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ABSTRACT. In this paper, we first consider three classes of nonlinear mappings
in Banach spaces which contain the class of 2-generalized hybrid mappings
defined by Maruyama, Takahashi and Yao [22] in a Hilbert space. Then, we
prove fixed point theorems for these classes of nonlinear mappings in Banach
spaces.

1. INTRODUCTION

Let H be a real Hilbert space and let C' be a nonempty closed convex subset of
H. Let T be a mapping of C into itself. Then we denote by F(T) the set of fixed
points of T. A mapping T : C' — C is said to be nonexpansive, nonspreading [20],
and hybrid [28] if

[Tz — Ty < [lz -yl

(1.1) 2Tz — Ty|* < |Tx—y|* + Ty — «|?
and
(1.2) 3|Tx = Ty|* < ||z =yl + | T2 — y||* + || Ty — |

for all z,y € C, respectively. These mappings are deduced from a firmly nonex-
pansive mapping in a Hilbert space; see [28]. A mapping F': C — C is said to be
firmly nonexpansive if

|Fe — Fy|* < (z —y, Fz — Fy)

for all z,y € C; see, for instance, Browder [5] and Goebel and Kirk [9]. From
Baillon [3], and Takahashi and Yao [32], we know the following nonlinear ergodic
theorem for nonlinear mappings in a Hilbert space.

Theorem 1.1. Let H be a Hilbert space, let C' be a nonempty closed convex subset
of H and let T be a mapping of C into itself such that F(T) is nonempty. Suppose
that T satisfies one of the following:

(i) T is nonexpansive;

(ii) T is nonspreading;

(iii) T is hybrid;

(iv) 2Tz = Ty|]* < o - y|> + 1Tz — y|?, Va,yeC.
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Then, for any x € C,
-1
1 n
Spx = — E Tk
n
k=0
converges weakly to a fized point of T'.

Motivated by such a theorem, Aoyama, Iemoto, Kohsaka and Takahashi [2] in-
troduced a class of nonlinear mappings called A-hybrid containing the classes of
nonexpansive mappings, nonspreading mappings, and hybrid mappings in a Hilbert
space. Kocourek, Takahashi and Yao [17] also introduced a more broad class of non-
linear mappings than the class of A-hybrid mappings in a Hilbert space. A mapping
T :C — C is called generalized hybrid [17] if there are «, 8 € R such that

alTe = Ty|* + (1 = a)|la = Tyl* < Bl|Tz — y|* + (1 = Bz -y

for all 2,y € C. Very recently, Maruyama, Takahashi and Yao [22] introduced a
broad class of nonlinear mappings containing the class of generalized hybrid map-
pings defined by Kocourek, Takahashi and Yao [17] in a Hilbert space. A mapping
T :C — C is called 2-generalized hybrid if there are aq, ag, 31, B2 € R such that

a||T?2=Ty|? + ao||Te — Ty + (1 — a1 — az) ||z — Tyl
< Bl Tz —yl? + Bal| T — yl* + (1 = Br = Ba) [l — yl®

for all z,y € C. Then, they proved fixed point theorems and weak convergence
theorems for 2-generalized hybrid mappings in a Hilbert space; see also Takahashi
and Termwuttipong [30].

In this paper, motivated by Maruyama, Takahashi and Yao [22], we introduce
three classes of nonlinear mappings in Banach spaces which contain the class of
2-generalized hybrid mappings in a Hilbert space. Then, we prove fixed point
theorems for these classes of nonlinear mappings in Banach spaces.

2. PRELIMINARIES

Let E be a real Banach space with norm || - || and let E* be the topological dual
space of E. We denote the value of y* € E* at x € E by (z,y*). When {z,} is a
sequence in E, we denote the strong convergence of {z,} to € E by x,, — = and
the weak convergence by x,, — x. The modulus § of convexity of F is defined by

. T+y
o0 =int {1 L2 < 1l < 1o - 2

for every e with 0 < € < 2. A Banach space F is said to be uniformly convez if
d(€) > 0 for every € > 0. A uniformly convex Banach space is strictly convex and
reflexive. Let C be a nonempty subset of a Banach space E. A mapping T : C' — C
is nonexpansive if ||Tx — Ty|| < ||z — y|| for all z,y € C. A mapping T': C' — C'is
quasi-nonexpansive if F(T) # 0 and [Tz —y|| < ||z —y|| for all z € C and y € F(T),
where F'(T) is the set of fixed points of T'. If C' is a nonempty closed convex subset
of a strictly convex Banach space F and T : C — (' is quasi-nonexpansive, then
F(T) is closed and convex; see Itoh and Takahashi [15]. Let E be a Banach space.
The duality mapping J from E into 27" is defined by

Jo={z* € B : (z,2%) = ||z[|* = ||2*|*}
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for every x € E. Let U = {z € E : ||z|| = 1}. The norm of FE is said to be Gateaux
differentiable if for each x,y € U, the limit

o) ety |
t—0 t

exists. In the case, FE is called smooth. We know that E is smooth if and only if .J is
a single-valued mapping of E into E*. We also know that F is reflexive if and only
if J is surjective, and F is strictly convex if and only if J is one-to-one. Therefore, if
E is a smooth, strictly convex and reflexive Banach space, then J is a single-valued
bijection. The norm of E is said to be uniformly Gateauz differentiable if for each
y € U, the limit (2.1) is attained uniformly for = € U. It is also said to be Fréchet
differentiable if for each x € U, the limit (2.1) is attained uniformly for y € U. A
Banach space F is called uniformly smooth if the limit (2.1) is attained uniformly
for z,y € U. It is known that if the norm of FE is uniformly Gateaux differentiable,
then J is uniformly norm to weak* continuous on each bounded subset of F, and
if the norm of E is Fréchet differentiable, then .J is norm to norm continuous. If
FE is uniformly smooth, J is uniformly norm to norm continuous on each bounded
subset of E. For more details, see [25, 26]. The following results are in [25, 26].

