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1 Introduction

The notion of topologies, introduced by Stephani[10], is useful for studying the injective

hull of an operator ideal. Using Randtke’s idea(see [8,p.90] or [12,(3.2.1)and(3.2.7)]),

we can characterize generating topologies in terms of seminorms which satisfy some ex-

pected properties(see Lemma3.3 and Theorems3.4 and 3.9). By a well-known and useful

ideal of Grothendieck, the dual notions of generating topologies and ideal-topologies,

the so-called generating bornologies, are given and studied in Sect.4. In terms of

ideal-bornogies, the surjective hull of an operator ideal on Banach spaces is given(see

Lemma4.8 and Theorem4.10). In terms of these two dual concepts, we are able to

classify locally convex spaces, and to study their dual results. For instance, we show

that if A is a symmetric(resp.completely symmetric) operator ideal on Bnanch spaces

then a Banach space E is an A-topological space(A-bornological space) if and only if

its Banach dual space E
′
is A-bornological(resp.A-topological)(Theorem 5.9). Also we

are able to define the most natural and the most applicable type of operator ideals

on LCS
′
s, namely the G − B-operators. This is an extension of the notions of quasi-

Schwartz operators defined by Randtke[8,p.91] and of cone-prenuclear maps defined by

Wong[12,p.142]. Sufficient conditions are given to ensure that the G−B-operators from

an injective(resp.surjective) operator ideal(see Propositions 6.3 and 6.4). Finally, we

point out that a formula concerning with the injective hull of a bounded operator ideal,

given by Franco and Piñeiro[3, Theorem 1 in Sect.2], is not true(see Example 6.6)
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2 Preliminary Results of Operator Ideals and Bornolo-

gies

Throughout this paper, the class of all locally convex (Hausdorff) spaces(abbreviated by

LCS
′
s)(resp.all Banach spaces) is denoted by L(resp.B), the class of all operators (i.e.

continuous linear maps) between arbitrary locally convex spaces is denoted by L, while

L(X, Y ) stands for the vector space of all operators from X into Y(where X, Y∈ L), and

Fori(X) denotes the original locally convex topology on X∈ L. For any subclass b of L,

we write

Ll = U{L(X, Y ) : X,Y ∈ b}.
For any E∈ B, E

′
stands for the Banach dual of E, UE denotes the closed unit ball in

E, and the norm-topology on E is denoted by ‖ · ‖E-topology, also we put

Einj = l∞(UE′ ) and JEx = [〈x, u
′〉]u′∈U

E
′ (x ∈ E)

and dually

Esur = l1(UE) and QE([ξx]x∈UE
) =

∑
UE

ξx · x ([ξx]x∈UE
∈ l1(UE)).

Let l be a sugclass of L containing K. Following Pietsch[7], we call a subclass A of Ωl

an operator ideal on l if the components

A(X, Y ) = A ∩ L(X, Y ) (X, Y ∈ `)

satisfy the following conditions:

(OI0) idK ∈ A(K, K)(where K is either R or C)

(OI1) A(X, Y ) is a vector subspace of L(X, Y ) (X, Y ∈ b)

(OI2) If S ∈ L(X0, X), T ∈ A(X, Y ) and R ∈ L(Y, Y0) then RTS ∈ L(X0, Y0)

(whenever X,X0, Y, Y0 ∈ b)

In particular, if b = B(resp.L or the class of all bornological spaces) then it is called

an operator ideal on B-spaces(resp. on LCS’s or on bornological spaces).

The class Ω of all operators is the greatest operator ideal while the class F of all operator

with finite ranks is the smallest one; also the class of all compact(resp. weakly compact,

completely continuous) operators is an operator ideal on L. Recall that an operator

T ∈ Ω(X, Y )(where X, Y ∈ L) is bounded if T sends some 0-neighbourhood in X onto a

bounded set in Y. The class of all bounded operators between arbitrary locally convex
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spaces, denoted by L, is an operator ideal on LCS’s.

Let A be an operator ideal on b. We say that A is:

(a) injective if for all spaces X, Y ∈ b, any operator T ∈ L(X, Y ) belongs to A(X, Y ) if

there is some Z ∈ b and some topological injection(i.e., an one-to-one and relatively

open) J : Y → Z such that

JT ∈ A(X, Z);

(b) surjective if for all space X, Y ∈ b, any operator T ∈ L(X, Y ) belongs to A(X, Y ) if

there is some G ∈ b and a topological surjection(i.e., an open operator) Q : G → X

such that

TQ ∈ A(G, Y ).

The injective hull(resp.surjective hull) of an operator ideal A on b, denoted by

Ainj(resp. Asur), is defined as the intersection of all injective (resp. surjective) op-

erator ideals on b containing A.

If A is an operator ideal on B-spaces, then Ainj and Asur can be represented simply as

follows:

(2a) Ainj(E, F ) = {T ∈ L(E, F ) : JF T ∈ A(E, F inj)}
and

(2b) Asur(E, F ) = {T ∈ L(E, F ) : TQE ∈ A(Esur, F )},
whenever E and F are B-spaces. Moreover, we have the following remarkable character-

ization for Ainj and Asur due to Stephani(see[7,p.109 and p.112]).

Lemma 2.1 Let A be an operator ideal on B-spaces and T ∈ L(E, F ), where E and

F ∈ B.

(a) T ∈ Ainj(E, F ) if and only if there exists an F0 ∈ B and an S ∈ A(E, F0) such

that

‖ Tx ‖5‖ Sx ‖ (for all x ∈ E)

(b) T ∈ Asur(E, F ) if and only if there exists an E0 ∈ B and an R ∈ A(E0, F ) such

that

TUE j RUE0.

It is natural to ask whether (2a) and (2b) can be extended to the case of an operator

ideal A on LCS’s. To do this, we require the following construction, due to Franco and
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Piñeiro[3].

Given a locally convex space X, let E(X
′
) be the class of all σ(X

′
, X)-closed, ab-

solutely convex, equicontinuous subsets of X
′
, and let X inj be the product space of a

family {l∞(D) : D ∈ E(X
′
) of B-spaces, i.e.,

X inj =
∏
{l∞(D) : D ∈ E(X

′
).

Let us define Jx : X → X inj by setting

JX(x) = [JX,D(x)]D∈E(X′ ),

where JX,D(x) is a bounded function on D with values

JX,D(x)(d
′
) = 〈x, d

′〉 (for all d
′ ∈ D).

Lemma 2.2 (Franco and Piñeiro[3]). Let A be an operator ideal on LCS’s. Then the

injective hull of A is given by

Ainj(X, Y ) = {T ∈ L(X, Y ) : JY T ∈ A(X, Y inj)}, (X,Y ∈ L).

Let X be a vector space over K. Following Hogbe-Nlend[4], by a vector bornology on

X we mean a family B of subsets of X satisfies the following conditions:

(V B1) X = ∪B;

(V B2) if B ∈ B and A j B(A j X) then A ∈ B;

(V B3) B1 + B2 ∈ B whenever B1, B2 ∈ B;

(V B4) λB ∈ B whenever λ ∈ K and B ∈ B;

(V B5) the circle hull of any B ∈ B belongs to B.

Elements in B are called B-bounded sets in X.

A vector bornology B on X is called a convex bornology if

ΓB ∈ B for all B ∈ B,

where ΓB is the absolutely convex hull of B. The pair (X, B) is called a convex bornolog-

ical space which is denoted by XB.

A base of a vector bornology B on X is any subfamily B0 of B such that any element

in B is contained in some member in B0. It is not hard to show that a collection U
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consisting of subsets of X is a base for a vector bornology(resp. convex bornology) if

and only if U satisfies the following conditions:

(i) X = ∪U

(ii) for any B1, ..., Bn ∈ U, there is an B ∈ U such that B1 + ... + Bn ⊆ B;

(iii) for any B ∈ U and λ ∈ K, there is an M ∈ U such that λB ⊆ M ;

(iv) the circled(resp. absolutely convex) hull of any A ∈ U is contained in some member

of U.

If U is a base, then the family B(U), defined by

B(U) = {A ⊆ X : A ⊆ B for some B ∈ U},
is a vector(resp. convex) bornology on X with U as a base. B(U) is called the vector(resp.

convex ) bornology generated by U.

Let U and R be two bases for two vector bornologies on X. We say that U is coarser

than R, denoted by U 5 R if

B(R) j B(U)

This is equivalent to that every element in R is contained in some members of U.

We list some important vector bornologies on a locally convex space (X, Tori(X)) as

follows:

(a) the von Neumann bornology on X, denoted by Uvon(X), is defined to be the class

of all bounded sets in X;

(b) the precompact bornology on X, denoted by Upc(X), is the class of all Tori(X)-

precompact sests in X;

(c) the compact bornology on X, denoted by Uc(X), is the class of all Tori(X)-compact

sets in X;

(d) the weakly compact bornology , denoted by Uwc(X), is the class of all σ(X, X
′
)-

compact subsets of X;

(e) the finitely dimensional bornology , denoted by Uf (X), is defined to be the class of

all subsets A of X satisfying
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A j Γ({x1, x2, ..., xn})
for some finite subset {x1, x2, ...xn} of X.

