FIXED POINT THEOREMS FOR THREE NEW NONLINEAR MAPPINGS IN BANACH SPACES

WATARU TAKAHASHI, NGAI-CHING WONG, AND JEN-CHIH YAO

Abstract

In this paper, we first consider three classes of nonlinear mappings in Banach spaces which contain the class of 2-generalized hybrid mappings defined by Maruyama, Takahashi and Yao [22] in a Hilbert space. Then, we prove fixed point theorems for these classes of nonlinear mappings in Banach spaces.

1. Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let T be a mapping of C into itself. Then we denote by $F(T)$ the set of fixed points of T. A mapping $T: C \rightarrow C$ is said to be nonexpansive, nonspreading [20], and hybrid [28] if

$$
\begin{gather*}
\|T x-T y\| \leq\|x-y\| \\
2\|T x-T y\|^{2} \leq\|T x-y\|^{2}+\|T y-x\|^{2} \tag{1.1}
\end{gather*}
$$

and

$$
\begin{equation*}
3\|T x-T y\|^{2} \leq\|x-y\|^{2}+\|T x-y\|^{2}+\|T y-x\|^{2} \tag{1.2}
\end{equation*}
$$

for all $x, y \in C$, respectively. These mappings are deduced from a firmly nonexpansive mapping in a Hilbert space; see [28]. A mapping $F: C \rightarrow C$ is said to be firmly nonexpansive if

$$
\|F x-F y\|^{2} \leq\langle x-y, F x-F y\rangle
$$

for all $x, y \in C$; see, for instance, Browder [5] and Goebel and Kirk [9]. From Baillon [3], and Takahashi and Yao [32], we know the following nonlinear ergodic theorem for nonlinear mappings in a Hilbert space.

Theorem 1.1. Let H be a Hilbert space, let C be a nonempty closed convex subset of H and let T be a mapping of C into itself such that $F(T)$ is nonempty. Suppose that T satisfies one of the following:
(i) T is nonexpansive;
(ii) T is nonspreading;
(iii) T is hybrid;
(iv) $2\|T x-T y\|^{2} \leq\|x-y\|^{2}+\|T x-y\|^{2}, \quad \forall x, y \in C$.

[^0]Then, for any $x \in C$,

$$
S_{n} x=\frac{1}{n} \sum_{k=0}^{n-1} T^{k} x
$$

converges weakly to a fixed point of T.
Motivated by such a theorem, Aoyama, Iemoto, Kohsaka and Takahashi [2] introduced a class of nonlinear mappings called λ-hybrid containing the classes of nonexpansive mappings, nonspreading mappings, and hybrid mappings in a Hilbert space. Kocourek, Takahashi and Yao [17] also introduced a more broad class of nonlinear mappings than the class of λ-hybrid mappings in a Hilbert space. A mapping $T: C \rightarrow C$ is called generalized hybrid [17] if there are $\alpha, \beta \in \mathbb{R}$ such that

$$
\alpha\|T x-T y\|^{2}+(1-\alpha)\|x-T y\|^{2} \leq \beta\|T x-y\|^{2}+(1-\beta)\|x-y\|^{2}
$$

for all $x, y \in C$. Very recently, Maruyama, Takahashi and Yao [22] introduced a broad class of nonlinear mappings containing the class of generalized hybrid mappings defined by Kocourek, Takahashi and Yao [17] in a Hilbert space. A mapping $T: C \rightarrow C$ is called 2-generalized hybrid if there are $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in \mathbb{R}$ such that

$$
\begin{aligned}
& \alpha_{1}\left\|T^{2} x-T y\right\|^{2}+\alpha_{2}\|T x-T y\|^{2}+\left(1-\alpha_{1}-\alpha_{2}\right)\|x-T y\|^{2} \\
& \quad \leq \beta_{1}\left\|T^{2} x-y\right\|^{2}+\beta_{2}\|T x-y\|^{2}+\left(1-\beta_{1}-\beta_{2}\right)\|x-y\|^{2}
\end{aligned}
$$

for all $x, y \in C$. Then, they proved fixed point theorems and weak convergence theorems for 2 -generalized hybrid mappings in a Hilbert space; see also Takahashi and Termwuttipong [30].

In this paper, motivated by Maruyama, Takahashi and Yao [22], we introduce three classes of nonlinear mappings in Banach spaces which contain the class of 2-generalized hybrid mappings in a Hilbert space. Then, we prove fixed point theorems for these classes of nonlinear mappings in Banach spaces.

2. Preliminaries

Let E be a real Banach space with norm $\|\cdot\|$ and let E^{*} be the topological dual space of E. We denote the value of $y^{*} \in E^{*}$ at $x \in E$ by $\left\langle x, y^{*}\right\rangle$. When $\left\{x_{n}\right\}$ is a sequence in E, we denote the strong convergence of $\left\{x_{n}\right\}$ to $x \in E$ by $x_{n} \rightarrow x$ and the weak convergence by $x_{n} \rightharpoonup x$. The modulus δ of convexity of E is defined by

$$
\delta(\epsilon)=\inf \left\{1-\frac{\|x+y\|}{2}:\|x\| \leq 1,\|y\| \leq 1,\|x-y\| \geq \epsilon\right\}
$$

for every ϵ with $0 \leq \epsilon \leq 2$. A Banach space E is said to be uniformly convex if $\delta(\epsilon)>0$ for every $\epsilon>0$. A uniformly convex Banach space is strictly convex and reflexive. Let C be a nonempty subset of a Banach space E. A mapping $T: C \rightarrow C$ is nonexpansive if $\|T x-T y\| \leq\|x-y\|$ for all $x, y \in C$. A mapping $T: C \rightarrow C$ is quasi-nonexpansive if $F(T) \neq \emptyset$ and $\|T x-y\| \leq\|x-y\|$ for all $x \in C$ and $y \in F(T)$, where $F(T)$ is the set of fixed points of T. If C is a nonempty closed convex subset of a strictly convex Banach space E and $T: C \rightarrow C$ is quasi-nonexpansive, then $F(T)$ is closed and convex; see Itoh and Takahashi [15]. Let E be a Banach space. The duality mapping J from E into $2^{E^{*}}$ is defined by

$$
J x=\left\{x^{*} \in E^{*}:\left\langle x, x^{*}\right\rangle=\|x\|^{2}=\left\|x^{*}\right\|^{2}\right\}
$$

for every $x \in E$. Let $U=\{x \in E:\|x\|=1\}$. The norm of E is said to be Gâteaux differentiable if for each $x, y \in U$, the limit

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t} \tag{2.1}
\end{equation*}
$$

exists. In the case, E is called smooth. We know that E is smooth if and only if J is a single-valued mapping of E into E^{*}. We also know that E is reflexive if and only if J is surjective, and E is strictly convex if and only if J is one-to-one. Therefore, if E is a smooth, strictly convex and reflexive Banach space, then J is a single-valued bijection. The norm of E is said to be uniformly Gâteaux differentiable if for each $y \in U$, the limit (2.1) is attained uniformly for $x \in U$. It is also said to be Fréchet differentiable if for each $x \in U$, the limit (2.1) is attained uniformly for $y \in U$. A Banach space E is called uniformly smooth if the limit (2.1) is attained uniformly for $x, y \in U$. It is known that if the norm of E is uniformly Gâteaux differentiable, then J is uniformly norm to weak* continuous on each bounded subset of E, and if the norm of E is Fréchet differentiable, then J is norm to norm continuous. If E is uniformly smooth, J is uniformly norm to norm continuous on each bounded subset of E. For more details, see [25, 26]. The following results are in $[25,26]$.
Lemma 2.1. Let E be a Banach space and let J be the duality mapping on E. Then, for any $x, y \in E$,

$$
\|x\|^{2}-\|y\|^{2} \geq 2\langle x-y, j\rangle
$$

where $j \in J y$.
Lemma 2.2. Let E be a smooth Banach space and let J be the duality mapping on E. Then, $\langle x-y, J x-J y\rangle \geq 0$ for all $x, y \in E$. Further, if E is strictly convex and $\langle x-y, J x-J y\rangle=0$, then $x=y$.

Let E be a smooth Banach space. The function $\phi: E \times E \rightarrow(-\infty, \infty)$ is defined by

$$
\begin{equation*}
\phi(x, y)=\|x\|^{2}-2\langle x, J y\rangle+\|y\|^{2} \tag{2.2}
\end{equation*}
$$

for $x, y \in E$, where J is the duality mapping of E; see [1] and [16]. We have from the definition of ϕ that

$$
\begin{equation*}
\phi(x, y)=\phi(x, z)+\phi(z, y)+2\langle x-z, J z-J y\rangle \tag{2.3}
\end{equation*}
$$

for all $x, y, z \in E$. From $(\|x\|-\|y\|)^{2} \leq \phi(x, y)$ for all $x, y \in E$, we can see that $\phi(x, y) \geq 0$. Further, we can obtain the following equality:

$$
\begin{equation*}
2\langle x-y, J z-J w\rangle=\phi(x, w)+\phi(y, z)-\phi(x, z)-\phi(y, w) \tag{2.4}
\end{equation*}
$$

for $x, y, z, w \in E$. If E is additionally assumed to be strictly convex, then from Lemma 2.2 we have

$$
\begin{equation*}
\phi(x, y)=0 \Longleftrightarrow x=y \tag{2.5}
\end{equation*}
$$

The following result was proved by Xu [35].
Lemma 2.3 ($\mathrm{Xu}[35])$. Let E be a uniformly convex Banach space and let $r>0$. Then there exists a strictly increasing, continuous and convex function $g:[0, \infty) \rightarrow$ $[0, \infty)$ such that $g(0)=0$ and

$$
\|\lambda x+(1-\lambda) y\|^{2} \leq \lambda\|x\|^{2}+(1-\lambda)\|y\|^{2}-\lambda(1-\lambda) g(\|x-y\|)
$$

for all $x, y \in B_{r}$ and λ with $0 \leq \lambda \leq 1$, where $B_{r}=\{z \in E:\|z\| \leq r\}$.