Lemma 2.1. Let E be a Banach space and let J be the duality mapping on E.
Then, for any x,y € E,

] = [lylI* > 2(x -y, 5),
where j € Jy.
Lemma 2.2. Let E be a smooth Banach space and let J be the duality mapping

on E. Then, (x —y,Jx — Jy) >0 for all z,y € E. Further, if E is strictly convex
and {x —y,Jx — Jy) =0, then x = y.

Let E be a smooth Banach space. The function ¢: E X E — (—00, 00) is defined
by
(2.2) $(z,y) = ll2|* - 2(z, Jy) + |yl

for x,y € E, where J is the duality mapping of E; see [1] and [16]. We have from
the definition of ¢ that

for all z,y,2 € E. From (||z]| — ||ly)? < ¢(z,y) for all 2,y € E, we can see that
¢(x,y) > 0. Further, we can obtain the following equality:

(2.4) 2 —y, Jz = Jw) = ¢(z,w) + ¢y, 2) — ¢(x, 2) — Py, w)
for z,y,z,w € E. If F is additionally assumed to be strictly convex, then from
Lemma 2.2 we have

(2.5) d(r,y) =0<=z=y.
The following result was proved by Xu [35].

Lemma 2.3 (Xu [35]). Let E be a uniformly convexr Banach space and let r > 0.
Then there exists a strictly increasing, continuous and convex function g : [0,00) —
[0,00) such that g(0) = 0 and

Az + (1= Nyl < Mzl + (1= N)[lyll> = A1 = Ng(llz = yl)
for all z,y € B, and A with 0 < X\ <1, where B, ={z € E : ||z|| < r}.
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Let [*° be the Banach space of bounded sequences with supremum norm. Let
i be an element of (I°°)* (the dual space of ). Then, we denote by u(f) the
value of p at f = (x1,22,23,...) € [*°. Sometimes, we denote by p,(x,) the
value p(f). A linear functional p on [ is called a mean if u(e) = ||u|| = 1, where
e=(1,1,1,...). A mean p is called a Banach limit on I°° if p,(xni1) = pin(zn).
We know that there exists a Banach limit on {*°. If 4 is a Banach limit on [°°, then
for f = (z1,x2,23,...) € 1%,

linrggf Ty < pp(zy,) < limsup x,.

In particular, if f = (21,x2,23,...) € [* and x, — a € R, then we have u(f) =
tn(2Zn) = a. For a proof of existence of a Banach limit and its other elementary
properties, see [25].

Using Lemma 2.3 and properties of means, Takahashi and Jeong [29] proved the
following result.

Lemma 2.4 (Takahashi and Jeong [29]). Let C be a nonempty closed convex subset
of a uniformly convex Banach space E, let {x,} be a bounded sequence in E and
let pw be a mean on I*°. If g : E — R is defined by

9(2) = pnllzn — 2|, Vz € E,

then there exists a unique zo € C' such that g(z) = min{g(z) : z € C}.

3. FIXED POINT THEOREM 1

Let E be a Banach space and let C' be a nonempty subset of E. A mapping
T :C — C is said to be firmly nonexpansive if

1Tz = Ty|* < (x —y.5),

for all x,y € C, where j € J(Tx — Ty); see Bruck [6]. A mapping T : C — C is
called generalized hybrid [11] if there are a, 8 € R such that

(31)  alTz=Ty|* + (1 - a)llz = Tyl* < BTz -yl + 1 = Bz - y|?

for all z,y € C. Such a mapping T is also called an («, (3)-generalized hybrid
mapping in a Banach space. Using Lemma 2.1, Takahashi and Yao [34] proved the
following result.

Proposition 3.1. Let E be a Banach space and let C be a nonempty subset of E.
Let T : C — C be a firmly nonexpansive mapping and let A € [0,1]. Then, T is
(2 — A, 1 — \)-generalized hybrid, i.e.,

(2= N|Tz = Tyl + (A = D)llz = Tyl < 1 = N[ Tz - y[|* + Nz — y|?
forall x,y € C.

We notice from Proposition 3.1 that the classes of nonexpansive mappings, non-
spreadind mappings and hybrid mappings in the sense of norm are deduced from
the class of firmly nonexpansive mappings in a Banach space. Motivated by Bruck
[6], Takahashi and Yao [34], and Maruyama, Takahashi and Yao [22], in this section,
we introduce a broad class of nonlinear mappings in a Banach space containing the
class of 2-generalized hybrid mappings defined by Maruyama, Takahashi and Yao
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[22] in a Hilbert space. Let E be a Banach space and let C' be a nonempty sub-
set of E. Then, a mapping T : C' — C is called 2-generalized hybrid if there are
a1, asz, 1, 02 € R such that

(3.2) ar|T?e=Ty|* + aol| Tz — Ty|* + (1 — a1 — o)z — Ty||?

< BllT?z —yl* + Bo|| Tz — yl* + (1 = B = Bo)l|lz — 9|
for all z,y € C. We call such a mapping an (a1, as, 01, 32)-generalized hybrid
mapping. We observe that the mapping above covers several well-known mappings.
For example, a (0, s, 0, 82)-generalized hybrid mapping is nonexpansive for ag = 1

and (B2 = 0, nonspreading in the sense of norm for as = 2 and B3 = 1, and hybrid
for ap = % and By = i; see (1.1) and (1.2). A (0, az,0, B2)-generalized hybrid

2
mapping is an (g, B2)-generalized hybrid mapping in the sense of Hsu, Takahashi
and Yao [11]. We can also show that if © = Tz, then for any y € C,
arllz=Ty[* + azllz — Ty|* + (1 — a1 — az) ||z — Tyl|?
< Billz = yl* + Bellz — ylI* + (1 = By = B2) |z — y?

and hence ||z — Ty|| < |z — y||. This means that a 2-generalized hybrid mapping
with a fixed point is quasi-nonexpansive in a Banach space. Now, we prove a fixed
point theorem for 2-generalized hybrid mappings in a Banach space. Before proving
it, we need the following lemma which was proved by Hsu, Takahashi and Yao [11].
This lemma was proved by using Lemma 2.4.