Let (X, T) be a locally convex space. For any subset B of X, the σ-disked hull of B

is defined by

ΓσB = {
∑∞

n=1 λnbn :
∑∞

n=1 | λn |5 1, λn ∈ K, bn ∈ B(n = 1, 2, ...)}.

A set B in X is said to be σ-disked if B = ΓσB.

An absolutely convex, bounded subset B of X is said to be infracomplete(or a Banach

disk) if the normed space (X(B), rB) is complete, where

X(B) =
⋃

n=1 nB

and rB is the gauge of B defined on X(B). The image of an infracomplete (bounded,

absolutely convex) set under an operator is infracomplete.

Lemma 2.3 Let (X, P) be a locally convex space and B an absolutely convex bounded

subset of X.

(a) If B is σ-disked then B is infracomplete.

(b) If B is infracomplete and closed then B is σ-disked.

Proof.(a)The mapping QB : l1(B) → X, defined by

QB([ξx]x∈B) =
∑

x∈B ξx · x,

is an operator with

QB(Ul1(B)) = ΓσB.

As (Ul1(B)) is infracomplete in the B-space l1(B), it follows from B = ΓγB that B is

infracomplete.

(b)Follows from the fact that B is the closed unit ball in the B-space(X(B), rB).

Let B(X) and B(Y ) be vector bornologies on X and Y resp. A linear map T : X →
Y is said to be locally bounded if

T (B) ∈ B(Y ) for all B ∈ B(X).

The set of all locally bounded maps from (X, B(X)) into (Y,B(Y )), denoted by Lx(X, Y ),

is a vector space. In particular, we write

Xx = Lx(X, K)

6



and called the bornological dual of (X, B(X)).

Let {(Xi, Bi) : i ∈ Λ} be a family of vector(resp. convex) bornological spaces, let Y

be a vector space and let Ti : Xi → Y be linear. For any i ∈ Λ, let

Ti(Bi) = {Ti(A) : A ∈ Bi}.
It is clear that the intersection of a family of vector(resp. convex) bornologies is a vec-

tor(resp. convex) bornology. Thus the intersection of all vector(resp. convex) bornolo-

gies containing the family ∪i∈ATi(Bi) is called the final vector(resp. convex) bornology

on Y for the maps Ti, and is denoted by U(Y ). It is easily seen that U(Y ) is the finest

vector(resp. convex) bornology on Y for which all the maps Ti are locally bounded.

Throughout this paper, terminology and notation concerning operator ideals will fol-

low Pietsch[7] and Junek[5], while Schaefer[9] and Köthe[6] will serve as our reference for

material vector spaces. The background material concerning bornologies can be found

in Hogbe-Nlend[4].

3 Ideal-Topologies and Generating Topologies

In the sequel, b will be assumed to be a subclass of L containing all normed spaces, the

finite product spaces of members in b and subspaces of members in b.

It is clear that the operator ideal F on L(consisting of operators with finite ranks)

is injective; moreover, we have, for any X ∈ L and any normed space F, that

(3a) F(X, F ) = L(Xσ, F ),

where Xσ = (X, σ(X,X
′
)).

Let (E, E+, T) be a locally solid space(for definition, see[12, p.29]) and Y a locally

convex space. An T ∈ L(E, Y ) is cone-absolutely summing if for any continuous semi-

norm q on Y there exists a continuous seminorm p on E such that∑n
i=1 q(Tui) 5 p(

∑n
i=1 ui)

holds for finite subset{u1, ..., un} of E+. Denoted by Ll(E, Y ) the vector space of all

cone-absolutely summing operators. Then one can show(see[12,(3.1.3)]) that

(3b) Ll(E, Y ) = L(Eσs , Y )

where Eσs = (E, E+, σs(E, E
′
)) and σs(E, E

′
) is the topology on E of uniform conver-

gence on all intervals [-f,f] with f ∈ E+ (i.e., the locally solid topology associated with

σ(E, E
′
)).

It is remarkable that(3a)[resp.(3b)] shows that the vector space F(X,F )[resp. Ll(E, Y )]
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does not depend upon the original locally convex topology Tori(X) on X(resp. the origi-

nal locally solid topology on E), but only on the dual pair < X, X
′
>(resp. < E,E

′
>).

Also, (3a) and (3b) suggest naturally the following:

(Q1)Let A be a given operator ideal on b. For any X ∈ b, does there exist a (com-

pactible) locally convex topology P(w.r.t < X, X
′
>) such that

A(X,Y ) = L(XP, Y ) (for all Y ∈ b)?

Conversely, it is natural to ask the following:

(Q2)What kind of compatible locally convex topologies P will ensure that the setting

A[P](X, Y ) = L(XP, Y ) (for all X, Y ∈ b)

defines an operator ideal A[P] on b?

In order to answer the question (Q1), we require the following:

Definition 3.1 Let A be an operator ideal on b For any given X ∈ b, let P(A)(X) be

the projective topology on X with respect to the family

{(Y,Tori(Y ), T ) : (Y,Tori(Y )) ∈ b and T ∈ A(X, Y )}.

The collection, defined by

P(A) = {P(A)(X) : X ∈ b},

is called the A-topology(or ideal-topology) on b. On each X ∈ b, P(A)(X)-continuous

seminorms on X are referred to as A-seminorms(or ideal-seminorms) on b. We write

XP(A) for (X, P(A)(X)). The definition of projective topologies implies that

P(A)(X) 5 Tori(X) and A(X, Y ) j L(XP(A), Y )

whenever X, Y ∈ scriptb. As F(X,Y ) j A(X,Y ), it follows that X
′
j (X, P(A)(X))

′
,

and hence that P(A)(X) is consistent with < X, X
′
>. Also, the definition of projec-

tive topologies implies that the ideal-topology P(A) on b is determined by the family

l(A) = {l(A)(X) : X ∈ b} of seminorms, where

(3c) l(A)(X) = {qY ◦ S : S ∈ A(X, Y ), Y ∈ σb and

qY is T(Y )-continuous seminorms}.
It then follows that a seminorm p on X is an A-seminorm if and only if there exits an

Z ∈ b, an S ∈ A(X, Z) and a Tori(Z)-continuous seminorm rZ on Z such that

(3d) p(x) 5 rZ(Sx) (for all x ∈ X),
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and hence that T ∈ L(XP(A),Y ) if and only if for any Tori(Y )-continuous seminorm qY

on Y, there exists an Z ∈ b, an S ∈ A(X,Z) and an Tori(Z)-continuous seminorm rZ

on Z such that

(3e) qY (Tx) 5 rZ(Sx) (for all x ∈ X).

Applying(3e) to the case of Banach spaces, we obtain immediately from Lemma

2.1(a) the following:

Lemma 3.2 Let A be an operator ideal on B-spaces. Then

(3.2.1) L(EP(A),F ) = Ainj(E, F ) for all E, F ∈ B.

Note. Formula(3.2.1) is no longer true for an operator ideal on b with b 6= B[see Theo-

rem(3.8)(a)].

The preceding result was mentioned by Stephani[11, p.242].

In order to give a characterization of seminorms which are A-seminorms, we require the

following notation. Let X be a locally convex space. For any seminorm p on X we write

Xp for the quotient space X/p−1(0) equipped with the quotient seminorm p̂(or ‖ · ‖p)

of p(p̂ is actually a norm), X̃p for the completion of Xp and Qp : X → X̃p the quotient

map.

Using Randtke’s idea(see[8,p.90] or Wong[12,(3.2.1)] and (3.2.7)) we obtain the fol-

lowing interesting results:

Lemma 3.3 Let A be an operator ideal on B-spaces and E ∈ B. Then a seminorm p

on E is an A-seminorm if and only if Qp ∈ Ainj(E, Ẽp).

Proof. By Lemma 3.2, Ainj(E, Ẽp) = L(EP(A), Ẽp), the result then follows from the

following equivalent statements:

p is an A-seminorm

⇔ p is P(A)(E)-continuous

⇔ Qp ∈ L(EP(A), Ẽp).
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If A is assumed to be injective operator ideal on b then the preceding result can be

extended to the case of operator ideals on LCS’s as shown by the following:

Theorem 3.4 Let A be an injective operator ideal on b and X ∈ b. Then a seminorm

p on X is an A-seminorm if and only if Qp ∈ A(X, Xp).

Proof. Necessity . Let p be an A-seminorm on X. Then there exists an (Y, Tori(Y )) ∈ b,

an T ∈ A(X, Y ) and a Tori(Y )-continuous seminorm r on Y such that

(1) p(x) 5 r(Tx) (for all x ∈ X),

so that

(2) KerT j Kerp = KerQp.

