of T , we have ϕ(Tnx, u) ≤ ϕ(x, u) for all n ∈ N and x ∈ C.
This implies (a) =⇒ (b). Let us show (b) =⇒ (a). Suppose that there exists x ∈ C
such that {Tnx} is bounded. Then for any x∗, y∗ ∈ JC with x∗ = Jx and y∗ = Jy,
we have from (5.5) and T ∗ = JTJ−1 that

ϕ∗((T ∗)2x∗, T ∗y∗) = ϕ∗(T ∗T ∗x∗, T ∗y∗)

= ϕ∗(JTJ−1JTJ−1Jx, JTJ−1Jy)

= ϕ∗(JTTx, JTy)

= ϕ∗(JT 2x, JTy)

= ϕ(Ty, T 2x).

Similarly, we have that

ϕ∗(T ∗x∗, T ∗y∗) = ϕ∗(JTJ−1Jx, JTJ−1Jy) = ϕ∗(JTx, JTy) = ϕ(Ty, Tx).
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Thus, we have that

α1ϕ∗((T ∗)2x∗, T ∗y∗) + α2ϕ∗(T ∗x∗, T ∗y∗) + (1 − α1 − α2)ϕ∗(x∗, T ∗y∗)

+ γ1{ϕ∗(T ∗y∗, (T ∗)2x∗) − ϕ∗(T ∗y∗, x∗)}
+ γ2{ϕ∗(T ∗y∗, T ∗x∗) − ϕ∗(T ∗y∗, x∗)}

= α1ϕ∗(JT 2x, JTy) + α2ϕ∗(JTx, JTy) + (1 − α1 − α2)ϕ∗(Jx, JTy)

+ γ1{ϕ∗(JTy, JT 2x) − ϕ∗(JTy, Jx)}
+ γ2{ϕ∗(JTy, JTx) − ϕ∗(JTy, Jx)}

= α1ϕ(Ty, T 2x) + α2ϕ(Ty, Tx) + (1 − α1 − α2)ϕ(Ty, x)

+ γ1{ϕ(T 2x, Ty) − ϕ(x, Ty)} + γ2{ϕ(Tx, Ty) − ϕ(x, Ty)}.
We also have that

β1ϕ∗((T ∗)2x∗, y∗) + β2ϕ∗(T ∗x∗, y∗) + (1 − β1 − β2)ϕ∗(x∗, y∗)

+ δ1{ϕ∗(y∗, (T ∗)2x∗) − ϕ∗(y∗, x∗)}
+ δ2{ϕ∗(y∗, T ∗x∗) − ϕ∗(y∗, x∗)}

= β1ϕ∗(JT 2x, Jy) + β2ϕ∗(JTx, Jy) + (1 − β1 − β2)ϕ∗(Jx, Jy)

+ δ1{ϕ∗(Jy, JT 2x) − ϕ∗(Jy, Jx)} + δ2{ϕ∗(Jy, JTx) − ϕ∗(Jy, Jx)}
= β1ϕ(y, T 2x) + β2ϕ(y, Tx) + (1 − β1 − β2)ϕ(y, x)

+ δ1{ϕ(T 2x, y) − ϕ(x, y)} + δ2{ϕ(Tx, y) − ϕ(x, y)}.
Since T is 2-skew-generalized nonspreading, we have from (5.6) that

α1ϕ∗((T ∗)2x∗, T ∗y∗) + α2ϕ∗(T ∗x∗, T ∗y∗) + (1 − α1 − α2)ϕ∗(x∗, T ∗y∗)

+ γ1{ϕ∗(T ∗y∗, (T ∗)2x∗) − ϕ∗(T ∗y∗, x∗)}
+ γ2{ϕ∗(T ∗y∗, T ∗x∗) − ϕ∗(T ∗y∗, x∗)}

≤ β1ϕ∗((T ∗)2x∗, y∗) + β2ϕ∗(T ∗x∗, y∗) + (1 − β1 − β2)ϕ∗(x∗, y∗)

+ δ1{ϕ∗(y∗, (T ∗)2x∗) − ϕ∗(y∗, x∗)}
+ δ2{ϕ∗(y∗, T ∗x∗) − ϕ∗(y∗, x∗)}.

This implies that T ∗ is a 2-generalized nonspreading mapping of JC into itself. We
know from Lemma 5.1 and Theorem 4.1 that T ∗ has a fixed point in JC. We also
have from Lemma 5.1 that F (T ∗) = JF (T ). Therefore F (T ) is nonempty. This
completes the proof. ¤

Using Theorem 5.2, we have the following fixed point theorems in a Banach
space.

Theorem 5.3 (Dhompongsa, Fupinwong, Takahashi and Yao [8]). Let E be a
smooth, strictly convex and reflexive Banach space and let C be a nonempty closed
subset of E such that JC is closed and convex. Let T : C → C be a skew-
nonspreading mapping, i.e.,

ϕ(Ty, Tx) + ϕ(Tx, Ty) ≤ ϕ(y, Tx) + ϕ(x, Ty)

for all x, y ∈ C. Then, the following are equivalent:
(a) F (T ) ̸= ∅;
(b) {Tnx} is bounded for some x ∈ C.



