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Abstract. In this paper, we first introduce a class of nonlinear mappings
called generic generalized nonspreading which contains the class of generalized
nonspreading mappings in a Banach space and then prove an attractive point
theorem for such mappings in a Banach space. Furthermore, we prove a mean

convergence theorem of Baillon’s type and a weak convergence theorem of
Mann’s type for such nonlinear mappings in a Banach space. These results
generalize attractive point, mean convergence and weak convergence theorems

proved by Lin and Takahashi [26], and Kocourek, Takahashi and Yao [21] in a
Banach space.

1. Introduction

Let H be a real Hilbert space with inner product ⟨·, ·⟩ and norm ∥·∥, respectively
and let C be a nonempty subset of H. Let T be a mapping of C into H. Then
we denote by F (T ) the set of fixed points of T and by A(T ) the set of attractive
points [36] of T , i.e.,

(i) F (T ) = {z ∈ C : Tz = z};
(ii) A(T ) = {z ∈ H : ∥Tx − z∥ ≤ ∥x − z∥, ∀x ∈ C}.

A mapping T : C → H is called nonexpansive if ∥Tx − Ty∥ ≤ ∥x − y∥ for all
x, y ∈ C. An important example of nonexpansive mappings in a Hilbert space is
a firmly nonexpansive mapping. Let C be a nonempty subset of H. A mapping
F : C → H is said to be firmly nonexpansive if

∥Fx − Fy∥2 ≤ ⟨x − y, Fx − Fy⟩

for all x, y ∈ C; see, for instance, Browder [4] and Goebel and Kirk [7]. It is
known that a firmly nonexpansive mapping F can be deduced from an equilibrium
problem in a Hilbert space; see, for instance, [3] and [5]. Recently, Kohsaka and
Takahashi [24], and Takahashi [35] introduced the following nonlinear mappings
which are deduced from a firmly nonexpansive mapping in a Hilbert space. A
mapping T : C → H is called nonspreading [24] if

2∥Tx − Ty∥2 ≤ ∥Tx − y∥2 + ∥Ty − x∥2

for all x, y ∈ C. A mapping T : C → H is called hybrid [35] if

3∥Tx − Ty∥2 ≤ ∥x − y∥2 + ∥Tx − y∥2 + ∥Ty − x∥2

1991 Mathematics Subject Classification. 47H10, 47H25.
Key words and phrases. Attractive point, Banach limit, Banach space, fixed point, generalized

nonspreading mapping, mean convergence.

1



for all x, y ∈ C. They proved fixed point theorems for such mappings; see also
Kohsaka and Takahashi [23] and Iemoto and Takahashi [16]. Motivated by these
mappings, Kocourek, Takahashi and Yao [20] defined a broad class of nonlinear
mappings containing the classes of nonexpansive mappings, nonspreading mappings
and hybrid mappings in a Hilbert space. A mapping T : C → H is called generalized
hybrid [20] if there exist α, β ∈ R such that

(1.1) α∥Tx − Ty∥2 + (1 − α)∥x − Ty∥2 ≤ β∥Tx − y∥2 + (1 − β)∥x − y∥2

for all x, y ∈ C. We call such a mapping an (α, β)-generalized hybrid mapping.
Then Kocourek, Takahashi and Yao [20] proved a fixed point theorem for such
mappings in a Hilbert space. Furthermore, they proved the following mean conver-
gence theorem which generalizes Baillon’s nonlinear ergodic theorem [2] in a Hilbert
space.

Theorem 1.1 (Kocourek, Takahashi and Yao [20]). Let H be a Hilbert space and
let C be a nonempty closed convex subset of H. Let T : C → C be a generalized
hybrid mapping with F (T ) ̸= ∅ and let P be the mertic projection of H onto F (T ).
Then for any x ∈ C,

Snx =
1
n

n−1∑
k=0

T kx

converges weakly to an element p ∈ F (T ), where p = limn→∞ PTnx.

Recently Takahashi and Takeuchi [36] proved attractive point and mean con-
vergence theorems without convexity for generalized hybrid mappings in a Hilbert
space; see also Lin and Takahashi [25]. Such theorems were also extended to Ba-
nach spaces by Kocourek, Takahashi and Yao [21] and Lin and Takahashi [26]; see
also Lin, Takahashi and Yu [27]. Very recently Takahashi, Wong and Yao [37] in-
troduced a broad class of nonlinear mappings in a Hilbert space which contains the
class of contractive mappings and the class of generalized hybrid mappings. Then
they proved attractive point and mean convergence theorems without convexity for
such mappings in a Hilbert space. They also proved a weak convergence theorem
of Mann’s type [28] without closedness.

In this paper, motivated by these results, we first introduce a class of nonlin-
ear mappings called generic generalized nonspreading which contains the class of
generalized nonspreading mappings in a Banach space and then prove an attractive
point theorem for such mappings in a Banach space. Furthermore, we prove a mean
convergence theorem of Baillon’s type and a weak convergence theorem of Mann’s
type for such nonlinear mappings in a Banach space. These results generalize at-
tractive point, mean convergence and weak convergence theorems proved by Lin
and Takahashi [26], and Kocourek, Takahashi and Yao [21] in a Banach space.

2. Preliminaries

Let E be a real Banach space with norm ∥ · ∥ and let E∗ be the topological dual
space of E. We denote the value of y∗ ∈ E∗ at x ∈ E by ⟨x, y∗⟩. When {xn} is a
sequence in E, we denote the strong convergence of {xn} to x ∈ E by xn → x and
the weak convergence by xn ⇀ x. The modulus δ of convexity of E is defined by

δ(ϵ) = inf
{

1 − ∥x + y∥
2

: ∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥x − y∥ ≥ ϵ

}
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for every ϵ with 0 ≤ ϵ ≤ 2. A Banach space E is said to be uniformly convex if
δ(ϵ) > 0 for every ϵ > 0. A uniformly convex Banach space is strictly convex and
reflexive. Let C be a nonempty subset of a Banach space E. A mapping T : C → E
is nonexpansive if ∥Tx − Ty∥ ≤ ∥x − y∥ for all x, y ∈ C. A mapping T : C → E is
quasi-nonexpansive if F (T ) ̸= ∅ and ∥Tx−y∥ ≤ ∥x−y∥ for all x ∈ C and y ∈ F (T ),
where F (T ) is the set of fixed points of T . If C is a nonempty closed convex subset
of a strictly convex Banach space E and T : C → E is quasi-nonexpansive, then
F (T ) is closed and convex; see Itoh and Takahashi [17]. Let E be a Banach space.
The duality mapping J from E into 2E∗

is defined by

Jx = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}
for every x ∈ E. Let U = {x ∈ E : ∥x∥ = 1}. The norm of E is said to be Gâteaux
differentiable if for each x, y ∈ U , the limit