Let l^{∞} be the Banach space of bounded sequences with supremum norm. Let μ be an element of $\left(l^{\infty}\right)^{*}$ (the dual space of l^{∞}). Then, we denote by $\mu(f)$ the value of μ at $f=\left(x_{1}, x_{2}, x_{3}, \ldots\right) \in l^{\infty}$. Sometimes, we denote by $\mu_{n}\left(x_{n}\right)$ the value $\mu(f)$. A linear functional μ on l^{∞} is called a mean if $\mu(e)=\|\mu\|=1$, where $e=(1,1,1, \ldots)$. A mean μ is called a Banach limit on l^{∞} if $\mu_{n}\left(x_{n+1}\right)=\mu_{n}\left(x_{n}\right)$. We know that there exists a Banach limit on l^{∞}. If μ is a Banach limit on l^{∞}, then for $f=\left(x_{1}, x_{2}, x_{3}, \ldots\right) \in l^{\infty}$,

$$
\liminf _{n \rightarrow \infty} x_{n} \leq \mu_{n}\left(x_{n}\right) \leq \limsup _{n \rightarrow \infty} x_{n}
$$

In particular, if $f=\left(x_{1}, x_{2}, x_{3}, \ldots\right) \in l^{\infty}$ and $x_{n} \rightarrow a \in \mathbb{R}$, then we have $\mu(f)=$ $\mu_{n}\left(x_{n}\right)=a$. For a proof of existence of a Banach limit and its other elementary properties, see [25].

Using Lemma 2.3 and properties of means, Takahashi and Jeong [29] proved the following result.

Lemma 2.4 (Takahashi and Jeong [29]). Let C be a nonempty closed convex subset of a uniformly convex Banach space E, let $\left\{x_{n}\right\}$ be a bounded sequence in E and let μ be a mean on l^{∞}. If $g: E \rightarrow \mathbb{R}$ is defined by

$$
g(z)=\mu_{n}\left\|x_{n}-z\right\|^{2}, \quad \forall z \in E
$$

then there exists a unique $z_{0} \in C$ such that $g\left(z_{0}\right)=\min \{g(z): z \in C\}$.

3. Fixed Point Theorem 1

Let E be a Banach space and let C be a nonempty subset of E. A mapping $T: C \rightarrow C$ is said to be firmly nonexpansive if

$$
\|T x-T y\|^{2} \leq\langle x-y, j\rangle
$$

for all $x, y \in C$, where $j \in J(T x-T y)$; see Bruck [6]. A mapping $T: C \rightarrow C$ is called generalized hybrid [11] if there are $\alpha, \beta \in \mathbb{R}$ such that

$$
\begin{equation*}
\alpha\|T x-T y\|^{2}+(1-\alpha)\|x-T y\|^{2} \leq \beta\|T x-y\|^{2}+(1-\beta)\|x-y\|^{2} \tag{3.1}
\end{equation*}
$$

for all $x, y \in C$. Such a mapping T is also called an (α, β)-generalized hybrid mapping in a Banach space. Using Lemma 2.1, Takahashi and Yao [34] proved the following result.

Proposition 3.1. Let E be a Banach space and let C be a nonempty subset of E. Let $T: C \rightarrow C$ be a firmly nonexpansive mapping and let $\lambda \in[0,1]$. Then, T is $(2-\lambda, 1-\lambda)$-generalized hybrid, i.e.,

$$
(2-\lambda)\|T x-T y\|^{2}+(\lambda-1)\|x-T y\|^{2} \leq(1-\lambda)\|T x-y\|^{2}+\lambda\|x-y\|^{2}
$$

for all $x, y \in C$.
We notice from Proposition 3.1 that the classes of nonexpansive mappings, nonspreadind mappings and hybrid mappings in the sense of norm are deduced from the class of firmly nonexpansive mappings in a Banach space. Motivated by Bruck [6], Takahashi and Yao [34], and Maruyama, Takahashi and Yao [22], in this section, we introduce a broad class of nonlinear mappings in a Banach space containing the class of 2-generalized hybrid mappings defined by Maruyama, Takahashi and Yao
[22] in a Hilbert space. Let E be a Banach space and let C be a nonempty subset of E. Then, a mapping $T: C \rightarrow C$ is called 2-generalized hybrid if there are $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in \mathbb{R}$ such that

$$
\begin{align*}
& \alpha_{1}\left\|T^{2} x-T y\right\|^{2}+\alpha_{2}\|T x-T y\|^{2}+\left(1-\alpha_{1}-\alpha_{2}\right)\|x-T y\|^{2} \tag{3.2}\\
& \quad \leq \beta_{1}\left\|T^{2} x-y\right\|^{2}+\beta_{2}\|T x-y\|^{2}+\left(1-\beta_{1}-\beta_{2}\right)\|x-y\|^{2}
\end{align*}
$$

for all $x, y \in C$. We call such a mapping an $\left(\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}\right)$-generalized hybrid mapping. We observe that the mapping above covers several well-known mappings. For example, a ($0, \alpha_{2}, 0, \beta_{2}$)-generalized hybrid mapping is nonexpansive for $\alpha_{2}=1$ and $\beta_{2}=0$, nonspreading in the sense of norm for $\alpha_{2}=2$ and $\beta_{2}=1$, and hybrid for $\alpha_{2}=\frac{3}{2}$ and $\beta_{2}=\frac{1}{2}$; see (1.1) and (1.2). A ($0, \alpha_{2}, 0, \beta_{2}$)-generalized hybrid mapping is an (α_{2}, β_{2})-generalized hybrid mapping in the sense of Hsu, Takahashi and Yao [11]. We can also show that if $x=T x$, then for any $y \in C$,

$$
\begin{aligned}
& \alpha_{1}\|x-T y\|^{2}+\alpha_{2}\|x-T y\|^{2}+\left(1-\alpha_{1}-\alpha_{2}\right)\|x-T y\|^{2} \\
& \quad \leq \beta_{1}\|x-y\|^{2}+\beta_{2}\|x-y\|^{2}+\left(1-\beta_{1}-\beta_{2}\right)\|x-y\|^{2}
\end{aligned}
$$

and hence $\|x-T y\| \leq\|x-y\|$. This means that a 2-generalized hybrid mapping with a fixed point is quasi-nonexpansive in a Banach space. Now, we prove a fixed point theorem for 2-generalized hybrid mappings in a Banach space. Before proving it, we need the following lemma which was proved by Hsu, Takahashi and Yao [11]. This lemma was proved by using Lemma 2.4.

Lemma 3.1. Let C be a nonempty closed convex subset of a uniformly convex Banach space E and let T be a mapping of C into itself. Let $\left\{x_{n}\right\}$ be a bounded sequence of E and let μ be a mean on l^{∞}. If

$$
\mu_{n}\left\|x_{n}-T y\right\|^{2} \leq \mu_{n}\left\|x_{n}-y\right\|^{2}
$$

for all $y \in C$, then T has a fixed point in C.
Theorem 3.2. Let C be a nonempty closed convex subset of a uniformly convex Banach space E and let $T: C \rightarrow C$ be a 2-generalized hybrid mapping. Then T has a fixed point in C if and only if $\left\{T^{n} z\right\}$ is bounded for some $z \in C$.

Proof. Since $T: C \rightarrow C$ is a 2-generalized hybrid mapping, there are $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in$ \mathbb{R} such that

$$
\begin{aligned}
& \alpha_{1}\left\|T^{2} x-T y\right\|^{2}+\alpha_{2}\|T x-T y\|^{2}+\left(1-\alpha_{1}-\alpha_{2}\right)\|x-T y\|^{2} \\
& \quad \leq \beta_{1}\left\|T^{2} x-y\right\|^{2}+\beta_{2}\|T x-y\|^{2}+\left(1-\beta_{1}-\beta_{2}\right)\|x-y\|^{2}
\end{aligned}
$$

for all $x, y \in C$. If $F(T) \neq \emptyset$, then $\left\{T^{n} z\right\}=\{z\}$ for $z \in F(T)$. So, $\left\{T^{n} z\right\}$ is bounded. Conversely, take $z \in C$ such that $\left\{T^{n} z\right\}$ is bounded. Let μ be a Banach limit. Then, for any $y \in C$ and $n \in \mathbb{N} \cup\{0\}$, we have

$$
\begin{aligned}
& \alpha_{1}\left\|T^{n+2} z-T y\right\|^{2}+\alpha_{2}\left\|T^{n+1} z-T y\right\|^{2}+\left(1-\alpha_{1}-\alpha_{2}\right)\left\|T^{n} z-T y\right\|^{2} \\
& \quad \leq \beta_{1}\left\|T^{n+2} z-y\right\|^{2}+\beta_{2}\left\|T^{n+1} z-y\right\|^{2}+\left(1-\beta_{1}-\beta_{2}\right)\left\|T^{n} z-y\right\|^{2}
\end{aligned}
$$

for any $y \in C$. Since $\left\{T^{n} z\right\}$ is bounded, we can apply a Banach limit μ to both sides of the above inequality. Then, we have

$$
\begin{aligned}
& \mu_{n}\left(\alpha_{1}\left\|T^{n+2} z-T y\right\|^{2}+\alpha_{2}\left\|T^{n+1} z-T y\right\|^{2}+\left(1-\alpha_{1}-\alpha_{2}\right)\left\|T^{n} z-T y\right\|^{2}\right) \\
& \quad \leq \mu_{n}\left(\beta_{1}\left\|T^{n+2} z-y\right\|^{2}+\beta_{2}\left\|T^{n+1} z-y\right\|^{2}+\left(1-\beta_{1}-\beta_{2}\right)\left\|T^{n} z-y\right\|^{2}\right)
\end{aligned}
$$