Lemma 3.1. Let C' be a nonempty closed convexr subset of a uniformly convex
Banach space E and let T be a mapping of C into itself. Let {x,} be a bounded
sequence of E and let u be a mean on [*°. If

pallzn = Tyl* < pallzn — yl
for ally € C, then T has a fixed point in C.

Theorem 3.2. Let C be a nonempty closed conver subset of a uniformly convex
Banach space E and let T : C — C' be a 2-generalized hybrid mapping. Then T has
a fixed point in C if and only if {T™z2} is bounded for some z € C.

Proof. Since T : C' — C'is a 2-generalized hybrid mapping, there are a1, aa, 01, B2 €
R such that

ar|[T?e~Ty|* + az|| Tz = Ty|* + (1 — a1 — az) |z — Ty|?
< BTz =yl + Bl Tz — y|* + (1 = B = B2) [l — yl®

for all z,y € C. If F(T) # 0, then {T"z} = {2} for 2 € F(T). So, {T"z} is
bounded. Conversely, take z € C' such that {T"z} is bounded. Let u be a Banach
limit. Then, for any y € C and n € NU {0}, we have

ar||T"22=Ty|* + a2 [Tz = Ty|* + (1 — a1 — as) | T2 — Ty|?
< BT 22 = yl? + Bl T2 =yl + (1 = B = B2) [ T2 — |

for any y € C. Since {T"z} is bounded, we can apply a Banach limit u to both
sides of the above inequality. Then, we have

pn (a1 |T" 22 = Ty|® + aa|| T2 = Ty|* + (1 — an — a2) | T2 — Tyl?)
< (BT 22 = y|? + BTz — y||* + (1= By — B2) T2 — y|).
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So, we obtain
o in | T2 = Ty|* + aopn T2 — Tyl + (1 — a1 — a)pn | T2 — Tyl?
< Bipn | T2 — y||? + Bopn|[T" 2 — ylI? + (1 = B1 — Bo)un | T2 — yl|?

and hence
a1 || T2 = Ty|? + azpn|T"2 = Ty|* + (1 — a1 — az)pa | T2 — Ty|?
< BTz =yl + Bl Tz = yll* + (1 = B1 = Bo)un T2 — |-
This implies
pall Tz = Tyl* < pnl| T2 — y|?
for all y € C. By Lemma 3.1, T has a fixed point in C. (]

As a direct consequence of Theorem 3.2, we have the following result.

Theorem 3.3. Let C' be a nonempty bounded closed convex subset of a uniformly
conver Banach space E and let T be a 2-generalized hybrid mapping from C' to
itself. Then T has a fized point.

Using Theorem 3.2, we can also prove the following well-known fixed point theo-
rems. We first prove a fixed point theorem for nonexpansive mappings in a Banach
space.

Theorem 3.4. Let E be a uniformly convex Banach space and let C' be a nonempty
closed convex subset of E. Let T : C'— C be a nonezrpansive mapping, i.e.,

[Tz —Ty| < lz—yll, Vo,yeC.
Suppose that there exists an element x € C' such that {T"x} is bounded. Then, T
has a fized point in C.

Proof. In Theorem 3.2, a (0,1, 0,0)-generalized hybrid mapping of C' into itself is
nonexpansive. By Theorem 3.2, T' has a fixed point in C. (I

The following is a fixed point theorem for nonspreading mappings in a Banach
space.

Theorem 3.5 ([11]). Let H be a uniformly conver Banach space and let C be a
nonempty closed convex subset of E. LetT : C — C' be a nonspreading mapping,
i.e.,

2T - Ty||* < | Tz —ylI* + Ty —2l*, Va.yeC.
Suppose that there exists an element x € C such that {T™x} is bounded. Then, T
has a fized point in C.

Proof. In Theorem 3.2, a (0,2,0, 1)-generalized hybrid mapping of C into itself is
nonspreading. By Theorem 3.2, T" has a fixed point in C. O

The following is a fixed point theorem for hybrid mappings in a Banach space.

Theorem 3.6 ([11]). Let E be a uniformly convex Banach space and let C be a

nonempty closed convex subset of E. Let T : C'— C be a hybrid mapping, i.e.,
3Tz — Tyl < llo — ylI? + 1T — yl? + | Ty — 22, Va,yeC.

Suppose that there exists an element x € C' such that {T"x} is bounded. Then, T

has a fized point in C.



FIXED POINT THEOREMS 7

Proof. In Theorem 3.2, a (0, 2,0, 3)-generalized hybrid mapping of C' into itself

is hybrid in the sense of Takahashi [28]. By Theorem 3.2, T' has a fixed point in
C. O

We can also prove the following fixed point theorem in a Banach space.

Theorem 3.7. Let E be a uniformly convex Banach space and let C be a nonempty
closed convex subset of E. Let T : C'— C be a mapping such that

2|Te - Ty|* < llo = ylP* + 1Tz — y|*, Va,y € C.

Suppose that there exists an element x € C such that {T™x} is bounded. Then, T
has a fized point in C.

Proof. In Theorem 3.2, a (0,1,0, %)—generalized hybrid mapping of C' into itself is
the mapping in our theorem. By Theorem 3.2, T has a fixed point in C. (]

Finally, we prove the following fixed point theorem in a Banach space.