(2.1) lim
t→0

∥x + ty∥ − ∥x∥
t

exists. In the case, E is called smooth. We know that E is smooth if and only if J is
a single-valued mapping of E into E∗. We also know that E is reflexive if and only
if J is surjective, and E is strictly convex if and only if J is one-to-one. Therefore, if
E is a smooth, strictly convex and reflexive Banach space, then J is a single-valued
bijection. The norm of E is said to be uniformly Gâteaux differentiable if for each
y ∈ U , the limit (2.1) is attained uniformly for x ∈ U . It is also said to be Fréchet
differentiable if for each x ∈ U , the limit (2.1) is attained uniformly for y ∈ U . A
Banach space E is called uniformly smooth if the limit (2.1) is attained uniformly
for x, y ∈ U . It is known that if the norm of E is uniformly Gâteaux differentiable,
then J is uniformly norm-to-weak∗ continuous on each bounded subset of E, and
if the norm of E is Fréchet differentiable, then J is norm-to-norm continuous. If
E is uniformly smooth, J is uniformly norm-to-norm continuous on each bounded
subset of E. For more details, see [32, 33]. The following result is also well known;
see [32].

Lemma 2.1. Let E be a smooth Banach space and let J be the duality mapping
on E. Then, ⟨x − y, Jx − Jy⟩ ≥ 0 for all x, y ∈ E. Further, if E is strictly convex
and ⟨x − y, Jx − Jy⟩ = 0, then x = y.

Let E be a smooth Banach space. The function ϕ : E×E → (−∞,∞) is defined
by

ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩ + ∥y∥2

for x, y ∈ E, where J is the duality mapping of E; see [1] and [18]. We have from
the definition of ϕ that

(2.2) ϕ(x, y) = ϕ(x, z) + ϕ(z, y) + 2⟨x − z, Jz − Jy⟩
for all x, y, z ∈ E. From (∥x∥ − ∥y∥)2 ≤ ϕ(x, y) for all x, y ∈ E, we can see that
ϕ(x, y) ≥ 0. Furthermore, we can obtain the following equality:

(2.3) 2⟨x − y, Jz − Jw⟩ = ϕ(x,w) + ϕ(y, z) − ϕ(x, z) − ϕ(y, w)

for x, y, z, w ∈ E. Let ϕ∗ : E∗ × E∗ → (−∞,∞) be the function defined by

ϕ∗(x∗, y∗) = ∥x∗∥2 − 2⟨J−1y∗, x∗⟩ + ∥y∗∥2

for x∗, y∗ ∈ E∗, where J is the duality mapping of E. It is easy to see that

(2.4) ϕ(x, y) = ϕ∗(Jy, Jx)
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for x, y ∈ E. If E is additionally assumed to be strictly convex, then

(2.5) ϕ(x, y) = 0 ⇐⇒ x = y.

The following results are in Xu [41] and Kamimura and Takahashi [18].

Lemma 2.2 (Xu [41]). Let E be a uniformly convex Banach space and let r > 0.
Then there exists a strictly increasing, continuous and convex function g : [0,∞) →
[0,∞) such that g(0) = 0 and

∥λx + (1 − λ)y∥2 ≤ λ∥x∥2 + (1 − λ)∥y∥2 − λ(1 − λ)g(∥x − y∥)
for all x, y ∈ Br and λ with 0 ≤ λ ≤ 1, where Br = {z ∈ E : ∥z∥ ≤ r}.

Lemma 2.3 (Kamimura and Takahashi [18]). Let E be smooth and uniformly con-
vex Banach space and let r > 0. Then there exists a strictly increasing, continuous
and convex function g : [0, 2r] → R such that g(0) = 0 and

g(∥x − y∥) ≤ ϕ(x, y)

for all x, y ∈ Br, where Br = {z ∈ E : ∥z∥ ≤ r}.

Let E be a smooth Banach space. Let C be a nonempty subset of E and let T
be a mapping of C into E. We denote by A(T ) the set of attractive points of T ,
i.e., A(T ) = {z ∈ E : ϕ(z, Tx) ≤ ϕ(z, x), ∀x ∈ C}; see Lin and Takahashi [26]. The
following result is crucial in our paper.

Lemma 2.4 ([26]). Let E be a smooth Banach space and let C be a nonempty
subset of E. Let T be a mapping from C into E. Then A(T ) is a closed and convex
subset of E.

Let E be a smooth Banach space and let C be a nonempty subset of E. Then a
mapping T : C → E is called generalized nonexpansive [12] if F (T ) ̸= ∅ and

ϕ(Tx, y) ≤ ϕ(x, y)

for all x ∈ C and y ∈ F (T ). Let D be a nonempty subset of a Banach space E. A
mapping R : E → D is said to be sunny if

R(Rx + t(x − Rx)) = Rx

for all x ∈ E and t ≥ 0. A mapping R : E → D is said to be a retraction or a
projection if Rx = x for all x ∈ D. A nonempty subset D of a smooth Banach
space E is said to be a generalized nonexpansive retract (resp. sunny generalized
nonexpansive retract) of E if there exists a generalized nonexpansive retraction
(resp. sunny generalized nonexpansive retraction) R from E onto D; see [11, 12]
for more details. The following results are in Ibaraki and Takahashi [12].

Lemma 2.5 (Ibaraki and Takahashi [12]). Let C be a nonempty closed sunny
generalized nonexpansive retract of a smooth and strictly convex Banach space E.
Then the sunny generalized nonexpansive retraction from E onto C is uniquely
determined.

Lemma 2.6 (Ibaraki and Takahashi [12]). Let C be a nonempty closed subset
of a smooth and strictly convex Banach space E such that there exists a sunny
generalized nonexpansive retraction R from E onto C and let (x, z) ∈ E ×C. Then
the following hold:

(i) z = Rx if and only if ⟨x − z, Jy − Jz⟩ ≤ 0 for all y ∈ C;
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(ii) ϕ(Rx, z) + ϕ(x,Rx) ≤ ϕ(x, z).