Let Y0 = T (X) be equpped with the relative topology, let JY0 : Y0 → Y be the canonical

embedding, and let us define T0 : X → Y0 by setting

(3) T0x = Tx (for all x ∈ X).

Then T0 ∈ L(X, Y ) is surjective and JY0 is a topological injection such that

(4) JY0T0 = T ,

it then follows from T ∈ A(X, Y ) and the injective of A that T0 ∈ A(X, Y0).

On the other hand, (2) and (3) show that

KerT0 = KerT j KerQp,

it then follows from (1) and (4) that there exists an R ∈ L(Y0, Xp) such that Qp = RT0,

and hence from T0 ∈ L(X, Y0) that Qp ∈ A(X, Xp).

Sufficient . As Qp ∈ A(X, Xp) and p̂ is a continuous seminorm on the normed space Xp

it follows from

p(x) = p̂(Qp(x)) (for all x ∈ X)

that p is an A-seminorm.

The preceeding result has some interesting applications, to see this, let us recall the

following terminologies:

Let X be a locally convex space. A seminorm p on X is:

(a) precompact (see Randtke [8, p.90]) if there exists an (λn) ∈ c0 and an equicontin-

uous sequence (fn) in X
′
such that

p(x) 5 supn | λnfn(x) | (for all x ∈ X);
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(b) prenuclear(see Schaefer [9, p.177]) if there exists a σ(X, X
′
)-closed equicontinuous

subset B of X
′
and a positive Radon measure µ on B such that

p(x) 5
∫

B
|< x, f >| dµ(f) (for all x ∈ X).

In addition, (X, X+, I) is a locally solid space (for definition, see[12]), p is a

(c) (PL)-seminorm(see Wong[12, p.126]) if there exists a positive f ∈ X
′
such that

p(x) 5 sup{g(x) : −f 5 g 5 f} (for all x ∈ X).

The class of all precompact (resp. absolutely summing(for definition, see[12, p.121]))

operators, denoted by Lp(resp. Ls), is an injective operator ideal on L.

It is shown by Randtke[8, p.90] that a seminorm p on X is precompact if and only if

Qp ∈ LS(X, Xp). On the other hand, it is known(see [12,(3.2.1)]) that a seminorm p on

a locally solid space(X,X+, I) is a (PL)-seminorm if and only if Qp ∈ Ll(X, Xp)(cone-

absolutely summing). Therefore, precompact[resp. prenuclear, (PL)-seminorm] semi-

norms are Lp-seminorms(resp. Ls-seminorms, Ll-seminorms), in other words, Theorem

3.4 is a generalization of a result of Randtke[8,(2.5)] and of results of Wong[12,(3.2.7)

and (3.2.1)].

We shall now turn our attention to matters related to the question (Q2), namely:

what kind of compactible locally convex topologies P will ensure that the setting:

A[P](X, Y ) = L(XP, Y ) (for all X,Y ∈ b)

defines an operator ideal A[P] on b? It is clear that F j A[P] and that A[P](X, Y )

is a vector space. The following result gives a criterion a for A[P] to satisfy the ideal

property (OI2).

Lemma 3.5 Let g = {g(X) : X ∈ b be a family of Hausdorff locally convex topologies

on all members in b and

Xg = (X, g(X)) (for all X ∈ b)

Then the following statements are equivalent.

(a) Suppose that G, X, Y, Z ∈ b and that

R ∈ L(Y, Z), T ∈ L(Xg, Y ) and S ∈ L(G, X).
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Then RTS ∈ L(Gg, Z).

(b) L(X, Y ) j L(Xg, Yg)(for all X, Y ∈ b).

Proof . The implication (b) ⇒ (a) is obvious. To prove that (a) implies (b), let

T ∈ L(X, Y ) and q a g(Y )-continuous seminorm on Y. Then the quotient map Qq :

Yg → Yq = (Y/q−1(0), q̂) is continuous, hence QqT ∈ L(Xg, Yq)[by (a) and T ∈ L(X, Y )],

and thus there is a g(X)-continuous seminorm p on X such that

q̂(Qq(Tx) 5 p(x)) (for all x ∈ X).

We conclude from q̂(Qq(Tx)) = q(Tx) that T ∈ L(Xg, Yg).

Definition 3.6 (Stephani[11], Franco/Piñeiro[3]). For any X ∈ b, let g(X) be a locally

convex topology on X(which may be different from Tori(X)). The collection

g = {g(X) : X ∈ b}
is called a generating topology on b if it satisfies the following two conditions:

(GT1) g(X) 5 Tori(X) for any X ∈ b.

(GT2) L(X, Y ) j L(Xg, Yg)(for any X, Y ∈ b), where Xg = (X, g(X))

Remark . As K ∈ b and g(K) =‖ · ‖K-topology, it follows that g(X) is consistent with

< X,X
′
> for any X ∈ b. On the other hand, if b = B then one can show (see [11])

that

L(E, F ) = L(Eg, Fg) for all E, F ∈ B.

However the preceeding equality is, in general, not true unless b is a subclass of all

Mackey spaces. Indeed, consider an infinite-dimensional normed space E, the identity

map idE on E is clearly weak-weak continuous but not weak-norm continuous. This says

that

L(Eσ, E) 6= L(Eσ, Eσ).

However, it is easily seen that the system gσ of weak topologies is a generating topology

on locally convex spaces.

Let g be a generating topology on b. Then Lemma 3.5 and Definition 3.6 show that

the class O[g] of operators, defined by

O[g](X, Y ) = L(Xg, Y ) (for all X, Y ∈ b),

is an operator ideal on b; moreover, it is injective as shown by the following:
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Lemma 3.7 Let g be a generating topology on b. Then the class O[g], defined by

O[g](X, Y ) = L(Xg, Y ) (for all X, Y ∈ b),

is an injective operator ideal on b; it is called the injective operator ideal on b associated

with g.

Proof . Suppose that T ∈ L(X, Y ), Z ∈ b and that J : Y → Z is a topological injection

such that JT ∈ O[g](X, Z). It is required to show that T ∈ O[g](X, Y )(= L(Xg, Y )).

In fact, let U be a 0-neighbourhood in Y, and let W be a 0-neighbourhood in Z such

that W ∩ J(Y ) j J(U). It then follows from the injectivity of J that

(1) J−1(W ) j U .

As JT ∈ L(Xg, Z) (= O[g](X, Y )), it follows that there exists a g(X)-neighbourhood V

of 0 in X such that

V j (JT )−1(W ) = T−1(J−1(W )),

and hence from (1) that V j T−1(U), thus T ∈ L(Xg, Y ).

The preceeding result was proved by Stephan[11,p.201] in the special case b = B.

The following result demonstrates some relationship between ideal-topologies and gen-

erating topologies.

Theorem 3.8 (a)Given an operator ideal A on b. Then the A-topology P(A) on b is

a generating topology on b. If, in addition, b = B, then the injective operator ideal

O[P(A)] associated with P(A) is the injective hull of A, that is

(3.8.1) O[P(A)] = Ainj.

Unfortunately the preceeding equality is no longer true for b 6= B.

(b)Given a generating topology g on b, let O[g] be the injective operator ideal on b

associated with g. Then g is the O[g]-topology on b, that is

g = P(O[g]);

consequently, every generating topology on b is an ideal-topology on b.

Proof . (a)For any X ∈ b, it is known from Definition 3.1 that P(A)(X) is consistent

with < X, X
′
>. To check that

L(X, Y ) j L(XP(A), YP(A)) (for all X, Y ∈ b),

we first notice that the P(A)(X)-topology on X is generated by the following family of

seminorms:
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l(A)(X) = {qY ◦ T : T ∈ A(X, Y ),

qY is Tori(Y )-continuous seminorms, Y ∈ b}.
Now, let T ∈ L(X, Y ) and r an P(A)-continuous seminorm on Y. Then there exists an

Z ∈ b, an S ∈ A(Y, Z) and a Tori(Z)-continuous seminorm qZ on Z such that

r(y) 5 qZ(Sy) for all y ∈ Y ;

in particular,

r(Tx) 5 qZ(STx) for all x ∈ X.

As ST ∈ A(X, Z), it follows that p = qZ ◦ S ◦ T is an A-seminorm on X such that

r(Tx) 5 p(x) for all x ∈ X,

and hence that T ∈ L(XP(A), YP(A)) as required.

Suppose now that A is an operator ideal on B-spaces, and that E, F ∈ B. Then

Lemma3.2 and 3.7 show that

Ainj(E, F ) = L(EP(A), F ) = O[P(A)](E, F ).

Equality(3.8.1)is, in general, not true for operator ideals on LCS’s as shown by the fol-

lowing example: consider the operator ideal F on LCS’s of continuous finite operators.

It is easily seen that F is injective on L and that

P(F) = gσ = {σ(X, X
′
) : X ∈ L}.