So, we obtain

$$
\begin{aligned}
& \alpha_{1} \mu_{n}\left\|T^{n+2} z-T y\right\|^{2}+\alpha_{2} \mu_{n}\left\|T^{n+1} z-T y\right\|^{2}+\left(1-\alpha_{1}-\alpha_{2}\right) \mu_{n}\left\|T^{n} z-T y\right\|^{2} \\
& \quad \leq \beta_{1} \mu_{n}\left\|T^{n+2} z-y\right\|^{2}+\beta_{2} \mu_{n}\left\|T^{n+1} z-y\right\|^{2}+\left(1-\beta_{1}-\beta_{2}\right) \mu_{n}\left\|T^{n} z-y\right\|^{2}
\end{aligned}
$$

and hence

$$
\begin{aligned}
& \alpha_{1} \mu_{n}\left\|T^{n} z-T y\right\|^{2}+\alpha_{2} \mu_{n}\left\|T^{n} z-T y\right\|^{2}+\left(1-\alpha_{1}-\alpha_{2}\right) \mu_{n}\left\|T^{n} z-T y\right\|^{2} \\
& \quad \leq \beta_{1} \mu_{n}\left\|T^{n} z-y\right\|^{2}+\beta_{2} \mu_{n}\left\|T^{n} z-y\right\|^{2}+\left(1-\beta_{1}-\beta_{2}\right) \mu_{n}\left\|T^{n} z-y\right\|^{2} .
\end{aligned}
$$

This implies

$$
\mu_{n}\left\|T^{n} z-T y\right\|^{2} \leq \mu_{n}\left\|T^{n} z-y\right\|^{2}
$$

for all $y \in C$. By Lemma 3.1, T has a fixed point in C.
As a direct consequence of Theorem 3.2, we have the following result.
Theorem 3.3. Let C be a nonempty bounded closed convex subset of a uniformly convex Banach space E and let T be a 2-generalized hybrid mapping from C to itself. Then T has a fixed point.

Using Theorem 3.2, we can also prove the following well-known fixed point theorems. We first prove a fixed point theorem for nonexpansive mappings in a Banach space.
Theorem 3.4. Let E be a uniformly convex Banach space and let C be a nonempty closed convex subset of E. Let $T: C \rightarrow C$ be a nonexpansive mapping, i.e.,

$$
\|T x-T y\| \leq\|x-y\|, \quad \forall x, y \in C .
$$

Suppose that there exists an element $x \in C$ such that $\left\{T^{n} x\right\}$ is bounded. Then, T has a fixed point in C.

Proof. In Theorem 3.2, a ($0,1,0,0$)-generalized hybrid mapping of C into itself is nonexpansive. By Theorem 3.2, T has a fixed point in C.

The following is a fixed point theorem for nonspreading mappings in a Banach space.

Theorem 3.5 ([11]). Let H be a uniformly convex Banach space and let C be a nonempty closed convex subset of E. Let $T: C \rightarrow C$ be a nonspreading mapping, i.e.,

$$
2\|T x-T y\|^{2} \leq\|T x-y\|^{2}+\|T y-x\|^{2}, \quad \forall x, y \in C
$$

Suppose that there exists an element $x \in C$ such that $\left\{T^{n} x\right\}$ is bounded. Then, T has a fixed point in C.

Proof. In Theorem 3.2, a ($0,2,0,1$)-generalized hybrid mapping of C into itself is nonspreading. By Theorem 3.2, T has a fixed point in C.

The following is a fixed point theorem for hybrid mappings in a Banach space.
Theorem 3.6 ([11]). Let E be a uniformly convex Banach space and let C be a nonempty closed convex subset of E. Let $T: C \rightarrow C$ be a hybrid mapping, i.e.,

$$
3\|T x-T y\|^{2} \leq\|x-y\|^{2}+\|T x-y\|^{2}+\|T y-x\|^{2}, \quad \forall x, y \in C .
$$

Suppose that there exists an element $x \in C$ such that $\left\{T^{n} x\right\}$ is bounded. Then, T has a fixed point in C.

Proof. In Theorem 3.2, a ($0, \frac{3}{2}, 0, \frac{1}{2}$)-generalized hybrid mapping of C into itself is hybrid in the sense of Takahashi [28]. By Theorem 3.2, T has a fixed point in C.

We can also prove the following fixed point theorem in a Banach space.
Theorem 3.7. Let E be a uniformly convex Banach space and let C be a nonempty closed convex subset of E. Let $T: C \rightarrow C$ be a mapping such that

$$
2\|T x-T y\|^{2} \leq\|x-y\|^{2}+\|T x-y\|^{2}, \quad \forall x, y \in C
$$

Suppose that there exists an element $x \in C$ such that $\left\{T^{n} x\right\}$ is bounded. Then, T has a fixed point in C.

Proof. In Theorem 3.2, a ($0,1,0, \frac{1}{2}$)-generalized hybrid mapping of C into itself is the mapping in our theorem. By Theorem 3.2, T has a fixed point in C.

Finally, we prove the following fixed point theorem in a Banach space.
Theorem 3.8. Let E be a uniformly convex Banach space and let C be a nonempty closed convex subset of E. Let $T: C \rightarrow C$ be a mapping such that

$$
\left\|T^{2} x-T y\right\|^{2}+\|T x-T y\|^{2}+\|x-T y\|^{2} \leq 3\|x-y\|^{2}, \quad \forall x, y \in C
$$

Suppose that there exists an element $x \in C$ such that $\left\{T^{n} x\right\}$ is bounded. Then, T has a fixed point in C.

Proof. In Theorem 3.2, consider a $\left(\frac{1}{3}, \frac{1}{3}, 0,0\right)$-generalized hybrid mapping T of C into itself. Then, we have that

$$
\frac{1}{3}\left\|T^{2} x-T y\right\|^{2}+\frac{1}{3}\|T x-T y\|^{2}+\frac{1}{3}\|x-T y\|^{2} \leq\|x-y\|^{2}, \quad \forall x, y \in C
$$

This is equivalent to the mapping in our theorem:

$$
\left\|T^{2} x-T y\right\|^{2}+\|T x-T y\|^{2}+\|x-T y\|^{2} \leq 3\|x-y\|^{2}, \quad \forall x, y \in C .
$$

By Theorem 3.2, T has a fixed point in C.
Remark 1. Let E be a Banach space and let C be a nonempty closed convex subset of E. Let $n \in \mathbb{N}$. Then, a mapping $T: C \rightarrow C$ is called n-generalized hybrid if there are $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \beta_{1}, \beta_{2}, \ldots, \beta_{n} \in \mathbb{R}$ such that

$$
\begin{align*}
& \sum_{k=1}^{n} \alpha_{k}\left\|T^{n+1-k} x-T y\right\|^{2}+\left(1-\sum_{k=1}^{n} \alpha_{k}\right)\|x-T y\|^{2} \tag{3.3}\\
& \quad \leq \sum_{k=1}^{n} \beta_{k}\left\|T^{n+1-k} x-y\right\|^{2}+\left(1-\sum_{k=1}^{n} \beta_{k}\right)\|x-y\|^{2}
\end{align*}
$$

for all $x, y \in C$. We call such a mapping an $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)$-generalized hybrid mapping. As in the proof of Theorem 3.2, we can prove a fixed point theorem for n-generalized hybrid mappings in a uniformly convex Banach space.

4. Fixed Point Theorem 2

Let E be a smooth Banach space and let C be a nonempty closed convex subset of E. A mapping $T: C \rightarrow C$ is called 2-generalized nonspreading if there are $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \gamma_{1}, \gamma_{2}, \delta_{1}, \delta_{2} \in \mathbb{R}$ such that

$$
\begin{align*}
& \alpha_{1} \phi\left(T^{2} x, T y\right)+\alpha_{2} \phi(T x, T y)+\left(1-\alpha_{1}-\alpha_{2}\right) \phi(x, T y) \\
& \quad+\gamma_{1}\left\{\phi\left(T y, T^{2} x\right)-\phi(T y, x)\right\}+\gamma_{2}\{\phi(T y, T x)-\phi(T y, x)\} \tag{4.1}\\
& \leq \beta_{1} \phi\left(T^{2} x, y\right)+\beta_{2} \phi(T x, y)+\left(1-\beta_{1}-\beta_{2}\right) \phi(x, y) \\
& \quad+\delta_{1}\left\{\phi\left(y, T^{2} x\right)-\phi(y, x)\right\}+\delta_{2}\{\phi(y, T x)-\phi(y, x)\}
\end{align*}
$$

for all $x, y \in C$, where $\phi(x, y)=\|x\|^{2}-2\langle x, J y\rangle+\|y\|^{2}$ for $x, y \in E$. We call such a mapping an ($\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \gamma_{1}, \gamma_{2}, \delta_{1}, \delta_{2}$)-generalized nonspreading mapping. Let T be an ($\left.\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \gamma_{1}, \gamma_{2}, \delta_{1}, \delta_{2}\right)$-generalized nonspreading mapping. Observe that if $F(T) \neq \emptyset$, then $\phi(u, T y) \leq \phi(u, y)$ for all $u \in F(T)$ and $y \in C$. Indeed, putting $x=u \in F(T)$ in (4.1), we obtain

$$
\begin{aligned}
\alpha_{1} \phi & (u, T y)+\alpha_{2} \phi(u, T y)+\left(1-\alpha_{1}-\alpha_{2}\right) \phi(u, T y) \\
& +\gamma_{1}\{\phi(T y, u)-\phi(T y, u)\}+\gamma_{2}\{\phi(T y, u)-\phi(T y, u)\} \\
\leq & \beta_{1} \phi(u, y)+\beta_{2} \phi(u, y)+\left(1-\beta_{1}-\beta_{2}\right) \phi(u, y) \\
& +\delta_{1}\{\phi(y, u)-\phi(y, u)\}+\delta_{2}\{\phi(y, u)-\phi(y, u)\} .
\end{aligned}
$$