In 2007, Kohsaka and Takahashi [22] proved the following results:

Lemma 2.7 (Kohsaka and Takahashi [22]). Let E be a smooth, strictly convex
and reflexive Banach space and let C be a nonempty closed subset of E. Then the
following are equivalent:

(a) C is a sunny generalized nonexpansive retract of E;
(b) C is a generalized nonexpansive retract of E;
(c) JC is closed and convex.

Lemma 2.8 (Kohsaka and Takahashi [22]). Let E be a smooth, strictly convex and
reflexive Banach space and let C be a nonempty closed sunny generalized nonex-
pansive retract of E. Let R be the sunny generalized nonexpansive retraction from
E onto C and let (x, z) ∈ E × C. Then the following are equivalent:

(i) z = Rx;
(ii) ϕ(x, z) = miny∈Cϕ(x, y).

Recently Ibaraki and Takahashi [15] also obtained the following result concerning
the set of fixed points of a generalized nonexpansive mapping.

Lemma 2.9 (Ibaraki and Takahashi [15]). Let E be a smooth, strictly convex and
reflexive Banach space and let T be a generalized nonexpansive mapping from E
into itself. Then F (T ) is closed and JF (T ) is closed and convex.

The following is a direct consequence of Lemmas 2.7 and 2.9.

Lemma 2.10 (Ibaraki and Takahashi [15]). Let E be a smooth, strictly convex and
reflexive Banach space and let T be a generalized nonexpansive mapping from E
into itself. Then F (T ) is a sunny generalized nonexpansive retract of E.

Let l∞ be the Banach space of bounded sequences with supremum norm. Let
µ be an element of (l∞)∗ (the dual space of l∞). Then we denote by µ(f) the
value of µ at f = (x1, x2, x3, . . . ) ∈ l∞. Sometimes we denote by µn(xn) the value
µ(f). A linear functional µ on l∞ is called a mean if µ(e) = ∥µ∥ = 1, where
e = (1, 1, 1, . . . ). A mean µ is called a Banach limit on l∞ if µn(xn+1) = µn(xn).
We know that there exists a Banach limit on l∞. If µ is a Banach limit on l∞, then
for f = (x1, x2, x3, . . . ) ∈ l∞,

lim inf
n→∞

xn ≤ µn(xn) ≤ lim sup
n→∞

xn.

In particular, if f = (x1, x2, x3, . . . ) ∈ l∞ and xn → a ∈ R, then we have µ(f) =
µn(xn) = a. See [32] for the proof of existence of a Banach limit and its other
elementary properties. Using means and the Riesz theorem, we can obtain the
following result; see [25], [31] and [32]. In particular, we know the following result
from [31] and [8].

Lemma 2.11. Let E be a reflexive Banach space, let {xn} be a bounded sequence in
E and let µ be a mean on l∞. Then there exists a unique point z0 ∈ co{xn : n ∈ N}
such that

µn⟨xn, y∗⟩ = ⟨z0, y
∗⟩, ∀y∗ ∈ E∗.
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3. Attractive point theorems

In this section, we introduce a new class of nonlinear mappings called generic
generalized nonspreading which contains the class of generalized nonspreading map-
pings in a Banach space and then try to extend Lin and Takahashi’s attractive point
theorem [26] for generalized nonspreading mappings to this class in a Banach space.
Let E be a smooth Banach space, let C be a nonempty subset of E and let J be
the duality mapping from E into E∗. Then a mapping T : C → E is called widely
generalized nonspreading if there exist α, β, γ, δ, ε, ζ ∈ R such that

αϕ(Tx, Ty)+βϕ(x, Ty) + γϕ(Tx, y) + δϕ(x, y)(3.1)

≤ ε{ϕ(Ty, Tx) − ϕ(Ty, x)} + ζ{ϕ(y, Tx) − ϕ(y, x)}

for all x, y ∈ C, where ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩ + ∥y∥2 for x, y ∈ E. We call such
a mapping a widely (α, β, γ, δ, ε, ζ)-generalized nonspreading mapping. A widely
(α, β, γ, δ, ε, ζ)-generalized nonspreading mapping T : C → E is called generic
generalized nonspreading if the following two conditoins are satisfied:

(1) α + β + γ + δ ≥ 0;
(2) α + β > 0.

We call such a mapping a generic (α, β, γ, δ, ε, ζ)-generalized nonspreading map-
ping. A generic (α, β, γ, δ, ε, ζ)-generalized nonspreading mapping T : C → E
is generalized nonspreading in the sense of Kocourek, Takahashi and Yao [21] if
α + β = −γ − δ = 1. In particular, putting α = 1, β = δ = 0, γ = ε = −1 and
ζ = 0 in (3.1), we obtain that

ϕ(Tx, Ty) + ϕ(Ty, Tx) ≤ ϕ(Tx, y) + ϕ(Ty, x)

for all x, y ∈ C. Such a mapping is nonspreading in the sense of Kohsaka and
Takahashi [24]. A nonspreading mapping is deduced from a resolvent of a maximal
monotone operator in a Banach space; see [24].

Now using the technique developed by [31], we prove an attractive point theorem
for generic generalized nonspreading mappings in a Banach space.

Theorem 3.1. Let E be a smooth and reflexive Banach space and let C be a
nonempty subset of E. Let T be a generic generalized nonspreading mapping of C
into itself. Then the following are equivalent:

(a) A(T ) ̸= ∅;
(b) {Tnx} is bounded for some x ∈ C.

Additionally, if E is strictly convex and C is closed and convex, then the following
are equivalent:

(a) F (T ) ̸= ∅;
(b) {Tnx} is bounded for some x ∈ C.

Proof. Let T be a generic generalized nonspreading mapping of C into itself. Then
there exist α, β, γ, δ, ε, ζ ∈ R satisfying (3.1). Furthermore, (1) α + β + γ + δ ≥ 0
and (2) α + β > 0 hold. If A(T ) ̸= ∅, then ϕ(u, Ty) ≤ ϕ(u, y) for all u ∈ A(T )
and y ∈ C. If u is an attractive point, then we have that ϕ(u, Tnx) ≤ ϕ(u, x) for
all n ∈ N and x ∈ C. This implies (a) =⇒ (b). Let us show (b) =⇒ (a). Suppose
that there exists x ∈ C such that {Tnx} is bounded. Then for any y ∈ C and
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n ∈ N ∪ {0}, we have

αϕ(Tn+1x,Ty) + βϕ(Tnx, Ty) + γϕ(Tn+1x, y) + δϕ(Tnx, y)(3.2)

≤ ε{ϕ(Ty, Tn+1x) − ϕ(Ty, T nx)} + ζ{ϕ(y, Tn+1x) − ϕ(y, Tnx)}

Since {Tnx} is bounded, we can apply a Banach limit µ to both sides of the in-
equality. We have that

(α + β)µnϕ(Tnx, Ty) + (γ + δ)µnϕ(Tnx, y) ≤ 0.