Theorem 3.8. Let E be a uniformly convex Banach space and let C be a nonempty
closed convex subset of E. Let T : C'— C be a mapping such that

|72 — Ty|l* + |Ta - Ty|> + o - Ty|]* < 3|a — yl>, Va,y € C.

Suppose that there exists an element x € C' such that {T"x} is bounded. Then, T
has a fized point in C.

Proof. In Theorem 3.2, consider a (%, %, 0, 0)-generalized hybrid mapping T of C
into itself. Then, we have that

SIT%0 — Tyl 4 SITw — Tyl + Sl — Tyl <l — 9l%, VayeC.
This is equivalent to the mapping in our theorem:
|IT?2 = Ty||* + |Tx — Tyl + |lo = Ty|* < 3|z —y|*, Va,yeC.
By Theorem 3.2, T has a fixed point in C. O
Remark 1. Let E be a Banach space and let C be a nonempty closed convex

subset of E. Let n € N. Then, a mapping T : C' — C'is called n-generalized hybrid
if there are a1, aq, ..., ay, 01,02, .., 08, € R such that

n

(3-3) Dol T e Tyl 4 (1= ) a)llz - Tyl
k=1 k=1

n n
<3 BT — 2 (1= Bl — 2
k=1 k=1
for all z,y € C. We call such a mapping an (a7, ag, . .., Qn, 81, B2, - . ., Bn)-generalized

hybrid mapping. As in the proof of Theorem 3.2, we can prove a fixed point theorem
for n-generalized hybrid mappings in a uniformly convex Banach space.
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4. FIXED POINT THEOREM 2

Let E be a smooth Banach space and let C be a nonempty closed convex subset
of E. A mapping T : C — C is called 2-generalized nonspreading if there are
g, 02, 617 /627 Y1572, 517 62 € R such that

a1¢(T?z, Ty) + 2p(Tx, Ty) + (1 — ar — az)¢(x, Ty)
(4.1) + 7 {o(Ty, T?z) — 9(Ty,2)} + 12{¢(Ty, Tx) — $(Ty, )}
< B1o(Tx,y) + Bod(Tw,y) + (1 — By — B2)d(x,y)
+01{o(y, T?x) — p(y, 2)} + da{d(y, Tx) — ¢(y, )}

for all z,y € C, where ¢(z,y) = ||x||? — 2{x, Jy) + ||y||* for x,y € E. We call such a
mapping an (a1, @s, 1, B2, V1,72, 01, 02 )-generalized nonspreading mapping. Let T
be an (ay, as, f1, B2, 71,72, 01, d2)-generalized nonspreading mapping. Observe that
if F(T) # 0, then ¢(u, Ty) < ¢(u,y) for all u € F(T) and y € C. Indeed, putting
x=wu€ F(T) in (4.1), we obtain
Oéld)(u’ Ty) + 042¢(U, Ty) + (1 — 01 — a2)¢(ua Ty)
+71{¢(Ty,u) — ¢(Ty, u)} + v2{d(Ty,u) — 6(Ty,u)}
< B19(u,y) + Bag(u,y) + (1 — B1 — B2)d(u, y)

So, we have that

(4.2) o(u, Ty) < d(u,y)

for all w € F(T) and y € C. Further, if F is a Hilbert space, then we have
d(z,y) = ||z — y||* for z,y € E. So, from (4.1) we obtain the following:

ar|T?z = Ty|* + ag|Te — Ty||> + (1 — a1 — ez — Tyl|*
+7{lITy = T?x|)* = | Ty — «||*} + v {|Ty — Tz|* — | Ty — «|*}
< BilT%z = yl* + Bo|| Tz =yl + (1 = 1 = o) |z — yl|?
+0u{lly — T2z — lly — 2} + 62{lly — T|* = ||y — =|*}
for all x,y € C. This implies that
(a1 +7)T%2 = Ty|* + (a2 + ) [Tz — Ty|®
+{1 = (a1 +71) — (a2 +72)}|z — Tyl?
< (Br+0)IT% — yll* + (B2 + 62) | T — y®
+{1— (B +61) = (B2 + &)}z =yl

for all z,y € C. That is, T is a 2-generalized hybrid mapping [22] in a Hilbert
space. Now, using the technique developed by [24], we prove a fixed point theorem
for 2-generalized nonspreading mappings in a Banach space.

Theorem 4.1. Let E be a smooth, strictly conver and reflexive Banach space
and let C be a nonempty closed conver subset of E. Let T be a 2-generalized
nonspreading mapping of C into itselt. Then, the following are equivalent:

(a) F(T) # 0;

(b) {T"x} is bounded for some x € C.
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Proof. Let T be a 2-generalized nonspreading mapping of C into itself. Then, there
are a1, az, 81, $2,71, 72, 01,02 € R such that

a1d(T%x, Ty) + aep(Tx, Ty) + (1 — a1 — ag)d(x, Ty)
(4.3) +71{0(Ty, T?x) — ¢(Ty, )} + 2{d(Ty, Tx) — $(Ty, x)}
< Bip(T?z,y) + Bagp(Tx,y) + (1 — B1 — B2)o(x,y)
+ou{o(y, T?x) — ¢(y, )} + d2{e(y, Tx) — d(y, x)}

for all x,y € C. If F(T) # (), then we have from (5.3) that ¢(u, Ty) < ¢(u,y) for
all u € F(T) and y € C. Taking a fixed point u of T, we have ¢(u, T"z) < ¢(u,x)
for all n € N and « € C. This implies that for every z € C, the sequence {T"x} is
bounded. So, (a) = (b). Let us show (b) = (a). Suppose that there exists z € C
such that {T™z} is bounded. Then replacing z by T*x in (4.3), where k € NU {0},
we have that for any y € C,