Now for an finite-dimensional normed space X, it then follows from Lemma3.7 that

idX ∈ L(Xσ, Xσ) = O[P(F)](Xσ, Xσ);

but idX * F(X, Xσ) unless dimX < ∞. This shows that F $ O[P(F)].

(b) Let g be a generating topology on b. On each X ∈ b, the ideal-topology

P(O[g])(X) on X is the coarsest topology on X for which all operators in O[g](X,Y )

are P(O[g])(X)-continuous (whenever Y ∈ b). As O[g](X,Y ) = L(Xg, Y ), we conclude

that

P(O[g])(X) 5 g(X) (for all X ∈ b).

Conversely, let p be a g(X)-continuous seminorm on X. Then Qp ∈ L(Xg, Xp)(= O[g](X, Xp)).

As the operator ideal O[g] is injective(see Lemma 3.7), it follows from Theorem 3.4 that

p is an O[g]-seminorm on X or equivalently, p is P(O[g])(X)-continuous; consequently,

g(X) 5 P(O[g])(X).

Following Franco and Piñeiro [3], a subclass P of the class Tori of all the continuous

seminorms on L is called a seminorm ideal if all the components P(X) := P ∩ Tori(X)
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with X ∈ L satisfy the following conditions:

(P1): for all x
′ ∈ X

′
, there is an p ∈ P(X)and an α > 0 such that

|< x, x
′
>|5 αp(x) ∀x ∈ X;

(P2): for any p1 and p2 ∈ P(X), there is an p ∈ P(X)such that

pi 5 p (i=1,2);

(P3): for all q ∈ P(X), Y ∈ L and T ∈ L(X, Y ), there is an p ∈ P(X) and an α > 0

such that

q(T (x)) 5 αp(x) ∀x ∈ X;

(P4): if p 5 q with q ∈ P(X)(where p is a seminorm on X), then p ∈ P(X).

One can easily obtain the Banach spaces version of the above definition.

We summarize the above discussion by the following:

Theorem 3.9 Let b be either B or L, and let

g = {g(X) : X ∈ b

be a family of locally convex topologies on b. Consider the following statements:

(a) L(X, Y ) = L(Xg, Yg) for all X,Y ∈ b.

(b) g is an A-topology on b for some operator ideal A on b.

(c) g is a generating topology on b.

(d) The class defined by

O[g](X, Y ) = L(Xg, Y ) for all X,Y ∈ b,

is an injective operator ideal on b.
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(e) The family of all g-continuous seminorms constitutes a seminorm ideal on b.

If b = L then we have

(a) ⇒ (b) ⇔ (c) ⇔ (d) ⇔ (e).

If b = B then we have

(a) ⇔ (b) ⇔ (c) ⇔ (d) ⇔ (e).

Proof . Then equivalences (b) ⇔ (c) ⇔ (d) ⇔ (e) are easy to verify (a) ⇒ (c) is obvious.

For b = B, it is known from Schaefer[9,p.158] that every continuous operator from a LCS
into another is also continuous for the Mackey topologies on these two spaces. Since Ba-

nach spaces are Mackey, we have L(Eg, Fg) j L(E, F )(where E, F ∈ B). Therefore, the

implication (c) ⇔ (a) now comes from (GT2).

The equivalence (c) ⇔ (e) is mentioned by Franco and Piñeiro [3]. Also the equiva-

lence of (a) and (c) is due to Stephani[11]; but we give here a different and quite easier

proof.

It is remarkable that the preceeding result contains an interesting fact that every

system g of locally convex topologies on the category b = B(or the class of all Mackey

spaces) satisfying the condition

L(Xg, Yg) = L(X, Y ) for all X, Y ∈ b

is nothing but an A-topology. In other words, to study different kinds of operator ideals

on b it is to study such the systems of locally convex topologies, and vice versa. Here,

we give out some interesting examples.

Example 3.10 3.10. Denote respectively by gpc, gqpv, gpv, and gsv the generating sys-

tems of precompact topologies, quasi-p-nuclear topologies, prenuclear topologies and

strongly nuclear topologies induced by the corresponding ideals of precompact operators,

quasi-p-nuclear operators, absolutely summing operators and strongly nuclear operators

(ideal definitions of these generating topologies can be found in Wong[13,p.14,161,146]).

With these notations, we have for all E and F ∈ B that

L(X, Y ) = L(Xgpc , Ygpc)

= L(Xgqpv , Ygqpv)

= L(Xgpv , Ygpv)

= ....
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4 Ideal-Bornologies and Generating Bornolobies

Using the notion of bornologies, this section is devoted to a study of the dual concepts

of ideal-topologies and generating topologies.

Throughout this paper, Uvon(X) denotes the von Neumann bornology on X ∈ L and

by referring X we always mean the bornological space (X, Uvon(X)).

It is clear the operator ideal F on L is surjective, moreover, we have, for any normed

space E and Y ∈ L, that

(4a) F(E, Y ) = Lx(E, Y Uf ) ∩ L(E, Y ),

where Y Uf = (Y,Uf (Y )) and Uf (Y ) is the finite-dimensional bornology on Y.

(4a)suggests the following question which is dual to (Q1) of 3.

(Q1)∗Let A be a given operator ideal on b. For any X ∈ b, does there exist a convex

bornology B such that

A(X, Y ) = Lx(X, Y B) ∩ L(X, Y ) (for all Y ∈ b)?

Conversely, it is natural to ask the following question [it is a dual version of (Q2) in

3]:

(Q2)∗ What kind of convex bornologies B with Uvon(X) 5 B(X) 5 Uf (X)(for all

X ∈ b) will ensure that the setting

O[B](X, Y ) = Lx(X, Y B) ∩ L(X,Y ) (for all X, Y ∈ b)

defines an operator ideal O[B] on b?

In order to answer the question (Q1)∗, we require the following terminology which

is dual to (3.1).

Definition 4.1 Let A be an operator ideal on b. For a given Y ∈ b, let U(A)(Y ) be the

final convex bornology on Y with respect to the family

{(X, Uvon(X), S) : S ∈ A(X, Y ) and X ∈ b}.
Then the collection, defined by

U(A) = {U(A)(Y ) : Y ∈ b},
is called the A-bornology (or ideal-bornology) on b. On each Y ∈ b, members in U(A)(Y )

are said to be A-bounded (or ideal-bounded) in b; also we write

Y U(A) = (Y, U(A)(Y )) (for all Y ∈ b).

By the definition of final convex bornologies, it is easily seen that

Uf (Y ) j U(A)(Y ) j Uvon(Y ) (for all Y ∈ b)

and that

A(X,Y ) j Lx(X, Y U(A)) ∩ L(X, Y ) (for all X, Y ∈ b).

On the other hand, U(A)(Y ) is the intersection of all convex bornologies containing

17



(4b) U0(A)(Y ) = ∪{S(Uvon(X)) : S ∈ A(X, Y ), X ∈ b},
where S(Uvon(X)) = {S(A) : A ∈ Uvon(X)}. Moreover, U0(A)(Y ) is a base for U(A)(Y )

as shown by the following:

Lemma 4.2 Let A be an operator ideal on b. For any Y ∈ b, the family U0(A)(Y )

defined by (4b), is a base for the ideal-bornology U(A)(Y ) on Y. Consequently, a subset

B of Y is A-bounded if and only if there exists an Z ∈ b, an S ∈ A(Z, Y ) and an

A ∈ Uvon(Z) such that

(4.2.1) B j S(A).

Proof . To check that U0(A)(Y ) is a base for a convex bornology, it has to show, in view

of the linearity of each S ∈ A(X, Y ) and X ∈ b, that U0(A)(Y ) satisfies the following

two properties:

(i) Y = ∪U0(A)(Y );

(ii) if Si ∈ A(Xi, Y ) and Ai ∈ Uvon(Xi)(i=1,2), then there exists an X ∈ b, an S ∈
A(X, Y ) and A ∈ Uvon(X) such that S1(A1) + S2(A2) j S(A).

In fact, for any y ∈ Y , let Z = {λy : y ∈ K} be equipped with the relative topology

and T ∈ JZ(the canonical injection). Then

T ∈ F(Z, Y ) j A(Z, Y ) and B = {y} ∈ Uvon(Z)

are such that y ∈ T (B) ∈ ∪U0(A), so that (i) holds. To prove (ii), we first notice that

the map S1 × S2, defined by

S1 × S2 : X1 ×X2 → Y × Y : (x1, x2) → (S1x1, S2x2),

belongs to A(X1 ×X2, Y1 × Y2) since Si ∈ A(Xi, Y ) and

S1 × S2 = J
(1)
Y S1ΠX1 + J

(2)
Y S2ΠX2 ,

where ΠXi
: X1 ×X2 → Xi is the ith projection and

J
(1)
Y y = (y, 0) and J

(2)
Y y = (0, y) (for all y ∈ Y ).