Since ϕ(Tnx, Ty) = ϕ(Tnx, y) + ϕ(y, Ty) + 2⟨Tnx − y, Jy − JTy⟩ from (2.2), we
have that

(α + β)(µnϕ(Tnx, y) + ϕ(y, Ty) + 2µn⟨Tnx − y, Jy − JTy⟩)(3.3)

+ (γ + δ)µnϕ(Tnx, y) ≤ 0.

Since there exists p ∈ E from Lemma 2.11 such that

µn⟨Tnx, v∗⟩ = ⟨p, v∗⟩
for all v∗ ∈ E∗, we have from (3.3) that

(α + β)(µnϕ(Tnx, y) + ϕ(y, Ty) + 2⟨p − y, Jy − JTy⟩)
+ (γ + δ)µnϕ(Tnx, y) ≤ 0

and

(α + β + γ+δ)µnϕ(Tnx, y)

+ (α + β){ϕ(y, Ty) + 2⟨p − y, Jy − JTy⟩} ≤ 0.

From (2.3) and (1) α + β + γ + δ ≥ 0 we obtain that

(α + β){ϕ(y, Ty) + ϕ(p, Ty) + ϕ(y, y) − ϕ(p, y) − ϕ(y, Ty)} ≤ 0

and hence
(α + β)(ϕ(p, Ty) − ϕ(p, y)) ≤ 0.

From (2) α + β > 0, we have that

(3.4) ϕ(p, Ty) ≤ ϕ(p, y)

for all y ∈ C. This implies that p ∈ A(T ).
Additionally, assume that E is strictly convex and C is closed and convex. Then

p ∈ co{xn : n ∈ N} ⊂ C. Putting y = p in (3.4), we obtain ϕ(p, Tp) = 0. Since E is
strictly convex, we have p ∈ F (T ). Therefore F (T ) is nonempty. It is obvious that
if F (T ) ̸= ∅, then {Tnx} is bounded for every x ∈ C. This completes the proof. ¤

Using Theorem 3.1, we have the following theorems in a Banach space.

Theorem 3.2 (Lin and Takahashi [26]). Let E be a smooth and reflexive Banach
space. Let C be a nonempty subset of E and let T be a generalized nonspreading
mapping of C into itself, i.e., there exist α, β, γ, δ ∈ R such that

αϕ(Tx, Ty) + (1−α)ϕ(x, Ty) + γ{ϕ(Ty, Tx) − ϕ(Ty, x)}
≤ βϕ(Tx, y) + (1 − β)ϕ(x, y) + δ{ϕ(y, Tx) − ϕ(y, x)}

for all x, y ∈ C. Then the following are equivalent:
(a) A(T ) ̸= ∅;
(b) {Tnx} is bounded for some x ∈ C.
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Additionally, if E is strictly convex and C is closed and convex, then the following
are equivalent:

(a) F (T ) ̸= ∅;
(b) {Tnx} is bounded for some x ∈ C.

Proof. If α+β = −γ−δ = 1 in (3.1), then the mapping is generalized nonspreading.
Therefore we have the desired result from Theorem 3.1. ¤

Theorem 3.3 (Kohsaka and Takahashi [24]). Let E be a smooth, strictly convex
and reflexive Banach space and let C be a nonempty closed convex subset of E. Let
T : C → C be a nonspreading mapping, i.e.,

ϕ(Tx, Ty) + ϕ(Ty, Tx) ≤ ϕ(Tx, y) + ϕ(Ty, x)

for all x, y ∈ C. Then the following are equivalent:
(a) F (T ) ̸= ∅;
(b) {Tnx} is bounded for some x ∈ C.

Proof. α = 1, β = δ = 0, γ = ε = −1 and ζ = 0 in (3.1), we obtain that

ϕ(Tx, Ty) + ϕ(Ty, Tx) ≤ ϕ(Tx, y) + ϕ(Ty, x)

for all x, y ∈ C. Therefore we have the desired result from Theorem 3.1. ¤

Using Theorem 3.1, we also have Takahashi, Wong and Yao’s attractive point
theorem [37] in a Hilbert space.

Theorem 3.4 ([37]). Let H be a real Hilbert space, let C be a nonempty subset of
H and let T be a generic generalized hybrid mapping from C into itself, i.e., there
exist α, β, γ, δ ∈ R such that (1) α + β + γ + δ ≥ 0, (2) α + β > 0 and

α∥Tx − Ty∥2 + β∥x − Ty∥2 + γ∥Tx − y∥2 + δ∥x − y∥2 ≤ 0

for all x, y ∈ C. Then T has an attractive point if and only if there exists z ∈ C such
that {Tnz : n = 0, 1, . . .} is bounded. Additionally, if C is closed and convex, then
T has a fixed point if and only if there exists z ∈ C such that {Tnz : n = 0, 1, . . .}
is bounded.

Proof. In a Hilbert space H, we have that ϕ(x, y) = ∥x− y∥2 for x, y ∈ H. Putting
ε = ζ = 0 in (3.1) we obtain that

α∥Tx − Ty∥2 + β∥x − Ty∥2 + γ∥Tx − y∥2 + δ∥x − y∥2 ≤ 0

for all x, y ∈ C. Furthermore, (1) α + β + γ + δ ≥ 0 and (2) α + β > 0 hold.
Therefore we have the desired result from Theorem 3.1. ¤

4. Properties of generic generalized nonspreading mappings

In this section, we first discuss the demiclosedness property of generic generalized
nonspreading mappings in a Banach space. Let E be a Banach space and let C be
a nonempty subset of E. Let T : C → E be a mapping. Then p ∈ C is called an
asymptotic fixed point of T [30] if there exists {xn} ⊂ C such that xn ⇀ p and
limn→∞ ∥xn − Txn∥ = 0. We denote by F̂ (T ) the set of asymptotic fixed points of
T . A mapping T of C into E is said to have the demiclosedness property on C if
F̂ (T ) = F (T ). We have the following result for generic generalized nonspreading
mappings in a Banach space.
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Proposition 4.1. Let E be a strictly convex Banach space with a uniformly Gâteaux
differentiable norm, let C be a nonempty subset of E and let T be a generic gen-
eralized nonspreading mapping of C into E. If xn ⇀ z and xn − Txn → 0, then
z ∈ A(T ). Additionally, if C is closed and convex, then F̂ (T ) = F (T ).