16 WATARU TAKAHASHI, NGAI-CHING WONG, AND JEN-CHIH YAO

Proof. Putting α1 = β1 = γ1 = δ1 = 0, α2 = β2 = γ2 = 1 and δ2 = 0 in (5.1), we
obtain that

ϕ(Ty, Tx) + ϕ(Tx, Ty) ≤ ϕ(y, Tx) + ϕ(x, Ty)
for all x, y ∈ C. So, we have the desired result from Theorem 5.2. ¤
Theorem 5.4. Let E be a smooth, strictly convex and reflexive Banach space and
let C be a nonempty closed subset of E such that JC is closed and convex. Let
T : C → C be a mapping such that

2ϕ(Ty, Tx) + ϕ(Tx, Ty) ≤ ϕ(y, Tx) + ϕ(x, Ty) + ϕ(y, x)

for all x, y ∈ C. Then, the following are equivalent:
(a) F (T ) ̸= ∅;
(b) {Tnx} is bounded for some x ∈ C.

Proof. Putting α1 = β1 = γ1 = δ1 = 0, α2 = 1, β2 = γ2 = 1
2 and δ2 = 0 in (5.1),

we obtain that

2ϕ(Ty, Tx) + ϕ(Tx, Ty) ≤ ϕ(y, Tx) + ϕ(x, Ty) + ϕ(y, x)

for all x, y ∈ C. So, we have the desired result from Theorem 5.2. ¤
Theorem 5.5. Let E be a smooth, strictly convex and reflexive Banach space and
let C be a nonempty closed subset of E such that JC is closed and convex. Let
T : C → C be a mapping such that

αϕ(Ty, Tx) + (1 − α)ϕ(Ty, x) ≤ βϕ(y, Tx) + (1 − β)ϕ(y, x)

for all x, y ∈ C. Then, the following are equivalent:
(a) F (T ) ̸= ∅;
(b) {Tnx} is bounded for some x ∈ C.

Proof. Putting α1 = β1 = γ1 = δ1 = 0, α2 = α, β2 = β and γ2 = δ2 = 0 in (5.1),
we obtain that

αϕ(Ty, Tx) + (1 − α)ϕ(Ty, x) ≤ βϕ(y, Tx) + (1 − β)ϕ(y, x)

for all x, y ∈ C. So, we have the desired result from Theorem 5.2. ¤
Finally, we prove the following fixed point theorem in a Banach space.

Theorem 5.6. Let E be a smooth, strictly convex and reflexive Banach space and
let C be a nonempty closed subset of E such that JC is closed and convex. Let
T : C → C be a mapping such that

ϕ(Ty, T 2x) + ϕ(Ty, Tx) + ϕ(Ty, x) ≤ 3ϕ(y, x)

for all x, y ∈ C. Then, the following are equivalent:
(a) F (T ) ̸= ∅;
(b) {Tnx} is bounded for some x ∈ C.

Proof. Putting α1 = α2 = 1
3 , β1 = β2 = 0, and γ1 = γ2 = δ1 = δ2 = 0 in (5.1), we

have that
1
3
ϕ(Ty, T 2x) +

1
3
ϕ(Ty, Tx) +

1
3
ϕ(Ty, x) ≤ ϕ(y, x)

for all x, y ∈ C. This is equivalent to the mapping in our theorem:

ϕ(T 2x, Ty) + ϕ(Tx, Ty) + ϕ(x, Ty) ≤ 3ϕ(x, y)

for all x, y ∈ C. So, we have the desired result from Theorem 5.2. ¤
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Remark 3. Let E be a smoth Banach space and let C be a nonempty closed
subset of E such that JC is closed and convex. Let n ∈ N. Then, a mapping
T : C → C is called n-skew-generalized nonspreading if there are α1, α2, . . . , αn,
β1, β2, . . . , βn, γ1, γ2, . . . , γn, δ1, δ2, . . . , δn ∈ R such that

n∑
k=1

αkϕ(Ty, T n+1−kx) + (1 −
n∑

k=1

αk)ϕ(Ty, x)

+
n∑

k=1

γk{ϕ(Tn+1−kx, Ty) − ϕ(x, Ty)}(5.7)

≤
n∑

k=1

βkϕ(y, Tn+1−kx) + (1 −
n∑

k=1

βk)ϕ(y, x)

+
n∑

k=1

δk{ϕ(Tn+1−kx, y) − ϕ(x, y)}

for all x, y ∈ C. Such a mapping is called an (α1, α2, . . . , αn, β1, β2, . . . , βn,
γ1, γ2, . . . , γn, δ1, δ2, . . . , δn)-skew-generalized nonspreading mapping. As in the
proof of Theorem 5.2, we can prove a fixed point theorem for n-skew-generalized
nonspreading mappings in a smooth, strictly convex and reflexive Banach space.
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