On the other hand, let us define

Π
(1)
Y : Y × Y → Y : (y1, y2) 7→ y1

Π
(2)
Y : Y × Y → Y : (y1, y2) 7→ y2,

whenever (y1, y2) ∈ Y × Y . Then
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S = (Π
(1)
Y + Π

(2)
Y )(S1 × S2) ∈ A(X1 ×X2, Y )

and A = A1 × A2 ∈ Uvon(X1 ×X2) are such that

S(A) = S(A1 × A2) = (Π
(1)
Y + Π

(2)
Y )S1 × S2(A1 × A2)

= S1(A1) + S2(A2) ∈ U0(A)(Y )

(since X = X1 ×X2 ∈ b). This proves our assertion (ii).

Finally, let B be the convex bornology on Y generated by U0(A)(Y ), that is

B = {B j Y : B j D for some D ∈ U0(A)(Y )}.
Then U(A)(Y ) j B[by the definition of U(A)(Y )]. Conversely, since U(A)(Y ) is a convex

bornology containing U0(A)(Y ), it follows from the definition of B that B j U(A)(Y ).

Therefore the family U0(A)(Y ) is a base for U(A)(Y ). Consequently (4.2.1) holds (by

the definition of A-bounded sets and bases).

Base on Lemma 4.2, we are now able to give dual versions of all results in Sect.3.

Lemma 4.3 Let A be an operator ideal on B. Then

(4.3.1) Lx(E, F U(A)) = Asur(E, F ) (for all E, F ∈ B).

Moreover, (4.3.1) is no longer true for an operator ideal A on b 6= B.

Proof .(4.3.1) follows immediately from Lemma 2.1(b) and (4.2.1) of Lemma 4.2.

Finally, L is an operator ideal on L with

U(L)(X) = Uvon(X) for all X ∈ L
(i.e., the system of all Von Neumann bornologies is an ideal-bornology), hence

Lx(X, Y U(L)) = Lx(X, Y ) % L(X, Y )

in general (unless X is a bornological locally convex space).

In order to give a characterization of A-bounded sets, we require the following nota-

tions. For any absolutely convex subset B of a vector space Y, let Y (B) =
⋃

n≥1 nB(the

vector subspace of Y generated by B), let rB be the gauge of B defined on Y (B), and

let

JB : Y (B) → Y

be the canonical embedding. Then rB is a seminorm on Y (B) such that

{y ∈ Y (B) : rB < 1} j B j {y ∈ Y (B) : rB 5 1}.
Moreover, if Y is a locally convex space and B is bounded in Y, then rB is a norm on

Y (B) and JB : (Y (B), rB) → Y is continuous.

19



Lemma 4.4 Let A be an operator ideal on B-spaces and F ∈ B. Then a bounded set B

in F is A-bounded if and only if JB0 ∈ Asur(F (B0), F ), where B0 = Γσ(B) is the σ-disked

hull of B.

Proof . By Lemma 4.3, Asur(F (B0), F ) = Lx(F (B0), F
U(A)), the result then follows from

the following equivalence statements:

JB0 ∈ Asur(F (B0), F )

⇔ JB0(UF (B0)) ∈ U(A)(F )

⇔ B0 is A-bounded(since B0 j UF (B0) j 2B0).

If the operator ideal A on b is assumed to be surjective, then the preceeding result

can be extended to the case of operator ideals on LCS’s as shown by the following result

which is dual version of Theorem 3.4.

Theorem 4.5 Let A be a surjective operator on b and Y ∈ b. Then a subset B of Y is

A-bounded if and only if the canonical embedding

JΓB : (Y (ΓB), rΓB) → Y

belongs to A(Y (ΓB), Y ).

Proof . The sufficiency is trivial by making use of (4.2.1) of Lemma 4.2. To prove the

necessity, let B be a absolutely convex. Then there exists an X ∈ b, an T ∈ A(X, Y )

and W0 = ΓW0 ∈ Uvon(X) such that B j TW0, hence the set W, defined by

W = (T−1B) ∩W0,

is an absolutely convex bounded subset of X such that TW = B = JB(B), so that we

have the following commutative diagram:

It then follows from the injectivity of JT
B and ImJY

B = ImTJW that there exists a

surjective map Q : X(W ) → Y (B) such that

TJW = JY
B Q.

It is easily seen that Q is linear and

Q(W ) = JY
B (Q(W )) = TJW (W ) = T (W ) = B,

hence Q is open [since Q(UX(W )) k Q(W ) = B] and continuous [since W j Q−1(B) j

Q−1(UY (B))]. It then follows from JY
B Q = TJW with T ∈ A(X, Y ) that JBQ ∈

A(X(W ), Y ), and hence from the surjectivity of A that JB ∈ A(Y (B), Y ) (since Q

is open).

To answer the question(Q2)∗, we first verify the following result which is a dual
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version of Lemma 3.5.

Lemma 4.6 Let B = {B(Y ) : Y ∈ b be a family of separated convex bornologies on all

members in b with B(Y ) j Uvon(Y ) and

Y B = (Y,B(Y )) (for all y ∈ b).

Then the following two statements are equivalent.

(a) Suppose that G, X, Y, Z ∈ b and that

R ∈ L(Y, Z), T ∈ Lx(X, YB) ∩ L(X, Y ) and S ∈ L(G, X).

Then RTS ∈ Lx(G, ZB).

(b) L(X, Y ) j Lx(XB, YB) (for all X, Y ∈ b).

Proof . The implication (b) ⇒ (a) is trivial. To prove that (a) implies (b), let T ∈
L(X, Y ) and B = ΓB ∈ B(X). Then JB ∈ Lx(X(B), XB) ∩ L(X(B), X), hence

TJB = TJBidX(B) ∈ Lx(X(B), Y B)

[by (a)], thus T ∈ Lx(XB, Y B)[since TB j T (UX(B)) ∈ B(Y )].

Definition 4.7 4.7. For any Y ∈ b, let B(Y ) be a separated convex bornology on Y

[which may be different from Uvon(Y )]. The collection, defined by

B = {B(Y ) : Y ∈ b}
is called a generating bornology on b is it satisfies the following two conditions:

(GB1) B(Y ) j Uvon(Y )(for all Y ∈ b);

(GB2) L(X, Y ) j Lx(XB, Y B)(for all X, Y ∈ b).

A generating bornology B on b is said to be σ-disked if on each Y ∈ b, the convex

bornology B(Y ) admits a base consisting of σ-disked sets.

Remark(i). In[10], Stephani defines the concept of generating system of sets on Ba-

nach spaces. One can find that every generating bornology on B is a generating system

of sets. However, we consider the current machinery be richer in both the representation
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and universal satisfication in arbitrary class of locally convex spaces. Moreover, inter-

ested readers may find that this two processes are at least equally powerful in the case

of Banach spaces.

Remark(ii). As K ∈ b, it follows that B(K) = Uvon(K), and hence from (GB2) that

Uf (Y ) j B(Y ) j Uvon(Y ) for any Y ∈ b.

Let B be a generating bornology on b. Then (4.6) and (4.7) show that the class

O[B] of operators, defined by

O[B](X, Y ) = Lx(X, Y B) ∩ L(X,Y ) (for all X, Y ∈ b),

is an operator ideal on b; moreover, it is surjective as shown by the following result,

which is a dual version of Lemma 3.7.

Lemma 4.8 Let B be a generating bornology on b. Then the class O[B] of operators,

defined by

O[B](X, Y ) = Lx(X, Y B) ∩ L(X,Y ) (for allX, Y ∈ b),

is a surjective operator ideal on b, it is called the surjective operator ideal associated with

B.

Proof . Suppose that T ∈ L(X, Y ), G ∈ b and that Q : G → X is an open oper-

ator such that TQ ∈ O[B](G, Y ). It is required to show that T ∈ O[B](X, Y )(=

Lx(X, Y B) ∩ L(X, Y )).

In fact, let B ∈ Uvon(X). As Q is open and continuous, there exists an D ∈ Uvon(G)

such that B j Q(D), hence

T (B) j T (Q(D)) ∈ B(Y )

by the assumption TQ ∈ O[B](G, Y ) = Lx(G, Y B)∩L(G, Y ); this proves our assertion.

Theorem 4.9 (a) Given an operator ideal A on b. The A-bornology U(A) on b is a

generating bornology on b. If, in addition, b = B, then the surjective operator ideal

O[U(A)] associated with U(A) is the surjective hull of A, that is,

O[U(A)] = Asuj.

Unfortunately, the preceeding equality is no longer true in the case of operator

ideals on L by the same counterexample given in Theorem 3.8(a).

(b) Given a generating bornology B on b, let O[B] be the surjective operator ideal on
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b associated with B. Then B is the O[B]-bornology on b, that is,

B = U(O[B]).

Consequently, every generating bornology on b is an ideal-bornology on b.