Proof. Since T : C → E is a generic generalized nonspreading mapping, there exist
α, β, γ, δ, ε, ζ ∈ R such that (1) α + β + γ + δ ≥ 0, (2) α + β > 0 and

αϕ(Tx, Ty)+βϕ(x, Ty) + γϕ(Tx, y) + δϕ(x, y)(4.1)

≤ ε{ϕ(Ty, Tx) − ϕ(Ty, x)} + ζ{ϕ(y, Tx) − ϕ(y, x)}

for all x, y ∈ C. Let {xn} be a sequence of C such that xn ⇀ z and limn→∞ ∥xn −
Txn∥ = 0. Since the norm of E is uniformly Gâteaux differentiable, the duality
mapping J on E is uniformly norm-to-weak* continuous on each bounded subset
of E; see Takahashi [33]. Thus

lim
n→∞

⟨w, JTxn − Jxn⟩ = 0

for all w ∈ E. On the other hand, replacing x by xn in (4.1), we obtain that

αϕ(Txn, Ty) + βϕ(xn, Ty) + γϕ(Txn, y) + δϕ(xn, y)(4.2)

≤ ε{ϕ(Ty, Txn) − ϕ(Ty, xn)} + ζ{ϕ(y, Txn) − ϕ(y, xn)}.

Then we have from (2.2) that

α{ϕ(Txn, y) + ϕ(y, Ty) + 2⟨Txn − y, Jy − JTy⟩}
+ β{ϕ(xn, y) + ϕ(y, Ty) + 2⟨xn − y, Jy − JTy⟩}
+ γϕ(Txn, y) + δϕ(xn, y)(4.3)

≤ ε{∥Ty∥2 − 2⟨Ty, JTxn⟩ + ∥Txn∥2 − ∥Ty∥2 + 2⟨Ty, Jxn⟩ − ∥xn∥2}
+ ζ{∥y∥2 − 2⟨y, JTxn⟩ + ∥Txn∥2 − ∥y∥2 + 2⟨y, Jxn⟩ − ∥xn∥2}.

Furthermore, we have from (4.3) that

α{ϕ(Txn, y) − ϕ(xn, y) + ϕ(xn, y) + ϕ(y, Ty) + 2⟨Txn − y, Jy − JTy⟩}
+ β{ϕ(xn, y) + ϕ(y, Ty) + 2⟨xn − y, Jy − JTy⟩}
+ γ{ϕ(Txn, y) − ϕ(xn, y) + ϕ(xn, y)} + δϕ(xn, y)(4.4)

≤ ε{∥Ty∥2 − 2⟨Ty, JTxn⟩ + ∥Txn∥2 − ∥Ty∥2 + 2⟨Ty, Jxn⟩ − ∥xn∥2}
+ ζ{∥y∥2 − 2⟨y, JTxn⟩ + ∥Txn∥2 − ∥y∥2 + 2⟨y, Jxn⟩ − ∥xn∥2}.

From (1) α + β + γ + δ ≥ 0 we have that

α{ϕ(Txn, y) − ϕ(xn, y) + ϕ(y, Ty) + 2⟨Txn − y, Jy − JTy⟩}
+ β{ϕ(y, Ty) + 2⟨xn − y, Jy − JTy⟩} + γ{ϕ(Txn, y) − ϕ(xn, y)}}(4.5)

≤ ε{∥Ty∥2 − 2⟨Ty, JTxn⟩ + ∥Txn∥2 − ∥Ty∥2 + 2⟨Ty, Jxn⟩ − ∥xn∥2}
+ ζ{∥y∥2 − 2⟨y, JTxn⟩ + ∥Txn∥2 − ∥y∥2 + 2⟨y, Jxn⟩ − ∥xn∥2}.

Since

|∥Txn∥2 − ∥xn∥2| = (∥Txn∥ + ∥xn∥)|∥Txn∥ − ∥xn∥|
≤ (∥Txn∥ + ∥xn∥)∥Txn − xn∥
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and Txn − xn → 0, we have that ∥Txn∥2 − ∥xn∥2 → 0. Letting n → ∞ in (4.5),
we have that

α{ϕ(y,Ty) + 2⟨z − y, Jy − JTy⟩}
+ β{ϕ(y, Ty) + 2⟨z − y, Jy − JTy⟩} ≤ 0

and hence
(α + β)ϕ(y, Ty) + 2(α + β)⟨z − y, Jy − JTy⟩ ≤ 0.

Thus we have from (2.3) that

(α + β)ϕ(y, Ty) + (α + β)(ϕ(z, Ty) − ϕ(z, y) − ϕ(y, Ty)) ≤ 0

and hence
(α + β)(ϕ(z, Ty) − ϕ(z, y)) ≤ 0.

From (2) α + β > 0, we have z ∈ A(T ). Additionally, if C is closed and convex,
then z ∈ C. Thus we have ϕ(z, Tz) ≤ 0 and hence ϕ(z, Tz) = 0. Since E is
strictly convex, we obtain z = Tz. Therefore we have F̂ (T ) ⊂ F (T ). The inclusion
F (T ) ⊂ F̂ (T ) is obvious. This completes the proof. ¤

From Matsushita and Takahashi [29], we know the following result.

Lemma 4.2 (Matsushita and Takahashi [29]). Let E be a smooth and strictly
convex Banach space, let C be a nonempty closed convex subset of E and let T be
a mapping of C into E such that F (T ) is nonempty. Assume that

ϕ(u, Ty) ≤ ϕ(u, y)

for all u ∈ F (T ) and y ∈ C. Then F (T ) is closed and convex.

Using Matsushita and Takahashi [29], we have the following result.

Proposition 4.3. Let E be a smooth and strictly convex Banach space, let C be a
nonempty closed convex subset of E and let T be a generic generalized nonspreading
mapping of C into E such that F (T ) is nonempty. Then F (T ) is closed and convex.