So, we have that

$$
\begin{equation*}
\phi(u, T y) \leq \phi(u, y) \tag{4.2}
\end{equation*}
$$

for all $u \in F(T)$ and $y \in C$. Further, if E is a Hilbert space, then we have $\phi(x, y)=\|x-y\|^{2}$ for $x, y \in E$. So, from (4.1) we obtain the following:

$$
\begin{aligned}
& \alpha_{1}\left\|T^{2} x-T y\right\|^{2}+\alpha_{2}\|T x-T y\|^{2}+\left(1-\alpha_{1}-\alpha_{2}\right)\|x-T y\|^{2} \\
& \quad+\gamma_{1}\left\{\left\|T y-T^{2} x\right\|^{2}-\|T y-x\|^{2}\right\}+\gamma_{2}\left\{\|T y-T x\|^{2}-\|T y-x\|^{2}\right\} \\
& \leq \\
& \quad \beta_{1}\left\|T^{2} x-y\right\|^{2}+\beta_{2}\|T x-y\|^{2}+\left(1-\beta_{1}-\beta_{2}\right)\|x-y\|^{2} \\
& \quad+\delta_{1}\left\{\left\|y-T^{2} x\right\|^{2}-\|y-x\|^{2}\right\}+\delta_{2}\left\{\|y-T x\|^{2}-\|y-x\|^{2}\right\}
\end{aligned}
$$

for all $x, y \in C$. This implies that

$$
\begin{aligned}
\left(\alpha_{1}+\right. & \left.\gamma_{1}\right)\left\|T^{2} x-T y\right\|^{2}+\left(\alpha_{2}+\gamma_{2}\right)\|T x-T y\|^{2} \\
& +\left\{1-\left(\alpha_{1}+\gamma_{1}\right)-\left(\alpha_{2}+\gamma_{2}\right)\right\}\|x-T y\|^{2} \\
\leq & \left(\beta_{1}+\delta_{1}\right)\left\|T^{2} x-y\right\|^{2}+\left(\beta_{2}+\delta_{2}\right)\|T x-y\|^{2} \\
& +\left\{1-\left(\beta_{1}+\delta_{1}\right)-\left(\beta_{2}+\delta_{2}\right)\right\}\|x-y\|^{2}
\end{aligned}
$$

for all $x, y \in C$. That is, T is a 2-generalized hybrid mapping [22] in a Hilbert space. Now, using the technique developed by [24], we prove a fixed point theorem for 2-generalized nonspreading mappings in a Banach space.

Theorem 4.1. Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty closed convex subset of E. Let T be a 2-generalized nonspreading mapping of C into itselt. Then, the following are equivalent:
(a) $F(T) \neq \emptyset$;
(b) $\left\{T^{n} x\right\}$ is bounded for some $x \in C$.

Proof. Let T be a 2-generalized nonspreading mapping of C into itself. Then, there are $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \gamma_{1}, \gamma_{2}, \delta_{1}, \delta_{2} \in \mathbb{R}$ such that

$$
\begin{align*}
\alpha_{1} \phi & \left(T^{2} x, T y\right)+\alpha_{2} \phi(T x, T y)+\left(1-\alpha_{1}-\alpha_{2}\right) \phi(x, T y) \\
& +\gamma_{1}\left\{\phi\left(T y, T^{2} x\right)-\phi(T y, x)\right\}+\gamma_{2}\{\phi(T y, T x)-\phi(T y, x)\} \tag{4.3}\\
\leq & \beta_{1} \phi\left(T^{2} x, y\right)+\beta_{2} \phi(T x, y)+\left(1-\beta_{1}-\beta_{2}\right) \phi(x, y) \\
& +\delta_{1}\left\{\phi\left(y, T^{2} x\right)-\phi(y, x)\right\}+\delta_{2}\{\phi(y, T x)-\phi(y, x)\}
\end{align*}
$$

for all $x, y \in C$. If $F(T) \neq \emptyset$, then we have from (5.3) that $\phi(u, T y) \leq \phi(u, y)$ for all $u \in F(T)$ and $y \in C$. Taking a fixed point u of T, we have $\phi\left(u, T^{n} x\right) \leq \phi(u, x)$ for all $n \in \mathbb{N}$ and $x \in C$. This implies that for every $x \in C$, the sequence $\left\{T^{n} x\right\}$ is bounded. So, $(\mathrm{a}) \Longrightarrow(\mathrm{b})$. Let us show $(\mathrm{b}) \Longrightarrow(\mathrm{a})$. Suppose that there exists $x \in C$ such that $\left\{T^{n} x\right\}$ is bounded. Then replacing x by $T^{k} x$ in (4.3), where $k \in \mathbb{N} \cup\{0\}$, we have that for any $y \in C$,

$$
\begin{align*}
\alpha_{1} \phi & \left(T^{k+2} x, T y\right)+\alpha_{2} \phi\left(T^{k+1} x, T y\right)+\left(1-\alpha_{1}-\alpha_{2}\right) \phi\left(T^{k} x, T y\right) \\
& +\gamma_{1}\left\{\phi\left(T y, T^{k+2} x\right)-\phi\left(T y, T^{k} x\right)\right\}+\gamma_{2}\left\{\phi\left(T y, T^{k+1} x\right)-\phi\left(T y, T^{k} x\right)\right\} \\
\leq & \beta_{1} \phi\left(T^{k+2} x, y\right)+\beta_{2} \phi\left(T^{k+1} x, y\right)+\left(1-\beta_{1}-\beta_{2}\right) \phi\left(T^{k} x, y\right) \\
& +\delta_{1}\left\{\phi\left(y, T^{k+2} x\right)-\phi\left(y, T^{k} x\right)\right\}+\delta_{2}\left\{\phi\left(y, T^{k+1} x\right)-\phi\left(y, T^{k} x\right)\right\} \tag{4.4}\\
= & \beta_{1}\left\{\phi\left(T^{k+2} x, T y\right)+\phi(T y, y)+2\left\langle T^{k+2} x-T y, J T y-J y\right\rangle\right\} \\
& +\beta_{2}\left\{\phi\left(T^{k+1} x, T y\right)+\phi(T y, y)+2\left\langle T^{k+1} x-T y, J T y-J y\right\rangle\right\} \\
& +\left(1-\beta_{1}-\beta_{2}\right)\left\{\phi\left(T^{k} x, T y\right)+\phi(T y, y)+2\left\langle T^{k} x-T y, J T y-J y\right\rangle\right\} \\
& +\delta_{1}\left\{\phi\left(y, T^{k+2} x\right)-\phi\left(y, T^{k} x\right)\right\}+\delta_{2}\left\{\phi\left(y, T^{k+1} x\right)-\phi\left(y, T^{k} x\right)\right\} .
\end{align*}
$$

This implies that

$$
\begin{aligned}
0 \leq & \left(\beta_{1}-\alpha_{1}\right)\left\{\phi\left(T^{k+2} x, T y\right)-\phi\left(T^{k} x, T y\right)\right\} \\
& +\left(\beta_{2}-\alpha_{2}\right)\left\{\phi\left(T^{k+1} x, T y\right)-\phi\left(T^{k} x, T y\right)\right\}+\phi(T y, y) \\
& +2\left\langle\beta_{1} T^{k+2} x+\beta_{2} T^{k+1} x+\left(1-\beta_{1}-\beta_{2}\right) T^{k} x-T y, J T y-J y\right\rangle \\
& -\gamma_{1}\left\{\phi\left(T y, T^{k+2} x\right)-\phi\left(T y, T^{k} x\right)\right\}-\gamma_{2}\left\{\phi\left(T y, T^{k+1} x\right)-\phi\left(T y, T^{k} x\right)\right\} \\
& +\delta_{1}\left\{\phi\left(y, T^{k+2} x\right)-\phi\left(y, T^{k} x\right)\right\}+\delta_{2}\left\{\phi\left(y, T^{k+1} x\right)-\phi\left(y, T^{k} x\right)\right\} \\
= & \left(\beta_{1}-\alpha_{1}\right)\left\{\phi\left(T^{k+2} x, T y\right)-\phi\left(T^{k} x, T y\right)\right\} \\
& +\left(\beta_{2}-\alpha_{2}\right)\left\{\phi\left(T^{k+1} x, T y\right)-\phi\left(T^{k} x, T y\right)\right\}+\phi(T y, y) \\
& +2\left\langle T^{k} x-T y+\beta_{1}\left(T^{k+2} x-T^{k} x\right)+\beta_{2}\left(T^{k+1} x-T^{k} x\right), J T y-J y\right\rangle \\
& -\gamma_{1}\left\{\phi\left(T y, T^{k+2} x\right)-\phi\left(T y, T^{k} x\right)\right\}-\gamma_{2}\left\{\phi\left(T y, T^{k+1} x\right)-\phi\left(T y, T^{k} x\right)\right\} \\
& +\delta_{1}\left\{\phi\left(y, T^{k+2} x\right)-\phi\left(y, T^{k} x\right)\right\}+\delta_{2}\left\{\phi\left(y, T^{k+1} x\right)-\phi\left(y, T^{k} x\right)\right\} .
\end{aligned}
$$