Proof . (a)We check the condition (GB2) only. In fact, let B be an A-bounded set

in X and T ∈ L(X, Y ) where X, Y ∈ C. By definition, there exists an X0 ∈ b and

R ∈ L(X0, X) such that B j RB0 for some bounded set B0 in X0. Now TB j TRB0

and TR ∈ A(X0, Y ) give out our assertion that T ∈ Lx(XU(A), Y U(A)). If, in addition,

b = B, then B may be assumed to be Ux and B0 to be Ux0 . The equality follows from

Lemma 2.1(b).

On each Y ∈ b, the ideal-bornology U(O[B]) on Y is the finest convex gornology on

Y for which all operators in O[B](X, Y ) belong to Lx(X, Y U(O[B]))(whenever X ∈ b),

it then follows from O[B](X, Y ) = Lx(X, Y B) ∩ L(X, Y ) that B(Y ) 5 U(O[B])(Y ) or,

equivalently,

U(O[B])(Y ) j B(Y ).

Conversely, let B = ΓB be in B(Y ). Then JB : (Y (B), rB) → Y is continuous [since

B(Y ) j Uvon(Y )] and JB(UY (B)) ∈ B(Y )[since JB(UY (B)) j 2B and 2B ∈ B(Y )], thus

JB ∈ Lx(Y (B), Y B) ∩ L(Y (B), Y ) = O[B](Y (B), Y ).

As O[B] is surjective (see Lemma 4.8), it follows from Theorem 4.5 that B is O[B]-

bounded; this proves B(Y ) j O[B](Y ).

We summarize the above discussion by the following result which is a dual version

of Theorem 3.9.

Theorem 4.10 Let b be either L or B and let

B = {B(Y ) : Y ∈ b}
be a family of separated convex (resp. σ-disked) bornologies on each locally convex space

(resp. B-space). Then the following statements are equivalent.

(a) B is an A-bornology on b.

(b) B is a generating bornology on b.

(c) The set, defined by

O[B](X, Y ) = Lx(X, Y B) ∩ L(X,Y ) (X, Y ∈ b),

is a surjective operator ideal on b.
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5 A-Topological Spaces and A-bornological Spaces

In terms of the notions of A-topologies and A-bornologies, we are able to make a classi-

fication of locally convex spaces as follows.

Definition 5.1 Let b be either B or L and A an operator ideal on b. An X ∈ b is

called an A-topological space(resp. A-bornological space) if the original topology (resp.

A-bornology) on X.

By Lemma 3.3(resp. Lemma4.4), a Banach space E is an A-topological space(resp.

A-bornological space) is and only if the quotient (resp. embedding) map associated with

each continuous seminorm on E(resp. the σ-disked hull of each bounded set in E) belongs

to the injective (resp. surjective) hull of A. Moreover, if we assume that the operator

ideal A on L is injective(resp.surjective), then Theorem 3.4(resp. Theorem4.5) shows

that a locally convex space X is an A-topological space (resp. A-bornological space) is

and only if the quotient(resp. embedding) map associated with each continuous semi-

norm on X (resp. absolutely convex, bounded set in X) belong to A.

Before giving some examples of A-topological spaces and A-bornological spaces, we

recall the following terminologies. An operator T from a B-space E into another F is

said to be:

(a) compact(resp.weakly compact) if TUE is relatively compact (resp. relatively weakly

compact);

(b) unconditionally summing if T sends each weakly unconditionally summable series

in E onto a norm summable series;

(c) complete continuous if T sends each weak convergent sequence in E onto a norm

convergent sequence in F;

(d) separable if TE is separable;

(e) Banach-Saks(resp.weakly Banach-saks) if T sends each bounded (resp.weakly hull)

sequence in E onto a sequence in F containing a subsequence with an convergent

arithmetic mean;

(f) Rosenthal compact if T sends each bounded sequence in E onto a sequence in F

containing a weakly Cauchy subsequence;
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(g) limited if TUE is a limit set in F(see [2]).

An operator T from a locally convex space X into another Y is said to be:

(h) precompact if T sends some O-neighbourhood in X into a precompact set in Y;

(i) absolutely summing if for any continuous seminorm q on Y there are a σ(X
′
, X)-

closed equicontinuous subset B of X
′
and a positive Radon measure µ on B such

that

q(Tx) 5
∫

B
|< x, x

′
>| dµ(x

′
) for all x ∈ X;

(j) of type s if {Tx : p(x) 5 1} is bounded in Y for some strong nuclear seminorm p

(see[8,p.97]).

We denote by F for the ideal of continuous finite rank operators, by K for the ideal

of compact operators, by W for the ideal of weakly compact operators, by UP for the

ideal of unconditionally summing operators, by V for the ideal of completely continuous

operators, by X for the ideal of separable operators, by BS for the ideal of Banach-Saks

operators, by wBG for the ideal of weakly Banach-Saks operators, by R for the ideal of

Rosenthal compact operators, by Lim for the ideal of limited operators, by KP for the

ideal of precompact operators, by P for the ideal of absolutely summing operators and

by NS for the ideal of operators of type s.

Example 5.2 5.2. (a) A Banach space E is a

(i) F-topological space (or K-topological space) if and only if dimE < ∞;

(ii) AP -topological space if and only if E has the Pelezynski property(i.e. E contains

no copy of c0);

(iii) B-topological space if and only if E has the Schur property(i.e. every weakly

convergent sequence in E is norm convergent);

(iv) W-topological space if and only if E is reflexive;

(v) X-topological space if and only if E is separable;

(vi) W−1 ◦ B-topological space if and only if E has the Dunford-Pettis property (i.e.

every weakly compact operator from E into another Banach space F is completely

continuous).
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(b) A locally convex space X is a

(i) KP -topological space if and only if X is Schwartz;

(ii) P-topological space if and only if X is nuclear;

(iii) NS-topological space if and only if X is strongly nuclear.

Proof . Being a Banach space, E is an A-topological space if and only if the identity

map idE belongs to Ainj(E, E). Now, (a)(i),(iii),(iv),(v),and(vi) are obvious. For (ii),

we refer to Pietsch[7,p.48]. Moreover, (b)(i)and(iii) can be found in [8,(3.1) and (2.5)],

while (b)(ii) is given in [13,p.46].

Example 5.3 5.3. (a)A Banach space E is a

(i) BS-bornological space if and only if E has the Banach-Saks property(i.e. every

bounded sequence has a subsequence with convergent arithmetic mean);

(ii) wBS-bornological space if and only if E has the weak Banach-Saks property(i.e.

every weakly null sequence has a subsequence with convergent arithmetic mean);

(iii) R-bornological space if and only if E has the Rosenthal property(i.e. E contains

no copy of l1);

(iv) K−Lim−1-bornological space if and only if E has the Gelfand-Phillips property(i.e.

every limited set in E is relatively norm compact).

(b)A locally convex space X is a

(i) K-bornological space if and only if X is semi-Montel;

(ii) W-bornological space if and only if X is semi-reflexive.

Proof . Similar to the proof of the preceeding example, a Banach space E is an A-

bornological space if and only if the identity map idE belongs to Asur(E, E). Now, (a)(i)

and (ii) are direct consequences of definitions. (a)(iii) is just the well-known Rosenthal

theorem(see,[1,p.201]). (a)(iv) can be found in [2]. Recall that a locally convex space

X is semi-Montel(resp. semi-reflexive) if and only if every bounded set in X is relative

compact(resp. relatively weakly compact). It is now clear that (b)(i) and (ii) follow

directly.
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The remainder of this section is devoted to establish some duality results between

A-topological spaces and A-bornological spaces and A-bornological spaces, where A is

an operator ideal on B-spaces . To do this, we first recall the following terminology. Let

A be an operator ideal on B-spaces and for any E, F ∈ B, let

Asur(E, F ) = {T ∈ L(E, F ) : T
′ ∈ A(F

′
, E

′
)}

and

Areg(E, F ) = {T ∈ L(E, F ) : KF T ∈ A(E, F
′′
)}.

We say that A is:

(a) symmetric if A j Adual;

(b) completely symmetric if A = Adual;

(c) regular if A = Areg.

It is known from Pietsch [7,p.74] that

Ainjdual = Adualsur, Asurdual k Adualinj

and from [14,p.801] that

Aregsur = Asurreg.

In the sequel, all polars dwelt on are absolutely polars . Polars taken with respect

to the dual pair < E, E
′

> are denoted by M0, while polars taken with respect to

< E
′
, E

′′
> are denoted by M ], where M is a set in one of the spaces E, E

′
, and E

′′
. In

view of the definitions of generating bornologies and generating topologies, we have the

following:

Theorem 5.4 (a)Let B be a generating bornology on B-spaces. For any F ∈ B, let

B0(F ) = {B0 : B ⊂ F
′
are B(F

′
)− bounded}

(it defines a topology on F of uniform convergence on B(F
′
)-bounded sets). Then the

family

B0(F ) = {B0(F ) : F ∈ B}
is a generating topology on B-spaces, which is called the generating topology polar to B.