Proof. Let T : C → E be a generic generalized nonspreading mapping satisfying
(3.1). Putting x = u ∈ F (T ) in (3.1), we have that

αϕ(u, Ty)+βϕ(u, Ty) + γϕ(u, y) + δϕ(u, y)

≤ ε{ϕ(Ty, u) − ϕ(Ty, u)} + ζ{ϕ(y, u) − ϕ(y, u)}
and hence

(α + β)ϕ(u, Ty) ≤ −(γ + δ)ϕ(u, y).
Since (1) α + β + γ + δ ≥ 0 and α + β > 0, we have

ϕ(u, Ty) ≤ −(γ + δ)
α + β

ϕ(u, y) ≤ ϕ(u, y).

Using Matsushita and Takahashi (Lemma 4.2), we have the desired result. ¤

Let E be a smooth and strictly convex Banach space. Let C be a nonempty
subset of E. Matsushita and Takahashi [29] also gave the following definition: A
mapping T : C → E is relatively nonexpansive if F (T ) ̸= ∅, F̂ (T ) = F (T ) and

ϕ(y, Tx) ≤ ϕ(y, x)

for all x ∈ C and y ∈ F (T ). Using Proposition 4.1, we prove the following theorem.
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Theorem 4.4. Let E be a strictly convex Banach space with a uniformly Gâteaux
differentiable norm, let C be a nonempty closed convex subset of E and let T be a
generic generalized nonspreading mapping of C into E such that F (T ) is nonempty.
Then T is relatively nonexpansive.

Proof. By assumption, F (T ) is nonempty. Since T is a generic generalized non-
spreading mapping of C into E, we have that

ϕ(y, Tx) ≤ ϕ(y, x)

for all x ∈ C and y ∈ F (T ). From Proposition 4.1, we also have F̂ (T ) = F (T ).
Thus T is relatively nonexpansive. ¤

As a direct consequence of Theorem 4.4, we have the following result.

Theorem 4.5 (Kohsaka and Takahashi [24]). Let E be a strictly convex Banach
space with a uniformly Gâteaux differentiable norm, let C be a nonempty closed
convex subset of E and let T be a nonspreading mapping of C into E such that
F (T ) is nonempty. Then T is relatively nonexpansive.

Proof. A generic (α, β, γ, δ, ε, ζ)-generalized hybrid mapping T of C into E such
that α = 1, β = δ = 0, γ = ε = −1 and ζ = 0 is a nonspreading mapping. From
Theorem 4.4, we have the desired result. ¤

5. Skew-Attractive Point Theorems

Let E be a smooth Banach space and let C be a nonempty subset of E. Let
T : C → E be a generic generalized nonspreading mapping; see (3.1). This mapping
has the property that ϕ(u, Ty) ≤ ϕ(u, y) for all u ∈ F (T ) and y ∈ C. This property
can be revealed by putting x = u ∈ F (T ) in (3.1); see the proof of Proposition 4.3.
Similarly, putting y = u ∈ F (T ) in (3.1), we obtain that for any x ∈ C,

αϕ(Tx,u) + βϕ(x, u) + γϕ(Tx, u) + δϕ(x, u)

≤ ε{ϕ(u, Tx) − ϕ(u, x)} + ζ{ϕ(u, Tx) − ϕ(u, x)}
and hence

α{ϕ(Tx,u) − ϕ(x, u) + ϕ(x, u)} + βϕ(x, u)

+ γ{ϕ(Tx, u) − ϕ(x, u) + ϕ(x, u)} + δϕ(x, u)

≤ (ε + ζ){ϕ(u, Tx) − ϕ(u, x)}.

From (1) α + β + γ + δ ≥ 0, we have that

α{ϕ(Tx,u) − ϕ(x, u)} + γ{ϕ(Tx, u) − ϕ(x, u)}
≤ (ε + ζ){ϕ(u, Tx) − ϕ(u, x)}

and hence

(5.1) (α + γ){ϕ(Tx, u) − ϕ(x, u)} ≤ (ε + ζ){ϕ(u, Tx) − ϕ(u, x)}.
Since ϕ(u, Tx) ≤ ϕ(u, x) , we have that α + γ > 0 together with ε + ζ ≥ 0 implies
that

ϕ(Tx, u) ≤ ϕ(x, u).
Motivated by this property of T and F (T ), we can give the following definition.
Let E be a smooth Banach space. Let C be a nonempty subset of E and let T be
a mapping of C into E. We denote by B(T ) the set of skew-attractive points of
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T , i.e., B(T ) = {z ∈ E : ϕ(Tx, z) ≤ ϕ(x, z), ∀x ∈ C}; see Lin and Takahashi [26].
They [26] proved the following result.

Lemma 5.1 ([26]). Let E be a smooth Banach space and let C be a nonempty
subset of E. Let T be a mapping from C into E. Then B(T ) is closed.

Let E be a smooth, strictly convex and reflexive Banach space and let C be a
nonempty subset of E. Let T be a mapping of C into E. Define a mapping T ∗ as
follows:

T ∗x∗ = JTJ−1x∗, ∀x∗ ∈ JC,

where J is the duality mapping on E and J−1 is the duality mapping on E∗. A
mapping T ∗ is called the duality mapping of T ; see also [39] and [9]. It is easy to
show that if T is a mapping of C into itself, then T ∗ is a mapping of JC into itself.
In fact, for any x∗ ∈ JC, we have J−1x∗ ∈ C and hence TJ−1x∗ ∈ C from the
property of T . So we have

T ∗x∗ = JTJ−1x∗ ∈ JC.

Then T ∗ is a mapping of JC into itself. Lin and Takahashi [26] also proved the
following result by using the duality mapping T ∗ of T in a Banach space.

Lemma 5.2 ([26]). Let E be a smooth, strictly convex and reflexive Banach space
and let C be a nonempty subset of E. Let T be a mapping of C into E and let T ∗

be the duality mapping of T . Then the following hold:
(1) JB(T ) = A(T ∗);
(2) JA(T ) = B(T ∗).

In particular, JB(T ) is closed and convex.

Let E be a smooth Banach space, let J be the duality mapping from E into E∗

and let C be a nonempty subset of E. A mapping T : C → E is called widely
skew-generalized nonspreading if there exist α, β, γ, δ, ε, ζ ∈ R such that

αϕ(Ty,Tx) + βϕ(Ty, x) + γϕ(y, Tx) + δϕ(y, x)(5.2)

≤ ε{ϕ(Tx, Ty) − ϕ(x, Ty)} + ζ{ϕ(Tx, y) − ϕ(x, y)}

for all x, y ∈ C, where ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩ + ∥y∥2 for x, y ∈ E. We call
such a mapping a widely (α, β, γ, δ, ε, ζ)-skew-generalized nonspreading mapping.
A widely (α, β, γ, δ, ε, ζ)-skew-generalized nonspreading mapping T : C → E is
called generic skew-generalized nonspreading if the following two conditoins are
satisfied:

(1) α + β + γ + δ ≥ 0;
(2) α + β > 0.