a1¢(Tk+2x, Ty) + asp(TH Ty)+(1—a; — a2)¢(Tkx, Ty)
+ 71 {¢(Ty, T ) — 9(Ty, T )} + 72 {¢(Ty, T ') — ¢(Ty, T )}
< Big(TH 2, y) + Bop(THa,y) + (1= B1 — B2)p(TF, y)
(4.4) +0u{ply, T"x) — ¢y, T"x)} + 6a{p(y, TH ) — p(y, T"x)}
= Bu{o(T*x, Ty) + (Ty, y) + 2(T" 2z — Ty, JTy — Jy)}
+ Bo{ (T, Ty) + ¢(Ty,y) + 2(T* o — Ty, JTy — Jy)}
+ (1= 1= B ){0(T 2, Ty) + 6(Ty,y) + 2(T"x — Ty, JTy — Jy)}
+00{(y, T"2x) — ¢y, T* )} + 6a{ by, T" ') — p(y, T )}

This implies that

0 < (B — an){o(T 22, Ty) — ¢(T*x, Ty)}
+ (02 — aa){(T" ', Ty) — 9(T* 2, Ty)} + ¢(Ty, y)
+ 2(61TF 22 + BoTH o + (1 — By — Bo)T*x — Ty, JTy — Jy)
—{d(Ty, T"?x) — ¢(Ty, T* )} = 72{d(Ty, T* '2) — ¢(Ty, T )}
(4.5) +0{p(y, T"2x) — ¢y, T"x)} + 6a{p(y, T" ) — p(y, T"x)}
= (B1 — ) {¢(T" %2, Ty) — ¢(T"x, Ty)}
+ (B2 — ax){(T* ', Ty) — (T x, Ty)} + ¢(Ty, y)
+2(T*x — Ty + By (T 22 — Thx) + Bo(TH e — Thz), JTy — Jy)
=1 {d(Ty, T"?x) — ¢(Ty, T"2)} — 72{d(Ty, T"*'2) — §(Ty, T*x)}
+0u{d(y, T*x) — ¢y, T"2)} + 6o{ by, T* ) — G(y, T ) }.
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Summing up these inequalities (4.5) with respect to k =0,1,...,n — 1, we have
0< (B — an{o(T" e, Ty) + ¢(T7x, Ty) — ¢(T, Ty) — ¢a, Ty)}

+ (B2 — e {(T"x, Ty) — ¢(x,Ty)} + nd(Ty, y)
+2x+Tr+ - +T" ‘o —nTy, JTy — Jy)

(4.6) +2(B (T ax + T — T — x) + Bo(T"x — ), JTy — Jy)
—1{¢(Ty, T"*'x) + ¢(Ty, T"x) — $(Ty, Tx) — $(Ty, x)}
—72{o(Ty, T"x) — ¢(Ty, )}
+0u{p(y, T '2) + oy, T"x) — ¢y, Tx) — ¢(y,x)}
+ 62{d(y, T"x) — ¢(y, =)}

Dividing by n in (4.6), we have

0< %(ﬂl — a{@(T"+ 2, Ty) + ¢(T"x, Ty) — $(Tx, Ty) — ¢(x, Ty)}

2 (B~ a)[6(T", Ty) — 6(2, Ty)} + 6(Ty,9)
+2(Spx — Ty, JTy — Jy)

(4.7) + %2(61(T"+1x +T"x — Tx — x) + Bo(T"x — x), JTy — Jy)
— 9Ty, ) 4 6(Ty, T") — 6(Ty, Tr) — (T, )}
— S {9(T, T") — 6(Ty, )}
0 {60, T )0, T) — oly, Ta) — 6y, 7))

6 (0(5, ) — 6(y, ),

where S,z = %Zz;é T*z. Since {T™z} is bounded by assumption, {S,z} is
bounded. Thus we have a subsequence {S,,x} of {S,z} such that {S,,x} converges
weakly to a point u € C. Letting n; — oo in (4.7), we obtain

0 < ¢(Ty,y) + 2{u— Ty, JTy — Jy).
Putting y = u, we obtain
0 < ¢(Tu,u) + 2(u — Tu, JTu — Ju)
(4.8) = ¢(Tu,u) + ¢(u,u) + ¢(Tu, Tu) — ¢(u, Tu) — ¢(Tu,u)
= —¢(u, Tu).
Hence we have ¢(u, Tu) < 0 and then ¢(u,Tu) = 0. Since E is strictly convex, we
obtain u = T'u. Therefore F(T) is nonempty. This completes the proof. |

Using Theorem 4.1, we have the following fixed point theorems in a Banach
space.

Theorem 4.2 (Kohsaka and Takahashi [20]). Let E be a smooth, strictly convex
and reflerive Banach space and let C' be a nonempty closed convexr subset of E. Let
T :C — C be a nonspreading mapping, i.e.,

&(Tx, Ty) + ¢(Ty, Tx) < ¢(Tx,y) + ¢(Ty, x)



FIXED POINT THEOREMS 11

for all x,y € C. Then, the following are equivalent:
(a) F(T) # 0;
(b) {T™z} is bounded for some x € C.
Proof. Putting a; =1 =71 =901 =0, a0 = B2 =92 =1 and 2 = 0 in (4.3), we
obtain that
(T, Ty) + ¢(Ty, Tx) < ¢(Tx,y) + ¢(Ty, x)
for all z,y € C. So, we have the desired result from Theorem 4.1. O
Theorem 4.3. Let E be a smooth, strictly convex and reflexive Banach space and
let C' be a nonempty closed convex subset of E. Let T : C — C' be a hybrid mapping
[28], i.e.,
20(Tz, Ty) + ¢(Ty, Tx) < $(Tx,y) + ¢(Ty,z) + ¢(2,y)
for all z,y € C'. Then, the following are equivalent:
(a) F(T) # 0;
(b) {T™z} is bounded for some x € C.
Proof. Putting a1 =1 =71 =0 =0,as =1, o =75 = % and d2 = 0 in (4.3),
we obtain that
20(Tz, Ty) + ¢(Ty, Tx) < ¢(Tx,y) + ¢(Ty, x) + ¢(2,y)
for all z,y € C. So, we have the desired result from Theorem 4.1. O