Summing up these inequalities (4.5) with respect to $k=0,1, \ldots, n-1$, we have

$$
\begin{align*}
0 \leq\left(\beta_{1}-\right. & \left.\alpha_{1}\right)\left\{\phi\left(T^{n+1} x, T y\right)+\phi\left(T^{n} x, T y\right)-\phi(T x, T y)-\phi(x, T y)\right\} \\
& +\left(\beta_{2}-\alpha_{2}\right)\left\{\phi\left(T^{n} x, T y\right)-\phi(x, T y)\right\}+n \phi(T y, y) \\
& +2\left\langle x+T x+\cdots+T^{n-1} x-n T y, J T y-J y\right\rangle \\
& +2\left\langle\beta_{1}\left(T^{n+1} x+T^{n} x-T x-x\right)+\beta_{2}\left(T^{n} x-x\right), J T y-J y\right\rangle \tag{4.6}\\
& -\gamma_{1}\left\{\phi\left(T y, T^{n+1} x\right)+\phi\left(T y, T^{n} x\right)-\phi(T y, T x)-\phi(T y, x)\right\} \\
& -\gamma_{2}\left\{\phi\left(T y, T^{n} x\right)-\phi(T y, x)\right\} \\
& +\delta_{1}\left\{\phi\left(y, T^{n+1} x\right)+\phi\left(y, T^{n} x\right)-\phi(y, T x)-\phi(y, x)\right\} \\
& +\delta_{2}\left\{\phi\left(y, T^{n} x\right)-\phi(y, x)\right\} .
\end{align*}
$$

Dividing by n in (4.6), we have

$$
\begin{align*}
0 \leq \frac{1}{n}\left(\beta_{1}\right. & \left.-\alpha_{1}\right)\left\{\phi\left(T^{n+1} x, T y\right)+\phi\left(T^{n} x, T y\right)-\phi(T x, T y)-\phi(x, T y)\right\} \\
& +\frac{1}{n}\left(\beta_{2}-\alpha_{2}\right)\left\{\phi\left(T^{n} x, T y\right)-\phi(x, T y)\right\}+\phi(T y, y) \\
& +2\left\langle S_{n} x-T y, J T y-J y\right\rangle \\
& +\frac{1}{n} 2\left\langle\beta_{1}\left(T^{n+1} x+T^{n} x-T x-x\right)+\beta_{2}\left(T^{n} x-x\right), J T y-J y\right\rangle \tag{4.7}\\
& -\frac{1}{n} \gamma_{1}\left\{\phi\left(T y, T^{n+1} x\right)+\phi\left(T y, T^{n} x\right)-\phi(T y, T x)-\phi(T y, x)\right\} \\
& -\frac{1}{n} \gamma_{2}\left\{\phi\left(T y, T^{n} x\right)-\phi(T y, x)\right\} \\
& +\frac{1}{n} \delta_{1}\left\{\phi\left(y, T^{n+1} x\right) \phi\left(y, T^{n} x\right)-\phi(y, T x)-\phi(y, x)\right\} \\
& +\frac{1}{n} \delta_{2}\left\{\phi\left(y, T^{n} x\right)-\phi(y, x)\right\},
\end{align*}
$$

where $S_{n} x=\frac{1}{n} \sum_{k=0}^{n-1} T^{k} x$. Since $\left\{T^{n} x\right\}$ is bounded by assumption, $\left\{S_{n} x\right\}$ is bounded. Thus we have a subsequence $\left\{S_{n_{i}} x\right\}$ of $\left\{S_{n} x\right\}$ such that $\left\{S_{n_{i}} x\right\}$ converges weakly to a point $u \in C$. Letting $n_{i} \rightarrow \infty$ in (4.7), we obtain

$$
0 \leq \phi(T y, y)+2\langle u-T y, J T y-J y\rangle
$$

Putting $y=u$, we obtain

$$
\begin{align*}
0 & \leq \phi(T u, u)+2\langle u-T u, J T u-J u\rangle \\
& =\phi(T u, u)+\phi(u, u)+\phi(T u, T u)-\phi(u, T u)-\phi(T u, u) \tag{4.8}\\
& =-\phi(u, T u) .
\end{align*}
$$

Hence we have $\phi(u, T u) \leq 0$ and then $\phi(u, T u)=0$. Since E is strictly convex, we obtain $u=T u$. Therefore $F(T)$ is nonempty. This completes the proof.

Using Theorem 4.1, we have the following fixed point theorems in a Banach space.

Theorem 4.2 (Kohsaka and Takahashi [20]). Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty closed convex subset of E. Let $T: C \rightarrow C$ be a nonspreading mapping, i.e.,

$$
\phi(T x, T y)+\phi(T y, T x) \leq \phi(T x, y)+\phi(T y, x)
$$

for all $x, y \in C$. Then, the following are equivalent:
(a) $F(T) \neq \emptyset$;
(b) $\left\{T^{n} x\right\}$ is bounded for some $x \in C$.

Proof. Putting $\alpha_{1}=\beta_{1}=\gamma_{1}=\delta_{1}=0, \alpha_{2}=\beta_{2}=\gamma_{2}=1$ and $\delta_{2}=0$ in (4.3), we obtain that

$$
\phi(T x, T y)+\phi(T y, T x) \leq \phi(T x, y)+\phi(T y, x)
$$

for all $x, y \in C$. So, we have the desired result from Theorem 4.1.
Theorem 4.3. Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty closed convex subset of E. Let $T: C \rightarrow C$ be a hybrid mapping [28], i.e.,

$$
2 \phi(T x, T y)+\phi(T y, T x) \leq \phi(T x, y)+\phi(T y, x)+\phi(x, y)
$$

for all $x, y \in C$. Then, the following are equivalent:
(a) $F(T) \neq \emptyset$;
(b) $\left\{T^{n} x\right\}$ is bounded for some $x \in C$.

Proof. Putting $\alpha_{1}=\beta_{1}=\gamma_{1}=\delta_{1}=0, \alpha_{2}=1, \beta_{2}=\gamma_{2}=\frac{1}{2}$ and $\delta_{2}=0$ in (4.3), we obtain that

$$
2 \phi(T x, T y)+\phi(T y, T x) \leq \phi(T x, y)+\phi(T y, x)+\phi(x, y)
$$

for all $x, y \in C$. So, we have the desired result from Theorem 4.1.
Theorem 4.4. Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty closed convex subset of E. Let $T: C \rightarrow C$ be a mapping such that

$$
\alpha \phi(T x, T y)+(1-\alpha) \phi(x, T y) \leq \beta \phi(T x, y)+(1-\beta) \phi(x, y)
$$

for all $x, y \in C$. Then, the following are equivalent:
(a) $F(T) \neq \emptyset$;
(b) $\left\{T^{n} x\right\}$ is bounded for some $x \in C$.

Proof. Putting $\alpha_{1}=\beta_{1}=\gamma_{1}=\delta_{1}=0, \alpha_{2}=\alpha, \beta_{2}=\beta$ and $\gamma_{2}=\delta_{2}=0$ in (4.3), we obtain that

$$
\alpha \phi(T x, T y)+(1-\alpha) \phi(x, T y) \leq \beta \phi(T x, y)+(1-\beta) \phi(x, y)
$$

for all $x, y \in C$. So, we have the desired result from Theorem 4.1.
As a direct consequence of Theorem 5.5, we have the following Kocourek, Takahashi and Yao fixed point theorem [17] in a Hilbert space.
Theorem 4.5 (Kocourek, Takahashi and Yao [17]). Let C be a nonempty closed convex subset of a Hilbert space H and let $T: C \rightarrow C$ be a generalized hybrid mapping, i.e., there are $\alpha, \beta \in \mathbb{R}$ such that

$$
\alpha\|T x-T y\|^{2}+(1-\alpha)\|x-T y\|^{2} \leq \beta\|T x-y\|^{2}+(1-\beta)\|x-y\|^{2}
$$

for all $x, y \in C$. Then, the following are equivalent:
(a) $F(T) \neq \emptyset$;
(b) $\left\{T^{n} x\right\}$ is bounded for some $x \in C$.

Proof. We know that $\phi(x, y)=\|x-y\|^{2}$ for all $x, y \in C$ in Theorem 5.5. So, we have the desired result from Theorem 5.5.

Finally, we prove the following fixed point theorem in a Banach space.
Theorem 4.6. Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty closed convex subset of E. Let $T: C \rightarrow C$ be a mapping such that

$$
\phi\left(T^{2} x, T y\right)+\phi(T x, T y)+\phi(x, T y) \leq 3 \phi(x, y)
$$

for all $x, y \in C$. Then, the following are equivalent:
(a) $F(T) \neq \emptyset$;
(b) $\left\{T^{n} x\right\}$ is bounded for some $x \in C$.

Proof. Putting $\alpha_{1}=\alpha_{2}=\frac{1}{3}, \beta_{1}=\beta_{2}=0$, and $\gamma_{1}=\gamma_{2}=\delta_{1}=\delta_{2}=0$ in (4.3), we have that

$$
\frac{1}{3} \phi\left(T^{2} x, T y\right)+\frac{1}{3} \phi(T x, T y)+\frac{1}{3} \phi(x, T y) \leq \phi(x, y)
$$

for all $x, y \in C$. This is equivalent to the mapping in our theorem:

$$
\phi\left(T^{2} x, T y\right)+\phi(T x, T y)+\phi(x, T y) \leq 3 \phi(x, y)
$$

for all $x, y \in C$. So, we have the desired result from Theorem 4.1.
Remark 2. Let E be a smooth Banach space and let C be a nonempty closed convex subset of E. Let $n \in \mathbb{N}$. Then, a mapping $T: C \rightarrow C$ is called n-generalized nonspreading if there are $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \beta_{1}, \beta_{2}, \ldots, \beta_{n}, \gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}, \delta_{1}, \delta_{2}, \ldots, \delta_{n} \in$ \mathbb{R} such that

$$
\begin{align*}
& \sum_{k=1}^{n} \alpha_{k} \phi\left(T^{n+1-k} x, T y\right)+\left(1-\sum_{k=1}^{n} \alpha_{k}\right) \phi(x, T y) \\
& \quad+\sum_{k=1}^{n} \gamma_{k}\left\{\phi\left(T y, T^{n+1-k} x\right)-\phi(T y, x)\right\} \tag{4.9}\\
& \leq \sum_{k=1}^{n} \beta_{k} \phi\left(T^{n+1-k} x, y\right)+\left(1-\sum_{k=1}^{n} \beta_{k}\right) \phi(x, y) \\
& \quad+\sum_{k=1}^{n} \delta_{k}\left\{\phi\left(y, T^{n+1-k} x\right)-\phi(y, x)\right\}
\end{align*}
$$

for all $x, y \in C$. Such a mapping is called an $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \beta_{1}, \beta_{2}, \ldots, \beta_{n}\right.$, $\left.\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}, \delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)$-generalized nonspreading mapping. As in the proof of Theorem 4.1, we can prove a fixed point theorem for n-generalized nonspreading mappings in a smooth, strictly convex and reflexive Banach space.