We call such a mapping a generic (α, β, γ, δ, ε, ζ)-skew-generalized nonspreading
mapping. For example, a generic (1,0,-1,0,-1,0)-skew-generalized nonspreading map-
ping is a skew-nonspreading mapping in the sense of Ibaraki and Takahashi [14],
i.e.,

ϕ(Tx, Ty) + ϕ(Ty, Tx) ≤ ϕ(x, Ty) + ϕ(y, Tx), ∀x, y ∈ C.

Theorem 5.3. Let E be a smooth, strictly convex and reflexive Banach space and
let C be a nonempty subset of E. Let T be a generic skew-generalized nonspreading
mapping of C into itself. Then the following are equivalent:

(a) B(T ) ̸= ∅;
12



(b) {Tnx} is bounded for some x ∈ C.
Additionally, if C is closed and JC is closed and convex, then the following are
equivalent:

(a) F (T ) ̸= ∅;
(b) {Tnx} is bounded for some x ∈ C.

Proof. Let T be a generic skew-generalized nonspreading mapping of C into itself.
Then there exist α, β, γ, δ, ε, ζ ∈ R such that (1) α + β + γ + δ ≥ 0, (2) α + β > 0
and

αϕ(Ty, Tx)+βϕ(Ty, x) + γϕ(y, Tx) + δϕ(y, x)(5.3)

≤ ε{ϕ(Tx, Ty) − ϕ(x, Ty)} + ζ{ϕ(Tx, y) − ϕ(x, y)}
for all x, y ∈ C. If B(T ) ̸= ∅, then ϕ(Ty, u) ≤ ϕ(y, u) for all u ∈ B(T ) and y ∈ C.
If u ∈ B(T ), then we have that ϕ(Tnx, u) ≤ ϕ(x, u) for all n ∈ N and x ∈ C. This
implies (a) =⇒ (b). Let us show (b) =⇒ (a). Suppose that there exists x ∈ C such
that {Tnx} is bounded. Then for any x∗, y∗ ∈ JC with x∗ = Jx and y∗ = Jy and
T ∗ = JTJ−1, we have from (2.4) that

αϕ∗(T ∗x∗, T ∗y∗) + βϕ∗(x∗, T ∗y∗) + γϕ∗(T ∗x∗, y∗) + δϕ∗(x∗, y∗)

= αϕ∗(JTx, JTy) + βϕ∗(Jx, JTy) + γϕ∗(JTx, Jy) + δϕ∗(Jx, Jy)

= αϕ(Ty, Tx) + βϕ(Ty, x) + γϕ(y, Tx) + δϕ(y, x).

On the other hand, we have

ε{ϕ∗(T ∗y∗, T ∗x∗) − ϕ∗(T ∗y∗, x∗)} + ζ{ϕ∗(y∗, T ∗x∗) − ϕ∗(y∗, x∗)}
= ε{ϕ∗(JTy, JTx) − ϕ∗(JTy, Jx)} + ζ{ϕ∗(Jy, JTx) − ϕ∗(Jy, Jx)}
= ε{ϕ(Tx, Ty) − ϕ(x, Ty)} + ζ{ϕ(Tx, y) − ϕ(x, y)}.

Since T is generic skew-generalized nonspreading, we have from (5.3) that

αϕ∗(T ∗x∗, T ∗y∗) + βϕ∗(x∗, T ∗y∗) + γϕ∗(T ∗x∗, y∗) + δϕ∗(x∗, y∗)

≤ ε{ϕ∗(T ∗y∗, T ∗x∗) − ϕ∗(T ∗y∗, x∗)} + ζ{ϕ∗(y∗, T ∗x∗) − ϕ∗(y∗, x∗)}.
This implies that T ∗ is a generic generalized nonspreading mapping of JC into
itself. Furthermore, we have that

(JTJ−1)nJx = JTnx

for each x ∈ C and n ∈ N; see the proof of Lemma 3.1 in [6]. Thus if {Tnx} is
bounded for some x ∈ C, then {(T ∗)nJx} is bounded. We have from Theorem 3.1
that A(T ∗) is nonempty. We also know from Lemma 5.2 that A(T ∗) = JB(T ).
Therefore B(T ) is nonempty. Additionally, assume that C is closed and JC is
closed and convex. If {Tnx} is bounded for some x ∈ C, then {(T ∗)nJx} is
bounded. Then we have from Theorem 3.1 that F (T ∗) is nonempty. We also
have that JF (T ) = F (T ∗). In fact, we have that for z∗ ∈ JC,

z∗ ∈JF (T ) ⇐⇒ J−1z∗ ∈ F (T ) ⇐⇒ TJ−1z∗ = J−1z∗

⇐⇒ JTJ−1z∗ = z∗ ⇐⇒ T ∗z∗ = z∗ ⇐⇒ z∗ ∈ F (T ∗).

Therefore F (T ) is nonempty. The converse is obvious. This completes the proof.
¤

Using Theorem 5.3, we have the following skew-attractive point theorem in a
Banach space obtained by Lin and Takahashi [26].
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Theorem 5.4 ([26]). Let E be a smooth, strictly convex and reflexive Banach space
and let C be a nonempty subset of E. Let T be a skew-generalized nonspreading
mapping of C into itself. Then the following are equivalent:

(a) B(T ) ̸= ∅;
(b) {Tnx} is bounded for some x ∈ C.

Additionally, if C is closed and JC is closed and convex, then the following are
equivalent:

(a) F (T ) ̸= ∅;
(b) {Tnx} is bounded for some x ∈ C.

Proof. If α + β = −γ − δ = 1 in (5.2), then the mapping is skew-generalized
nonspreading. Therefore we have the desired result from Theorem 5.3. ¤

Using Theorem 5.3, we have the following skew-attractive point theorems in a
Banach space which is a generalization of Dhompongsa, Fupinwong, Takahashi and
Yao [6].