Theorem 4.4. Let E be a smooth, strictly convex and reflexive Banach space and
let C be a nonempty closed conver subset of E. Let T : C — C' be a mapping such
that

ad(Tz,Ty) + (1 — a)p(x, Ty) < Bo(Tx,y) + (1 — B)d(x,y)
for all x,y € C'. Then, the following are equivalent:
(a) F(T) # 0;
(b) {T™a} is bounded for some x € C.
Proof. Putting oy =1 =71 =01 =0, ag = a, f2 = B and 73 = d2 = 0 in (4.3),
we obtain that
ad(Tz,Ty) + (1 — a)p(z, Ty) < Bé(Tz,y) + (1 — B)d(z,y)
for all z,y € C. So, we have the desired result from Theorem 4.1. O

As a direct consequence of Theorem 5.5, we have the following Kocourek, Taka-
hashi and Yao fixed point theorem [17] in a Hilbert space.

Theorem 4.5 (Kocourek, Takahashi and Yao [17]). Let C' be a nonempty closed
convex subset of a Hilbert space H and let T : C — C be a generalized hybrid
mapping, i.e., there are a, 8 € R such that

a|Tz —Ty|* + (1 - )|z — Ty||* < BTz — ylI* + (1 - B)llz - y|®
for all x,y € C'. Then, the following are equivalent:

(a) F(T) #0;
(b) {T™a} is bounded for some x € C.

Proof. We know that ¢(z,y) = ||z — y||* for all z,y € C in Theorem 5.5. So, we
have the desired result from Theorem 5.5. O
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Finally, we prove the following fixed point theorem in a Banach space.

Theorem 4.6. Let E be a smooth, strictly convex and reflexive Banach space and
let C' be a nonempty closed convex subset of E. Let T : C' — C be a mapping such
that
¢(T?x, Ty) + (T, Ty) + ¢(z, Ty) < 3¢(x,y)
for all x,y € C. Then, the following are equivalent:
(a) F(T) # 0;
(b) {T"x} is bounded for some x € C.

Proof. Putting a; = ap = %, B1=02=0,and y; =2 = d; = d, = 0 in (4.3), we
have that

1 1 1
30(T72,Ty) + 26(Tw, Ty) + 2w, Ty) < b(x,y)
for all x,y € C. This is equivalent to the mapping in our theorem:

¢(T%x, Ty) + ¢(Tx, Ty) + oz, Ty) < 3¢(x,y)
for all z,y € C. So, we have the desired result from Theorem 4.1. O

Remark 2. Let E be a smooth Banach space and let C' be a nonempty closed
convex subset of F. Let n € N. Then, a mapping T : C' — C'is called n-generalized
nonspreading if there are aq, o, ..., n, B1, 825+ By V1,725 - - -5 Yy 01502, -« -, 0y €
R such that

n

Do ard(T" T e, Ty) + (1= aw)g(, Ty)

k=1 k=1

(4.9) + 3 {6 (Ty, T ) — §(Ty, 2)}
k=1

<Y Bed(T™ Fay) + (1= Br)d(z,y)
k=1 k=1

+ > 0{b(y, T Fa) — d(y, 2)}
k=1

for all z,y € C. Such a mapping is called an (a1,a9,...,an, 01,02, 0n,
V15Y25 -+ sYny 01,02, ..., 0n)-generalized nonspreading mapping. As in the proof
of Theorem 4.1, we can prove a fixed point theorem for n-generalized nonspreading
mappings in a smooth, strictly convex and reflexive Banach space.

5. FIXED POINT THEOREM 3

Let E be a smooth, strictly convex and reflexive Banach space and let C be a
nonempty subset of E. Let T be a mapping of C' into itself. Define a mapping T™*
as follows:

T*x* = JTJ 'z*, Vz* e JC,
where J is the duality mapping on E and J~! is the duality mapping on E*. A
mapping T* is called the duality mapping of T'; see [33] and [10]. It is easy to show
that T* is a mapping of JC into itself. In fact, for z* € JC, we have J lz* € C
and hence T.J~'z* € C. So, we have

T z* = JTJ 'a* € JC.
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Then, T* is a mapping of JC into itself. Furthermore, we define the duality mapping
T of T* as follows:

Tz =J 'T*Jx, VzeC.
It is easy to show that T%* is a mapping of C into itself. In fact, for x € C, we have
Tz =J 'T*Jx =J ' JTJ 'Jz =Tz € C.

So, T** is a mapping of C into itself. We know the following result in a Banach
space; see [8] and [33].

Lemma 5.1. Let E be a smooth, strictly conver and reflexive Banach space and
let C' be a nonempty subset of E. Let T be a mapping of C into itself and let T* be
the duality mapping of JC into itself. Then, the following hold:

(1) JE(T) = F(T");
(2) |[T™z| = ||(T*)"Jx| for each x € C and n € N.