5. Fixed Point Theorem 3

Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty subset of E. Let T be a mapping of C into itself. Define a mapping T^{*} as follows:

$$
T^{*} x^{*}=J T J^{-1} x^{*}, \quad \forall x^{*} \in J C,
$$

where J is the duality mapping on E and J^{-1} is the duality mapping on E^{*}. A mapping T^{*} is called the duality mapping of T; see [33] and [10]. It is easy to show that T^{*} is a mapping of $J C$ into itself. In fact, for $x^{*} \in J C$, we have $J^{-1} x^{*} \in C$ and hence $T J^{-1} x^{*} \in C$. So, we have

$$
T^{*} x^{*}=J T J^{-1} x^{*} \in J C
$$

Then, T^{*} is a mapping of $J C$ into itself. Furthermore, we define the duality mapping $T^{* *}$ of T^{*} as follows:

$$
T^{* *} x=J^{-1} T^{*} J x, \quad \forall x \in C .
$$

It is easy to show that $T^{* *}$ is a mapping of C into itself. In fact, for $x \in C$, we have

$$
T^{* *} x=J^{-1} T^{*} J x=J^{-1} J T J^{-1} J x=T x \in C
$$

So, $T^{* *}$ is a mapping of C into itself. We know the following result in a Banach space; see [8] and [33].

Lemma 5.1. Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty subset of E. Let T be a mapping of C into itself and let T^{*} be the duality mapping of JC into itself. Then, the following hold:
(1) $J F(T)=F\left(T^{*}\right)$;
(2) $\left\|T^{n} x\right\|=\left\|\left(T^{*}\right)^{n} J x\right\|$ for each $x \in C$ and $n \in \mathbb{N}$.

Let E be a smooth Banach space, let J be the duality mapping from E into E^{*} and let C be a nonempty subset of E. Then, a mapping $T: C \rightarrow C$ is called 2-skew-generalized nonspreading if there are $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \gamma_{1}, \gamma_{2}, \delta_{1}, \delta_{2} \in \mathbb{R}$ such that

$$
\begin{align*}
\alpha_{1} \phi & \left(T y, T^{2} x\right)+\alpha_{2} \phi(T y, T x)+\left(1-\alpha_{1}-\alpha_{2}\right) \phi(T y, x) \\
\quad & +\gamma_{1}\left\{\phi\left(T^{2} x, T y\right)-\phi(x, T y)\right\}+\gamma_{2}\{\phi(T x, T y)-\phi(x, T y)\} \tag{5.1}\\
\leq & \beta_{1} \phi\left(y, T^{2} x\right)+\beta_{2} \phi(y, T x)+\left(1-\beta_{1}-\beta_{2}\right) \phi(y, x) \\
& +\delta_{1}\left\{\phi\left(T^{2} x, y\right)-\phi(x, y)\right\}+\delta_{2}\{\phi(T x, y)-\phi(x, y)\}
\end{align*}
$$

for all $x, y \in C$, where $\phi(x, y)=\|x\|^{2}-2\langle x, J y\rangle+\|y\|^{2}$ for $x, y \in E$. We call such a mapping an ($\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \gamma_{1}, \gamma_{2}, \delta_{1}, \delta_{2}$)-skew-generalized nonspreading mapping. Let T be an ($\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \gamma_{1}, \gamma_{2}, \delta_{1}, \delta_{2}$)-skew-generalized nonspreading mapping. Observe that if $F(T) \neq \emptyset$, then $\phi(T y, u) \leq \phi(y, u)$ for all $u \in F(T)$ and $y \in C$. Indeed, putting $x=u \in F(T)$ in (5.1), we obtain

$$
\begin{align*}
\alpha_{1} \phi & (T y, u)+\alpha_{2} \phi(T y, u)+\left(1-\alpha_{1}-\alpha_{2}\right) \phi(T y, u) \\
& +\gamma_{1}\{\phi(u, T y)-\phi(u, T y)\}+\gamma_{2}\{\phi(u, T y)-\phi(u, T y)\} \tag{5.2}\\
\leq & \beta_{1} \phi(y, u)+\beta_{2} \phi(y, u)+\left(1-\beta_{1}-\beta_{2}\right) \phi(y, u) \\
& +\delta_{1}\{\phi(u, y)-\phi(u, y)\}+\delta_{2}\{\phi(u, y)-\phi(u, y)\} .
\end{align*}
$$

So, we have that

$$
\begin{equation*}
\phi(T y, u) \leq \phi(y, u) \tag{5.3}
\end{equation*}
$$

for all $u \in F(T)$ and $y \in C$. Further, if E is a Hilbert space, then $\phi(x, y)=\|x-y\|^{2}$ for all $x, y \in E$. So, from (5.1) we obtain the following:

$$
\begin{align*}
& \alpha_{1}\left\|T y-T^{2} x\right\|^{2}+\alpha_{2}\|T y-T x\|^{2}+\left(1-\alpha_{1}-\alpha_{2}\right)\|T y-x\|^{2} \\
& \quad+\gamma_{1}\left\{\left\|T^{2} x-T y\right\|^{2}-\|x-T y\|^{2}\right\}+\gamma_{2}\left\{\|T x-T y\|^{2}-\|x-T y\|^{2}\right\} \tag{5.4}\\
& \leq \beta_{1}\left\|y-T^{2} x\right\|^{2}+\beta_{2}\|y-T x\|^{2}+\left(1-\beta_{1}-\beta_{2}\right)\|y-x\|^{2} \\
& \quad+\delta_{1}\left\{\left\|T^{2} x-y\right\|^{2}-\|x-y\|^{2}\right\}+\delta_{2}\left\{\|T x-y\|^{2}-\|x-y\|^{2}\right\}
\end{align*}
$$

for all $x, y \in C$. This implies that

$$
\begin{aligned}
\left(\alpha_{1}+\right. & \left.\gamma_{1}\right)\left\|T^{2} x-T y\right\|^{2}+\left(\alpha_{2}+\gamma_{2}\right)\|T x-T y\|^{2} \\
& +\left\{1-\left(\alpha_{1}+\gamma_{1}\right)-\left(\alpha_{2}+\gamma_{2}\right)\right\}\|x-T y\|^{2} \\
\leq & \left(\beta_{1}+\delta_{1}\right)\left\|T^{2} x-y\right\|^{2}+\left(\beta_{2}+\delta_{2}\right)\|T x-y\|^{2} \\
& +\left\{1-\left(\beta_{1}+\delta_{1}\right)-\left(\beta_{2}+\delta_{2}\right)\right\}\|x-y\|^{2}
\end{aligned}
$$

for all $x, y \in C$. That is, T is a 2-generalized hybrid mapping [22] in a Hilbert space. Now, we prove a fixed point theorem for 2 -skew-generalized nonspreading mappings in a Banach space. Before proving the theorem, we need the following definition: Let $\phi_{*}: E^{*} \times E^{*} \rightarrow(-\infty, \infty)$ be the function defined by

$$
\phi_{*}\left(x^{*}, y^{*}\right)=\left\|x^{*}\right\|^{2}-2\left\langle J^{-1} y^{*}, x^{*}\right\rangle+\left\|y^{*}\right\|^{2}
$$

for all $x^{*}, y^{*} \in E^{*}$, where J is the duality mapping of E. It is easy to see that

$$
\begin{equation*}
\phi(x, y)=\phi_{*}(J y, J x) \tag{5.5}
\end{equation*}
$$

for all $x, y \in E$.
Theorem 5.2. Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty closed subset of E such that JC is closed and convex. Let T be a 2-skew-generalized nonspreading mapping of C into itself. Then, the following are equivalent:
(a) $F(T) \neq \emptyset$;
(b) $\left\{T^{n} x\right\}$ is bounded for some $x \in C$.