(b)Let g be a generating topology on B-spaces. For any E ∈ B, let

g0(E) = {A : A ⊂ V0, V ⊂ E
′
is convex g(E

′
)− neighbourhoods of 0 }

(it defines an equicontinuous bornology on E with respect to g(E
′
)). Then the family

g0 = {g0(E) : E ∈ B}
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is a generating bornology on B-spaces, which is called the generating polar to g.

Proof .(a)The proof is similar to that given by Stephani[11,E6,p.244].

(b)We check (GB2) only. Let T ∈ L(E, F ) and M ∈ g0(E). Then M j V 0 for some

closed and disked 0-neighbourhood V in E
′
g. Hence, TM j TV 0 and consequently

(TM)0 k (TV 0)0 = (T
′
)−1V

by the bipolar theorem. Now, (T
′
)−1V is a 0-neighbourhood in F

′
g[since T

′ ∈ L(F
′
, E

′
) =

L(F
′
g, E

′
g)], this gives

TM j (TM)00 j [(T
′
)−1V ]0,

that is, TM is bounded in (F, g0(F )), consequently,

T ∈ Lx(Eg0(E), F g0(F )).

The most trivial examples may be the following:

g0
σ = Uf , U0

f = gσ

and

T0
ori = U0

von, U0
von = Tori.

However, it is clear that g00(E) and B00(E) are, in general, not identical with g(E)

and B(E) respectively unless E is reflexive. Nevertheless, it is quite appreciated if the

underlying generating topology(resp. generating bornology) is an A-topology(resp. A-

bornology) associated with some symmetric (resp.completely symmetric) operator ideal

A on B.

Proposition 5.5 (Stephani[11,p.245]).Let A be a symmetric operator ideal on B-spaces,

let U(A) be the A-bornology on B, and let U(A)0 be the generating topology polar to U(A).

Then

O[U(A)0] = Ainj.

Dually, we have the following:

Proposition 5.6 Let A be a completely symmetric operator ideal on B-spaces, let P(A)

be the A-topology on B, and let P(A)0 be the generating bornology polar to P(A). Then

O[P(A)0] = Asur.

Proof . Suppose that T ∈ Asur(E, F ), where E, F ∈ B. Then there exists an G ∈ B and

an R ∈ A(G, F ) such that
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TUE j RUG

[see Lemma 2.1(b)], hence

(1) (TEE)0 k (RUG)0 = (R
′
)−1(UG′ ).

As A is completely symmetric, it follows that

R
′ ∈ A(F

′
, G

′
)

and hence that (R
′
)−1(UG′ ) is a P(A)-neighbourhood of 0 in F

′
. We then conclude

from (1) that (TUE)0 is a P(A)-neighbourhood of 0 in F
′
; consequently, TUE is P0(F )-

bounded in F since TUE j (TUE)00. This shows that T ∈ Lx(E, FP(A)0), and a fortiori ,

T ∈ O[P(A)0](E, F ).

Conversely, let T ∈ O[P(A)0](E, F ). Then TUE is bounded in the bornological

space(F, P(A)0(F )), and hence there exists a colsed and disked 0-neighbourhood V in

(F
′
, P(A)(F

′
)) such that TUE j V 0. By the definition of A-topology, there exists an

G ∈ B and R ∈ A(F
′
, G) such that V k R−1UG. It then follows from

(RV )0 = (R
′
)−1(V ]) j UG′

that

KF TUE j KF V 0 j V ] j R
′
UG′ ,

and hence from Lemma 2.1(b) and R
′ ∈ A(G

′
, F

′′
) that

KF T ∈ Asur(E, F
′′
).

On the other hand, it is known (see[14]) that

(Asur)reg = (Areg)sur

for any operator ideal A on B-spaces. Hence we obtain

T ∈ Asurreg(E, F ) = Aregsur(E, F ) = Asur(E, F )

since A is assumed to be completely symmetric and hence regular.

Theorem 5.7 Let A be a symmetric operator ideal on B-spaces. Let P(A) be the A-

topology on B and U(A) the A-bornology on B. Then

U(A)0 = P(A).

Moreover, if A is associated to be completely symmetric then

P(A)0 = U(A).

In this case, we also have

P(A)00 = P(A) and U(A)00 = U(A)
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Proof . Since

O[P(A)] = P(A)inj and O[U(A)] = Asur,

it follows from propositions (5.5) and (5.6) that

O[P(A)] = O[U(A)0] and O[U(A)] = O[P(A)0]

and hence from Propositions 3.8(b) and 4.9(b) that

P(A) = U(A)0 and U(A) = P(A)0.

Example 5.8 As the ideals K and W of compact and weakly compact operators are

both completely symmetric and the ideal N of nuclear operators is symmetric, we have

U0
v = gv, U0

c = gpc, g0
pc = Uc

and

U0
wc = gwc, g0

wc = Uwc

where gv, gpc and gwc(resp. Uv, Upc and Uwc) are the generating systems of nuclear

topologies, precompact topologies and weakly compact topologies (resp. nuclear bronolo-

gies, precompact bornologies and weakly compact bornologies), respectively. Note that

gpc = gc(the generating system of compact topologies) on B.

The above equalities show that each of the three generating topologies is the po-

lar topology induced by the corresponding system of bornologies. On the other hand,

the compact bornologies and the weakly compact bornologies are the equicontinuous

bornologies of the corresponding system of topologies.

The following concluding result is very desirable.

Theorem 5.9 Let A be an operator ideal on B-space.

(a) If A is symmetric, then a Banach space E is an A-topological space if and only if

its Banach dual E
′
is an A-bornological space.

(b) If A is assumed to be completely symmetric, then a Banach space E is an A-

bornological space if and only if E
′
is an A-topological space.

Proof .(a)The assertion follows from the following equivalent statements:

E is an A-bornological space

⇔ U(A)(E
′
) = Uvon(E

′
)

⇔ U(A)0(E) =‖ · ‖E-topology

⇔ P(A)(E) =‖ · ‖E-topology

⇔ E is an A-topological space.
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(b)Follows from the following equivalent statements:

E
′
is an A-topological space

⇔ P(A)(E
′
) =‖ · ‖E-topology

⇔ P(A)0(E) = Uvon(E)

⇔ U(A)(E) = Uvon(E)

⇔ E is an A-bornological space.

Trivial examples can be given by those properties determined by the ideals F, W,

and H of continuous finite rank operators, weakly compact operators and Hilbert oper-

ators, respectively[where T ∈ L(E, F ) is called a Hilbert operator if T can be factorized

through a Hilbert space]. Namely, for a B-space E, we have

(a) E is of finite dimensional if and only if E
′
is of finite dimensional.

(b) E is reflexive if and only if E
′
is reflexive.

(c) E is a Hilbert space if and only if E
′
is a Hilbert space.

6 O[g/B]-Operator Ideals and O[g/B]-Spaces

In this final section, on the well-paved background due to the several preceeding sections,

we are able to define the most natural and the most applicable type of operator ideals

on L, i.e. the O[g/B]-operator ideals.

Some original of this section should be referred to Randtke[8] and Wong[12,pp.142,148]

and [13,pp.24,156,163]. The key point of our theory may be that the topological and

the locally convex space can be highlighted by the behaviour of the continuous semi-

norm system of this space. Moreover, the family of quotient mappings associated to

every continuous seminorm on a locally convex space contains rich information on the

structure of this space, too. By this principle, we express most of the classical examples

given in the above books with the terminology of O[g/B]-spaces.

Readers should be noticed that our presentation of O[g/B]-spaces is a method to

study LCS’s with the tool of operator ideal similar to the one employed by Grothendieck

and Pietsch(cf. the last chapter of the book of Pietsch[7]). But, we consider our method

more natural and easier to follow than the Pietsch’s one.

Definition 6.1 6.1. Let b be either L or B. Let g be a generating topology on b, let B

be a generating bornology on b and suppose for any X, Y ∈ b that
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O[g/B](X, Y ) = Lb(Xg, Y
B)

denotes the class of all bounded operators from Xg = (X, g(X)) into the bornologi-

cal space Y B = (Y,B(Y ))(i.e. T ∈ Lb(Xg, Y
B)) if T sends some 0-neighbourhood in

Xg onto a bounded set in Y B. Members in O[g/B] are called g-B-bounded operators.

By the definitions of generating topologies and generating bornologies, it is easily

seen that

O[g/B](X, Y ) j L(Xg, Y ) for all X,Y ∈ b

and that an T ∈ L(X, Y ) is g-B-bounded if and only if there exists a g(X)-continuous

seminorm p on X such that

{Tx ∈ Y : p(x) 5 1}
is B(Y )-bounded in Y. Thus, the notion of g-B-bounded operators is a generaliza-

tion of that of precompact-bounded (i.e., quasi-Schwartz operators in the terminology

of Randtke [8])(resp. prenuclear-bounded, quasi-nuclear-bounded and cone-prenuclear

maps) operators of Wong[13, pp.24,156, and 163] and [12, p.142].