Let E be a smooth Banach space, let J be the duality mapping from E into
E* and let C' be a nonempty subset of E. Then, a mapping 7' : C' — C' is called
2-skew-generalized nonspreading if there are ay, s, f1, 2,71, 72,901,902 € R such
that

a19(Ty, T?x) + azp(Ty, Tx) + (1 — a1 — a2)$(Ty, z)
(5.1) +y{o(T%2, Ty) — ¢(, Ty)} + 72{6(Tx, Ty) — ¢(x, Ty)}
< Bid(y, T?x) + Bogp(y, Tx) + (1 — B — B2)B(y, )
+0{o(T%2,y) — ¢(x,y)} + 82{d(T2,y) — ¢z, y)}
for all z,y € C, where ¢(z,y) = ||z||*> — 2(z, Jy) + ||y||* for z,y € E. We call such
a mapping an (a1, asg, 1, 82,71, V2, 01, 02)-skew-generalized nonspreading mapping.
Let T be an (a1, a9, b1, B2, 71, Y2, 01, 02)-skew-generalized nonspreading mapping.
Observe that if F(T) # 0, then ¢(Ty,u) < ¢(y,u) for all w € F(T) and y € C.
Indeed, putting z =« € F(T) in (5.1), we obtain
a1¢(Ty, U) + a2¢(Tyv u) + (1 — 01 — O[Q)Qi’(TZl/, U)
(5.2) +71{¢(u, Ty) — ¢(u, Ty)} + y2{d(u, Ty) — ¢(u, Ty)}
< 61¢(ya u) + ﬁ2¢(y? U’) + (1 - ﬂl - 62)¢(y7 U)
+ 6{o(w, y) — d(u, y)} + 02{d(u,y) — ¢(u,y)}.

So, we have that

(5-3) Ty, u) < ¢y, u)

forallu € F(T) and y € C. Further, if E is a Hilbert space, then ¢(z,y) = ||z —y||?
for all z,y € E. So, from (5.1) we obtain the following:

a1||Ty — T%[|* + ao||Ty — T|* + (1 — a1 — a2)[|Ty — 2|
(5.4) + {72 = Tyl* — llz = Tyll*} + {7z — Ty|* - ||« — Ty|*}
< Billy = T%z)|* + Bally — Tal* + (1 = B = Ba)lly — =?
+0u{l|IT%2 — yl* = llo = ylI*} + 62 {72 — y||* — = — y*}
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for all x,y € C. This implies that
(a1 + )72 = Ty|* + (az +72) || T2 - Ty|?
+{1 = (1 +m) = (a2 +72)}|z — Ty|?
< (B + )1 T% — yll* + (B2 + 62) | T — y®
+{L— (B +61) = (B2 + 02}z — y?

for all z,y € C. That is, T is a 2-generalized hybrid mapping [22] in a Hilbert
space. Now, we prove a fixed point theorem for 2-skew-generalized nonspreading
mappings in a Banach space. Before proving the theorem, we need the following
definition: Let ¢,: E* X E* — (—00,00) be the function defined by

Pu(a®,y") = [l = 200y 2") + [y |I?
for all x*,y* € E*, where J is the duality mapping of E. It is easy to see that

(5.5) o(z,y) = ¢ (Jy, Jx)
for all z,y € E.

Theorem 5.2. Let E be a smooth, strictly convex and reflexive Banach space and
let C be a nonempty closed subset of E such that JC is closed and convex. Let T
be a 2-skew-generalized nonspreading mapping of C' into itself. Then, the following
are equivalent:

(a) F(T) #0;
(b) {T"x} is bounded for some x € C.

Proof. Let T be a 2-skew-generalized nonspreading mapping of C' into itself. Then,
there are a1, as, 1, 82,71, 72,01, 92 € R such that

a19(Ty, T*z) + axp(Ty, Tx) + (1 — a1 — ag)(Ty, x)
(5.6) +1{d(T?x, Ty) — ¢(x, Ty)} + v2{¢(Tx, Ty) — ¢(x, Ty)}
< By, T?x) + Baop(y, Tx) + (1 — B — B2)B(y, x)
+0u{p(T?x,y) — ¢(x,9)} + 82{d(T,y) — B(x,y)}

for all x,y € C. If F(T) # 0, then ¢(Ty,u) < ¢(y,u) for all u € F(T) and y € C.
Taking a fixed point u of T, we have ¢(T"x,u) < ¢(x,u) for all n € N and z € C.
This implies (a) = (b). Let us show (b) = (a). Suppose that there exists x € C
such that {T"xz} is bounded. Then for any «*,y* € JC with 2* = Jz and y* = Jy,
we have from (5.5) and T* = JT.J~! that

¢*((T*)2x*7 T*y*) = ¢ (T*T*z*, T*y*)
= ¢ (JTT 1 JT T Iz, JTT  y)
= ¢ (JTTx, JTy)
= ¢.(JT?z, JTy)
= ¢(Ty, T?x).