Proof. Let T be a 2-skew-generalized nonspreading mapping of C into itself. Then, there are $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \gamma_{1}, \gamma_{2}, \delta_{1}, \delta_{2} \in \mathbb{R}$ such that

$$
\begin{align*}
\alpha_{1} \phi & \left(T y, T^{2} x\right)+\alpha_{2} \phi(T y, T x)+\left(1-\alpha_{1}-\alpha_{2}\right) \phi(T y, x) \\
& +\gamma_{1}\left\{\phi\left(T^{2} x, T y\right)-\phi(x, T y)\right\}+\gamma_{2}\{\phi(T x, T y)-\phi(x, T y)\} \tag{5.6}\\
\leq & \beta_{1} \phi\left(y, T^{2} x\right)+\beta_{2} \phi(y, T x)+\left(1-\beta_{1}-\beta_{2}\right) \phi(y, x) \\
& +\delta_{1}\left\{\phi\left(T^{2} x, y\right)-\phi(x, y)\right\}+\delta_{2}\{\phi(T x, y)-\phi(x, y)\}
\end{align*}
$$

for all $x, y \in C$. If $F(T) \neq \emptyset$, then $\phi(T y, u) \leq \phi(y, u)$ for all $u \in F(T)$ and $y \in C$. Taking a fixed point u of T, we have $\phi\left(T^{n} x, u\right) \leq \phi(x, u)$ for all $n \in \mathbb{N}$ and $x \in C$. This implies $(\mathrm{a}) \Longrightarrow(\mathrm{b})$. Let us show $(\mathrm{b}) \Longrightarrow(\mathrm{a})$. Suppose that there exists $x \in C$ such that $\left\{T^{n} x\right\}$ is bounded. Then for any $x^{*}, y^{*} \in J C$ with $x^{*}=J x$ and $y^{*}=J y$, we have from (5.5) and $T^{*}=J T J^{-1}$ that

$$
\begin{aligned}
\phi_{*}\left(\left(T^{*}\right)^{2} x^{*}, T^{*} y^{*}\right) & =\phi_{*}\left(T^{*} T^{*} x^{*}, T^{*} y^{*}\right) \\
& =\phi_{*}\left(J T J^{-1} J T J^{-1} J x, J T J^{-1} J y\right) \\
& =\phi_{*}(J T T x, J T y) \\
& =\phi_{*}\left(J T^{2} x, J T y\right) \\
& =\phi\left(T y, T^{2} x\right)
\end{aligned}
$$

Similarly, we have that

$$
\phi_{*}\left(T^{*} x^{*}, T^{*} y^{*}\right)=\phi_{*}\left(J T J^{-1} J x, J T J^{-1} J y\right)=\phi_{*}(J T x, J T y)=\phi(T y, T x) .
$$

Thus, we have that

$$
\begin{aligned}
& \alpha_{1} \phi_{*}\left(\left(T^{*}\right)^{2} x^{*}, T^{*} y^{*}\right)+\alpha_{2} \phi_{*}\left(T^{*} x^{*}, T^{*} y^{*}\right)+\left(1-\alpha_{1}-\alpha_{2}\right) \phi_{*}\left(x^{*}, T^{*} y^{*}\right) \\
&+\gamma_{1}\left\{\phi_{*}\left(T^{*} y^{*},\left(T^{*}\right)^{2} x^{*}\right)-\phi_{*}\left(T^{*} y^{*}, x^{*}\right)\right\} \\
&+\gamma_{2}\left\{\phi_{*}\left(T^{*} y^{*}, T^{*} x^{*}\right)-\phi_{*}\left(T^{*} y^{*}, x^{*}\right)\right\} \\
&= \alpha_{1} \phi_{*}\left(J T^{2} x, J T y\right)+\alpha_{2} \phi_{*}(J T x, J T y)+\left(1-\alpha_{1}-\alpha_{2}\right) \phi_{*}(J x, J T y) \\
&+\gamma_{1}\left\{\phi_{*}\left(J T y, J T^{2} x\right)-\phi_{*}(J T y, J x)\right\} \\
&+\gamma_{2}\left\{\phi_{*}(J T y, J T x)-\phi_{*}(J T y, J x)\right\} \\
&= \alpha_{1} \phi\left(T y, T^{2} x\right)+\alpha_{2} \phi(T y, T x)+\left(1-\alpha_{1}-\alpha_{2}\right) \phi(T y, x) \\
&+\gamma_{1}\left\{\phi\left(T^{2} x, T y\right)-\phi(x, T y)\right\}+\gamma_{2}\{\phi(T x, T y)-\phi(x, T y)\} .
\end{aligned}
$$

We also have that

$$
\begin{aligned}
& \beta_{1} \phi_{*}\left(\left(T^{*}\right)^{2} x^{*}, y^{*}\right)+\beta_{2} \phi_{*}\left(T^{*} x^{*}, y^{*}\right)+\left(1-\beta_{1}-\beta_{2}\right) \phi_{*}\left(x^{*}, y^{*}\right) \\
&+\delta_{1}\left\{\phi_{*}\left(y^{*},\left(T^{*}\right)^{2} x^{*}\right)-\phi_{*}\left(y^{*}, x^{*}\right)\right\} \\
&+\delta_{2}\left\{\phi_{*}\left(y^{*}, T^{*} x^{*}\right)-\phi_{*}\left(y^{*}, x^{*}\right)\right\} \\
&= \beta_{1} \phi_{*}\left(J T^{2} x, J y\right)+\beta_{2} \phi_{*}(J T x, J y)+\left(1-\beta_{1}-\beta_{2}\right) \phi_{*}(J x, J y) \\
&+\delta_{1}\left\{\phi_{*}\left(J y, J T^{2} x\right)-\phi_{*}(J y, J x)\right\}+\delta_{2}\left\{\phi_{*}(J y, J T x)-\phi_{*}(J y, J x)\right\} \\
&= \beta_{1} \phi\left(y, T^{2} x\right)+\beta_{2} \phi(y, T x)+\left(1-\beta_{1}-\beta_{2}\right) \phi(y, x) \\
&+\delta_{1}\left\{\phi\left(T^{2} x, y\right)-\phi(x, y)\right\}+\delta_{2}\{\phi(T x, y)-\phi(x, y)\} .
\end{aligned}
$$

Since T is 2-skew-generalized nonspreading, we have from (5.6) that

$$
\begin{aligned}
& \alpha_{1} \phi_{*}\left(\left(T^{*}\right)^{2} x^{*}, T^{*} y^{*}\right)+\alpha_{2} \phi_{*}\left(T^{*} x^{*}, T^{*} y^{*}\right)+\left(1-\alpha_{1}-\alpha_{2}\right) \phi_{*}\left(x^{*}, T^{*} y^{*}\right) \\
&+\gamma_{1}\left\{\phi_{*}\left(T^{*} y^{*},\left(T^{*}\right)^{2} x^{*}\right)-\phi_{*}\left(T^{*} y^{*}, x^{*}\right)\right\} \\
&+\gamma_{2}\left\{\phi_{*}\left(T^{*} y^{*}, T^{*} x^{*}\right)-\phi_{*}\left(T^{*} y^{*}, x^{*}\right)\right\} \\
& \leq \beta_{1} \phi_{*}\left(\left(T^{*}\right)^{2} x^{*}, y^{*}\right)+\beta_{2} \phi_{*}\left(T^{*} x^{*}, y^{*}\right)+\left(1-\beta_{1}-\beta_{2}\right) \phi_{*}\left(x^{*}, y^{*}\right) \\
&+\delta_{1}\left\{\phi_{*}\left(y^{*},\left(T^{*}\right)^{2} x^{*}\right)-\phi_{*}\left(y^{*}, x^{*}\right)\right\} \\
&+\delta_{2}\left\{\phi_{*}\left(y^{*}, T^{*} x^{*}\right)-\phi_{*}\left(y^{*}, x^{*}\right)\right\} .
\end{aligned}
$$

This implies that T^{*} is a 2-generalized nonspreading mapping of $J C$ into itself. We know from Lemma 5.1 and Theorem 4.1 that T^{*} has a fixed point in $J C$. We also have from Lemma 5.1 that $F\left(T^{*}\right)=J F(T)$. Therefore $F(T)$ is nonempty. This completes the proof.

Using Theorem 5.2, we have the following fixed point theorems in a Banach space.
Theorem 5.3 (Dhompongsa, Fupinwong, Takahashi and Yao [8]). Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty closed subset of E such that JC is closed and convex. Let $T: C \rightarrow C$ be a skewnonspreading mapping, i.e.,

$$
\phi(T y, T x)+\phi(T x, T y) \leq \phi(y, T x)+\phi(x, T y)
$$

for all $x, y \in C$. Then, the following are equivalent:
(a) $F(T) \neq \emptyset$;
(b) $\left\{T^{n} x\right\}$ is bounded for some $x \in C$.

Proof. Putting $\alpha_{1}=\beta_{1}=\gamma_{1}=\delta_{1}=0, \alpha_{2}=\beta_{2}=\gamma_{2}=1$ and $\delta_{2}=0$ in (5.1), we obtain that

$$
\phi(T y, T x)+\phi(T x, T y) \leq \phi(y, T x)+\phi(x, T y)
$$

for all $x, y \in C$. So, we have the desired result from Theorem 5.2.
Theorem 5.4. Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty closed subset of E such that JC is closed and convex. Let $T: C \rightarrow C$ be a mapping such that

$$
2 \phi(T y, T x)+\phi(T x, T y) \leq \phi(y, T x)+\phi(x, T y)+\phi(y, x)
$$

for all $x, y \in C$. Then, the following are equivalent:
(a) $F(T) \neq \emptyset$;
(b) $\left\{T^{n} x\right\}$ is bounded for some $x \in C$.

Proof. Putting $\alpha_{1}=\beta_{1}=\gamma_{1}=\delta_{1}=0, \alpha_{2}=1, \beta_{2}=\gamma_{2}=\frac{1}{2}$ and $\delta_{2}=0$ in (5.1), we obtain that

$$
2 \phi(T y, T x)+\phi(T x, T y) \leq \phi(y, T x)+\phi(x, T y)+\phi(y, x)
$$

for all $x, y \in C$. So, we have the desired result from Theorem 5.2.
Theorem 5.5. Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty closed subset of E such that JC is closed and convex. Let $T: C \rightarrow C$ be a mapping such that

$$
\alpha \phi(T y, T x)+(1-\alpha) \phi(T y, x) \leq \beta \phi(y, T x)+(1-\beta) \phi(y, x)
$$

for all $x, y \in C$. Then, the following are equivalent:
(a) $F(T) \neq \emptyset$;
(b) $\left\{T^{n} x\right\}$ is bounded for some $x \in C$.