Theorem 6.2 Let b be either L or B, let g be a generating topology on b and B a

generating bornology on b. Then O[g/B] is an operator ideal on b.

Proof . The condition (OI0) is obvious. For (OI0), let T1 and T2 ∈ O[g/B](X, Y ) for

some X, Y ∈ b. Then there are two g(X)-neighbourhood U1 and U2 of 0 in X such that

M1 = T1U1 and M2 = T2U2 are both bounded in Y B. Let U be any g(X)-neighbourhood

of 0 in X such that U j U1 and U j U2. Then the set (T1 + T2)U j M1 + M2 is clearly

bounded in Y B and hence (OI1) follows.

Finally, to check that O[g/B] satisfies the condition (OI2), suppose that X0, X, Y ,

Y0 ∈ b and that

R ∈ L(Y, Y0), T ∈ O[g/B](X, Y ) and S ∈ L(X0, X).

As T ∈ O[g/B](X, Y ) (= Lb(Xg, Y
B)), it follows that there is a g(X)-neighbourhood

V of 0 in X such that T (V ) is B(Y )-bounded in Y, and hence from (GT2)[i.e., S ∈
L(X0, X) j L((X0)g, Xg)] that there is a g(X)-neighbourhood V0 of 0 in X0 such that

SV0 j V , and thus TSV0 is B(Y )-bounded in Y [since TSV0 j TV ∈ B(Y )].On the

other hand, since B is assumed to be a generating bornology, it follows from (GB2) [i.e.

R ∈ L(Y, Y0) j Lx(Y B, Y B
0 )] and TSV0 ∈ B(Y ) that (RTS)V0 is B(Y )-bounded in Y0.

This implies that RTS ∈ Lb((X0)g, Y
B
0 ) = O[g/B](X0, Y0).

It is natural to ask under what conditions on b and B, the operator ideal O[g/B]

is injective or surjective. The following two results, which are dual to each other, give
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such sufficient conditions.

Proposition 6.3 Let b be either L or B and B a generating bornology on b. If B

satisfies the following condition:

(Bor)for any Y, Y0 ∈ b, if J : Y → Y0is a topological injection then

J−1(B(Y0)) = {J−1B : B ∈ B(Y0)}
is a base for B(Y ),

then the operator ideal O[g/B] on b is injective whenever g is any generating topology

on b.

Proof . Let T ∈ L(X, Y ) and let J : Y → Y0 be a topological injection such that

JT ∈ O[g/B](X, Y0)(where X, Y, Y0 ∈ b). Then the definition of O[g/B] ensures that

there exists a g(X)-neighbourhood V of 0 in X such that JT (V ) is B(Y )-bounded

in Y0. Now the condition (Bor), together with J−1(JT (V )) = T (V ), implies that T (V )

is B(Y )-bounded in Y; this shows that T ∈ O[g/B](X, Y ), and thus O[g/B] is injective.

Proposition 6.4 Let b be either L or B and g a generating topology on b. If g satisfies

the following condition:

(Top) for any X, X0 ∈ b, if Q : X0 → Xis an open operator then Q : (X0, g(X0)) →
(X, g(X)) is open and continuous:

then the operator ideal O[g/B] on b is surjective whenever B is any generating bornology

on b.

Proof . Let T ∈ L(X, Y ) and let Q : X0 → X be an operator such that TQ ∈
O[g/B](X0, Y ) (where X0, X, Y ∈ b). Then there exists a g(X0)-neighbourhood V0

in X0 such that TQ(V0) is B(Y )-bounded in Y. By the condition (Top), V = Q(V0) is

g(Y )-neighbourhood of 0 in Y, hence T ∈ O[g/B](X, Y ), and thus O[g/B]is surjective.

Now we consider two special cases of O[g/B]-operator ideals, namely the one g =

Tori(the original topologies) and the one B = Uvon. They seem to be the most popular

(if not unique) cases occupying general interests. For simplicity of notations, we denoted

by Ob[g] and Ob[B] for the ideals O[g/Uvon] and O[Tori/B], respectively. As corollaries

of Propositions (6.3) and (6.4), we see that Ob[g] is injective while Ob[B] is surjective

for any generating topology g and any generating bornology B.

By a similar argument given in the proofs of propositions (3.8)(b) and (4.9)(b), one

33



can verify the following:

Proposition 6.5 Let g be a generating topology and B be a generating bornology on

LCS’s. Then we have

P(Ob[g]) = g and U(Ob[B]) = B.

As Stephani[10 and 11] proved the following elegant formulae

O[P(A)] = Ainj and O[U(A)] = Asur,

where A is an operator ideal on B-spaces , it might be hopeful to expect the following

result.

(∗)For any bounded operator ideal A on L we would have

Ob[P(A)] = Ainj.

Note that the procedures O and Ob are identical in B and it is easy to see that the

formula O[P(A)] = Ainj is generally invalid.

The statement(∗) is suggested by Franco and Piñeiro as a theorem in their pa-

per[3,Theorem 1 in Sect.2]. Unfortunately, their proof of this statement is not true (see

Example 6.6 below). They have overlooked an important fact that Ob[P(A)] needs not

always contain A. In contrast, we have Ob[P(A)] j A for any injective operator ideal

A.

Example 6.6 Taking A = Kp, the injective operator ideal of all precompact opera-

tors between LCS’s. Then we have that P(Kp), the generating system of precompact

topologies on LCS’s, and Ob[gpc] = Kb
p, the ideal of all precompact-bounded operators(or

quasi-Schwartz operators in the terminology of Randtke [8]) between LCS’s. Now, by

a result of Randtke[8](see also[13,pp.15,24,25, and 26]), Kb
p(X,Y ) j K(X, Y ) for any

locally convex spaces X and Y, and the equality is, in general, not valid. In particular,

for a fixed locally convex space X, Kp(X, Y ) = Kb
p(X, Y ) for all locally convex spaces Y

if and only if X is a Schwartz space. Thus statement (∗) is false.

We are now ready to give some most important examples all of which can be found

in the book of Wong [13,pp.5, 163, and 156].

Example 6.7 (a)The ideal O[Tori/Uvon] is the class Lb of all bounded operators on

L, where Tori denotes the generating topology defined by the original topologies on all

LCS’s.

(b)The ideal O[Tori/Uc] is the class Kod all compact operators on L, where Uc de-

notes the generating bornology of compact bornologies.
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(c)The ideal O[Tori/Uwc] is the class W of all weakly compact operators on L, where

Uwc denotes the generating bornology of weakly compact bornologies.

(d)The ideal O[gqv/Uvon] is the class Nb
q of all quasi-nuclear-bounded operators on L.

where gqv denotes the generating topology of quasi-nuclear topologies.

(e)The ideal O[gpv/Uvon] is the class Nb
p of all prenuclear-bounded operators on bl,

where gpv denotes the generating topology of prenuclear topologies.

(f)The ideal O[gpc/Uvon] is the class Kb
p of all precompact-bounded operators (or quasi-

Schwartz operators in terminology of Randtke [8])on bl, where gpc denotes the generating

topology of precompact topologies.

(g)The ideal O[gsv/Uvon] is the class Nb
s of all strongly nuclear-bounded operators (or

operators of type s , in terminology of Randlke, [8]) on bl, where gsv denotes the gener-

ating topology of strongly nuclear topologies.

By propositions(6.3) and (6.4), we see immediately that the ideals Lb,K, and W are

all surjective while the ideals Lb, Nb
q,N

b
p, Kb

p, and Nb
s are all injective since Tori and Uvon

enjoy the properties stated in Propositions (6.3) and (6.4), respectively.

Using the same machineries, one can introduce as many operator ideals by classifying

their topological-bornological property as one likes. For example, the ideal O[gpc/Uc] is

the class of all operators T ∈ L(X, Y ) with X, Y ∈ L such that for some precompact

seminorm p on X, the set {Tx : p(x) 5 1} is compact in X. There seems to be a great

deal of possibilities to introduce new classes of operators under this principle.

Finally, we introduce a concept which is well-known to be a very powerful tool in

the theory of locally convex spaces.

Definition 6.8 Let g be a generating topology on L and B a generating bornology on

L. A locally convex space X is called an O[g/B]-space if for any continuous seminorm

p on X, the quotient map Qp : X → X/p−1(0) belongs to O[g/B](X, X/p−1(0)).

Theorem 6.9 For a locally convex space X, we have:

(a)X is a Schwartz space if and only if X is a Kb
p-space.

(b)X is a nuclear space if and only if X is a Nb
s-space.

(c)X is a strongly nuclear space if and only if X is a Nb
s-space.

Proof . For (a) see p.17, for (b) see p.164, and for (c) see p.226 of the book of Wong[13].
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A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z,

a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z,
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