Similarly, we have that

b (T*2*, T*y*) = ¢ (JTJ 1 Jx, JTT 1 Jy) = ¢ (JTx, JTy) = ¢(Ty, Tx).
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Thus, we have that
10 (T*)22*, T*y*) + and (T 2", T*y*) + (1 — a1 — ao) s (¥, T*y*)
+{eu Ty, (T7)%a") = 6 (T™y", 2")}
+72{0 (T, T72") — ¢ (T"y", 27)}
= a1¢.(JT?%x, JTy) + o, (JTx, JTy) + (1 — a1 — az).(Jz, JTy)
+ {6 (JTy, JT?2) - 6. (JTy, Jo)}
+72{0.(JTy, JTx) — . (JTy, Jz)}
= a10(Ty, T?z) + aop(Ty, Tx) + (1 — a1 — az)p(Ty, )
+71{o(T%2, Ty) — ¢(x, Ty)} + v2{d(Tx, Ty) — ¢(x, Ty)}.
We also have that
B ((T) 2", y") + Badbu (T 2™, y") + (1 = 1 — B2) (2", y")
+01{0:(y", (T%)%2") — du(y*,2")}
+02{ ¢ (y", T"2") — ¢u(y", ")}
= 519(JT%z, Jy) + Ba¢u (T, Jy) + (1 = 1 — Ba) b (Jz, Jy)
+01{ex(Jy, JT?2) — ¢ (Jy, J2)} + 62{¢ (Jy, JT) — ¢ (Jy, Ja)}
= B1¢(y, T?x) + Bad(y, Tx) + (1 — 1 — B2)d(y, x)
+01{0(T%2,y) — ¢(x,y)} + 62{¢(T'2,y) — d(x,y)}-
Since T is 2-skew-generalized nonspreading, we have from (5.6) that
1. ((T)2a", T y*) + o (T72*, T*y") + (1 — a1 — az)u (™, T*y")
o (T ", (T)20") — 6Ty 2"}
+ 72 {0 (T7y", T"2") — ¢ (T7y", 2%)}
< B (T2, y*) + Bagu (T 2", y*) + (1 = 1 — B2)bu (2%, y")
+01{0.(y", (T7)2%) — ¢ (y", ")}
+ 02{0x(y", T"5") — ¢ (y™, %)}
This implies that T* is a 2-generalized nonspreading mapping of JC into itself. We
know from Lemma 5.1 and Theorem 4.1 that 7" has a fixed point in JC. We also

have from Lemma 5.1 that F(T*) = JF(T). Therefore F(T) is nonempty. This
completes the proof. (I

Using Theorem 5.2, we have the following fixed point theorems in a Banach
space.

Theorem 5.3 (Dhompongsa, Fupinwong, Takahashi and Yao [8]). Let E be a
smooth, strictly convex and reflexive Banach space and let C' be a nonempty closed
subset of E such that JC is closed and conver. Let T : C — C be a skew-
nonspreading mapping, i.e.,

o(Ty,Tz) + ¢(Tx,Ty) < ¢y, Tx) + ¢(x, Ty)

for all xz,y € C'. Then, the following are equivalent:

(a) F(T) #0;
(b) {T™a} is bounded for some x € C.
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Proof. Putting a1 =81 =7 =01 =0, a0 = 2 =2 =1 and 63 = 0 in (5.1), we
obtain that

o(Ty,Tx) + ¢(Tx,Ty) < ¢y, Tx) + ¢(x, Ty)
for all x,y € C. So, we have the desired result from Theorem 5.2. O
Theorem 5.4. Let E be a smooth, strictly convex and reflexive Banach space and

let C be a nonempty closed subset of E such that JC is closed and convex. Let
T:C — C be a mapping such that

20(Ty, Tx) + ¢(Tx, Ty) < ¢(y, Tx) + d(x,Ty) + ¢(y, )
for all z,y € C. Then, the following are equivalent:
(a) F(T) #0;
(b) {T"x} is bounded for some x € C.
Proof. Putting ay = 61 =71 =01 =0, as =1, B3 =70 = % and d2 = 0 in (5.1),
we obtain that
20(Ty,Tz) + ¢(Tx,Ty) < ¢(y, Tx) + ¢z, Ty) + ¢(y, x)
for all z,y € C. So, we have the desired result from Theorem 5.2. O
Theorem 5.5. Let E be a smooth, strictly conver and reflexive Banach space and

let C' be a nonempty closed subset of E such that JC' is closed and conver. Let
T:C — C be a mapping such that

for all x,y € C'. Then, the following are equivalent:

(a) F(T) #0;
(b) {T™z} is bounded for some x € C.

Proof. Putting oy = 1 =71 =061 =0, a3 =, 2 = § and 72 = § = 0 in (5.1),
we obtain that
for all z,y € C. So, we have the desired result from Theorem 5.2. O

Finally, we prove the following fixed point theorem in a Banach space.

Theorem 5.6. Let E be a smooth, strictly conver and reflexive Banach space and
let C' be a nonempty closed subset of E such that JC' is closed and convex. Let
T:C — C be a mapping such that

¢(Ty, T*z) + ¢(Ty, Tx) + (Ty, x) < 3¢(y, x)
for all x,y € C'. Then, the following are equivalent:

(a) F(T) #0;
(b) {T™z} is bounded for some x € C.

Proof. Putting ay = ag = %, B1=02=0,and y; =2 =401 = J =0 in (5.1), we
have that L 1 1
§¢(T?J7T2$) + §¢(Ty,Tx) + §¢(Tl/,$) < ¢(y,x)
for all x,y € C. This is equivalent to the mapping in our theorem:
O(1%z, Ty) + ¢(Tx, Ty) + d(z, Ty) < 3¢(x,y)
for all z,y € C. So, we have the desired result from Theorem 5.2. (]
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Remark 3. Let E be a smoth Banach space and let C' be a nonempty closed
subset of F such that JC is closed and convex. Let n € N. Then, a mapping
T :C — C is called n-skew-generalized nonspreading if there are ay, s, ..., an,,
81,02,y By V15725« + -5 Vs 01,02, - ..,0, € R such that

Yo ad(Ty, T Fa) + (1= aw)(Ty, x)

k=1 k=1

(5.7) + 3 (T R, Ty) — ¢la, Ty)}

k=1

<Y Bed(y, TV Fa) + (1= Br)d(y, o)
k=1 k=1

+ 3 0T Fay) — oley))
k=1

for all z,y € C. Such a mapping is called an (a1, @9,...,an, 81,02, 0n,
V1yV2y -+ s Yy 01,02, ... ,0,)-skew-generalized nonspreading mapping. As in the
proof of Theorem 5.2, we can prove a fixed point theorem for n-skew-generalized
nonspreading mappings in a smooth, strictly convex and reflexive Banach space.
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