Proof. Putting $\alpha_{1}=\beta_{1}=\gamma_{1}=\delta_{1}=0, \alpha_{2}=\alpha, \beta_{2}=\beta$ and $\gamma_{2}=\delta_{2}=0$ in (5.1), we obtain that

$$
\alpha \phi(T y, T x)+(1-\alpha) \phi(T y, x) \leq \beta \phi(y, T x)+(1-\beta) \phi(y, x)
$$

for all $x, y \in C$. So, we have the desired result from Theorem 5.2.
Finally, we prove the following fixed point theorem in a Banach space.
Theorem 5.6. Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty closed subset of E such that JC is closed and convex. Let $T: C \rightarrow C$ be a mapping such that

$$
\phi\left(T y, T^{2} x\right)+\phi(T y, T x)+\phi(T y, x) \leq 3 \phi(y, x)
$$

for all $x, y \in C$. Then, the following are equivalent:
(a) $F(T) \neq \emptyset$;
(b) $\left\{T^{n} x\right\}$ is bounded for some $x \in C$.

Proof. Putting $\alpha_{1}=\alpha_{2}=\frac{1}{3}, \beta_{1}=\beta_{2}=0$, and $\gamma_{1}=\gamma_{2}=\delta_{1}=\delta_{2}=0$ in (5.1), we have that

$$
\frac{1}{3} \phi\left(T y, T^{2} x\right)+\frac{1}{3} \phi(T y, T x)+\frac{1}{3} \phi(T y, x) \leq \phi(y, x)
$$

for all $x, y \in C$. This is equivalent to the mapping in our theorem:

$$
\phi\left(T^{2} x, T y\right)+\phi(T x, T y)+\phi(x, T y) \leq 3 \phi(x, y)
$$

for all $x, y \in C$. So, we have the desired result from Theorem 5.2.

Remark 3. Let E be a smoth Banach space and let C be a nonempty closed subset of E such that $J C$ is closed and convex. Let $n \in \mathbb{N}$. Then, a mapping $T: C \rightarrow C$ is called n-skew-generalized nonspreading if there are $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$, $\beta_{1}, \beta_{2}, \ldots, \beta_{n}, \gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}, \delta_{1}, \delta_{2}, \ldots, \delta_{n} \in \mathbb{R}$ such that

$$
\begin{align*}
& \sum_{k=1}^{n} \alpha_{k} \phi\left(T y, T^{n+1-k} x\right)+\left(1-\sum_{k=1}^{n} \alpha_{k}\right) \phi(T y, x) \\
& \quad+\sum_{k=1}^{n} \gamma_{k}\left\{\phi\left(T^{n+1-k} x, T y\right)-\phi(x, T y)\right\} \tag{5.7}\\
& \leq \sum_{k=1}^{n} \beta_{k} \phi\left(y, T^{n+1-k} x\right)+\left(1-\sum_{k=1}^{n} \beta_{k}\right) \phi(y, x) \\
& \quad+\sum_{k=1}^{n} \delta_{k}\left\{\phi\left(T^{n+1-k} x, y\right)-\phi(x, y)\right\}
\end{align*}
$$

for all $x, y \in C$. Such a mapping is called an $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \beta_{1}, \beta_{2}, \ldots, \beta_{n}\right.$, $\left.\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}, \delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)$-skew-generalized nonspreading mapping. As in the proof of Theorem 5.2, we can prove a fixed point theorem for n-skew-generalized nonspreading mappings in a smooth, strictly convex and reflexive Banach space.

Acknowledgements. The first author was partially supported by Grant-in-Aid for Scientific Research No. 19540167 from Japan Society for the Promotion of Science. The second and the third authors were partially supported by the grant NSC 99-$2115-\mathrm{M}-110-007-\mathrm{MY} 3$ and the grant NSC $99-2115-\mathrm{M}-110-004-\mathrm{MY} 3$, respectively.

References

[1] Y. I. Alber, Metric and generalized projections in Banach spaces: Properties and applications, in Theory and Applications of Nonlinear Operators of Accretive and Monotone Type (A. G. Kartsatos Ed.), Marcel Dekker, New York, 1996, pp. 15-50.
[2] K. Aoyama, S. Iemoto, F. Kohsaka and W. Takahashi, Fixed point and ergodic theorems for λ-hybrid mappings in Hilbert spaces, J. Nonlinear Convex Anal. 11 (2010), 335-343.
[3] J.-B. Baillon, Un theoreme de type ergodique pour les contractions non lineaires dans un espace de Hilbert, C.R. Acad. Sci. Paris Ser. A-B 280 (1975), 1511-1514.
[4] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), 123-145.
[5] F. E. Browder, Convergence theorems for sequences of nonlinear operators in Banach spaces, Math. Z. 100 (1967), 201-225.
[6] R. E. Bruck, Nonexpansive projections on subsets of Banach spaces, Pacific J. Math. 47 (1973), 341-355.
[7] P.L. Combettes and A. Hirstoaga, Equilibrium problems in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005), 117-136.
[8] S. Dhompongsa, W. Fupinwong, W. Takahashi and J.-C. Yao, Fixed point theorems for nonlinear mappings and strict convexity of Banach spaces, J. Nonlinear Convex Anal. 11 (2010), 45-63.
[9] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990.
[10] T. Honda, T. Ibaraki and W. Takahashi, Duality theorems and convergence theorems for nonlineaqr mappings in Banach spaces, Int. J. Math. Statis. 6 (2010), 46-64.
[11] M.-H. Hsu, W. Takahashi and J.-C. Yao, Generalized hybrid mappings in Hilbert spaces and Banach spaces, Taiwanese J. Math., to appear.
[12] T. Ibaraki and W. Takahashi, Weak convergence theorem for new nonexpansive mappings in Banach spaces and its applications, Taiwanese J. Math. 11 (2007), 929-944.
[13] T. Ibaraki and W. Takahashi, Fixed point theorems for nonlinear mappings of nonexpansive type in Banach spaces, J. Nonlinear Convex Anal. 10 (2009), 21-32.
[14] S. Iemoto and W. Takahashi, Approximating fixed points of nonexpansive mappings and nonspreading mappings in a Hilbert space, Nonlinear Anal. 71 (2009), 2082-2089.
[15] S. Itoh and W. Takahashi, The common fixed point theory of single-valued mappings and multi-valued mappings, Pacific J. Math. 79 (1978), 493-508.
[16] S. Kamimura and W. Takahashi, Strong convergence of a proximal-type algorithm in a Banach apace, SIAM J. Optim. 13 (2002), 938-945.
[17] P. Kocourek, W. Takahashi and J. -C. Yao, Fixed point theorems and weak convergence theorems for generalized hybrid mappings in Hilbert spaces, Taiwanese J. Math. 14 (2010), 2497-2511.
[18] P. Kocourek, W. Takahashi and J. -C. Yao, Fixed point theorems and ergodic theorems for nonlinear mappings in Banach spaces, Adv. Math. Econ. 15 (2011), 67-88.
[19] F. Kohsaka and W. Takahashi, Existence and approximation of fixed points of firmly nonexpansive-type mappings in Banach spaces, SIAM. J. Optim. 19 (2008), 824-835.
[20] F. Kohsaka and W. Takahashi, Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces, Arch. Math. 91 (2008), 166-177.
[21] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510.
[22] T. Maruyama, W. Takahashi and M. Yao, Fixed point and mean ergodic theorems for new nonlinear mappings in Hilbert spaces, J. Nonlinear Convex Anal. 12 (2011), to appear.
[23] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.
[24] W. Takahashi, A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space, Proc. Amer. Math. Soc. 81 (1981), 253-256.
[25] W. Takahashi, Nonlinear Functional Analysis, Yokohoma Publishers, Yokohoma, 2000.
[26] W. Takahashi, Convex Analysis and Approximation of Fixed Points (Japanese), Yokohama Publishers, Yokohama, 2000.
[27] W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohoma Publishers, Yokohoma, 2009.
[28] W. Takahashi, Fixed point theorems for new nonlinear mappings in a Hilbert space, J. Nonlinea Convex Anal. 11 (2010), 79-88.
[29] W. Takahashi and D. H. Jeong, Fixed point theorem for nonexpansive semigroups on Banach space, Proc. Amer. Math. Soc. 122 (1994), 1175-1179.
[30] W. Takahashi and I. Termwuttipong, Weak convergence theorems for 2-generalized hybrid mappings in Hilbert spaces, to appear.
[31] W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 118 (2003), 417-428.
[32] W. Takahashi and J.-C. Yao, Fixed point theorems and ergodic theorems for nonlinear mappings in Hilbert spaces, Taiwanese J. Math., to appear.
[33] W. Takahashi and J. -C. Yao, Nonlinear operators of monotone type and convergence theorems with equilibrium problems in Banach spaces, Taiwanese J. Math., to appear.
[34] W. Takahashi and J. -C. Yao, Weak convergence theorems for generalized hybrid mappings in Banach spaces, J. Nonlinear Anal. Optim., to appear.
[35] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1981), 11271138.
(Wataru Takahashi) Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Tokyo 152-8552, Japan and Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan

E-mail address: wataru@is.titech.ac.jp
(Ngai-Ching Wong) Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan

E-mail address: wong@math.nsysu.edu.tw
(Jen-Chih Yao) Center for General Education, Kaohsiung Medical University, KaohSIUNG 80702, TAIWAN

E-mail address: yaojc@kmu.edu.tw

[^0]: 2000 Mathematics Subject Classification. Primary 47H10; Secondary 47H05.
 Key words and phrases. Banach space, nonexpansive mapping, nonspreading mapping, hybrid mapping, fixed point.