Theorem 5.5. Let E be a smooth, strictly convex and reflexive Banach space and
let C be a nonempty subset of E. Let T : C → C be a skew-nonspreading mapping,
i.e.,

ϕ(Ty, Tx) + ϕ(Tx, Ty) ≤ ϕ(y, Tx) + ϕ(x, Ty)
for all x, y ∈ C. Then the following are equivalent:

(a) B(T ) ̸= ∅;
(b) {Tnx} is bounded for some x ∈ C.

Proof. Putting α = 1, β = δ = ζ = 0 and γ = ε = −1 in (5.2), we obtain that

ϕ(Ty, Tx) + ϕ(Tx, Ty) ≤ ϕ(y, Tx) + ϕ(x, Ty)

for all x, y ∈ C. Therefore we have the desired result from Theorem 5.3. ¤

6. Nonlinear ergodic theorems

In this section, we prove a mean convergence theorem of Baillon’s type for generic
generalized nonspreading mappings in a Banach space. Before proving this result,
we need the following lemma.

Lemma 6.1. Let E be a smooth and uniformly convex Banach space and let C be
a nonempty subset of E. Let T : C → C be a mapping such that B(T ) ̸= ∅. Let
R be the sunny generalized nonexpansive retraction of E onto B(T ). Then for any
x ∈ C, {RTnx} converges strongly to an element q ∈ B(T )

Proof. We know from Lemmas 5.1 and 5.2 that B(T ) is closed, and JB(T ) is closed
and convex. Thus from Lemma 2.7 there exists the sunny generalized nonexpansive
retraction R of E onto B(T ). From Lemma 2.8, this retraction R is characterized
by

Rx = arg min
u∈B(T )

ϕ(x, u).

We also know from Lemma 2.6 that for all u ∈ B(T ) and v ∈ C,

0 ≤ ⟨v − Rv, JRv − Ju⟩
and

(6.1) ϕ(Rv, u) = ϕ(v, u) − ϕ(v,Rv).
14



Since ϕ(Tz, u) ≤ ϕ(z, u) for any u ∈ B(T ) and z ∈ C, it follows that

ϕ(Tnx,RTnx) ≤ ϕ(Tnx,RTn−1x)

≤ ϕ(Tn−1x,RTn−1x).

Hence the sequence ϕ(Tnx, RTnx) is nonincreasing. Putting u = RTnx and v =
Tmx with n ≤ m in (6.1), we have from Lemma 2.3 that

g(∥RTmx − RTnx∥) ≤ ϕ(RTmx,RTnx)

≤ ϕ(Tmx, RTnx) − ϕ(Tmx,RTmx)

≤ ϕ(Tnx,RTnx) − ϕ(Tmx,RTmx),

where g is a strictly increasing, continuous and convex real-valued function with
g(0) = 0. From the properties of g, {RTnx} is a Cauchy sequence. Therefore
{RTnx} converges strongly to a point q ∈ B(T ) since B(T ) is closed from Lemma
5.1. ¤

Using Lemma 6.1, we can prove the following result for generic generalized non-
spreading mappings in a Banach space.

Theorem 6.2. Let E be a uniformly convex Banach space with a Fréchet differ-
entiable norm and let C be a nonempty subset of E. Let T : C → C be a generic
generalized nonspreading mapping such that A(T ) = B(T ) ̸= ∅. Let R be the sunny
generalized nonexpansive retraction of E onto B(T ). Then for any x ∈ C,

Snx =
1
n

n−1∑
k=0

T kx

converges weakly to an element q ∈ A(T ), where q = limn→∞ RTnx. Additionally,
if C is closed and convex, then {Snx} converges weakly to an element q ∈ F (T ).

Proof. Take a fixed x ∈ C. Then for any y ∈ C and k ∈ N ∪ {0}, we have that

αϕ(T k+1x, Ty)+βϕ(T kx, Ty) + γϕ(T k+1x, y) + δϕ(T kx, y)

≤ ε{ϕ(Ty, T k+1x) − ϕ(Ty, T kx)} + ζ{ϕ(y, T k+1x) − ϕ(y, T kx)}.

Since

βϕ(T kx, Ty) = (α + β)ϕ(T kx, Ty) − αϕ(T kx, Ty)

= (α + β){ϕ(T kx, y) + ϕ(y, Ty)

+ 2⟨T kx − y, Jy − JTy⟩} − αϕ(T kx, Ty)

≥ (−γ − δ)ϕ(T kx, y) + (α + β){ϕ(y, Ty)

+ 2⟨T kx − y, Jy − JTy⟩} − αϕ(T kx, Ty),

we have that

α{ϕ(T k+1x,Ty) − ϕ(T kx, Ty)} + γ{ϕ(T k+1x, y) − ϕ(T kx, y)}

+ (α + β){ϕ(y, Ty) + 2⟨T kx − y, Jy − JTy⟩}

≤ ε{ϕ(Ty, T k+1x) − ϕ(Ty, T kx)} + ζ{ϕ(y, T k+1x) − ϕ(y, T kx)}.
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Summing up these inequalities with respect to k = 0, 1, . . . , n − 1 and dividing by
n, we obtain that

1
n

α{ϕ(Tnx,Ty) − ϕ(x, Ty)} +
1
n

γ{ϕ(Tnx, y) − ϕ(x, y)}

+ (α + β){ϕ(y, Ty) + 2⟨Snx − y, Jy − JTy⟩}

≤ 1
n

ε{ϕ(Ty, T nx) − ϕ(Ty, x)} +
1
n

ζ{ϕ(y, Tnx) − ϕ(y, x)},

where Snx = 1
n

∑n−1
k=0 T kx. Since {Tnx} is bounded, {Snx} is bounded. Thus we

have a subsequence {Sni
x} of {Snx} such that {Sni

x} converges weakly to a point
u ∈ E. Replacing n by ni, we have that

1
ni

α{ϕ(Tnix,Ty) − ϕ(x, Ty)} +
1
ni

γ{ϕ(Tnix, y) − ϕ(x, y)}

+ (α + β){ϕ(y, Ty) + 2⟨Snix − y, Jy − JTy⟩}

≤ 1
ni

ε{ϕ(Ty, T nix) − ϕ(Ty, x)} +
1
ni

ζ{ϕ(y, Tnix) − ϕ(y, x)}.

Letting i → ∞, we obtain that

(6.2) (α + β){ϕ(y, Ty) + 2⟨u − y, Jy − JTy⟩} ≤ 0.

Using (2.3), we obtain that

(6.3) (α + β){ϕ(y, Ty) + ϕ(u, Ty) − ϕ(u, y) − ϕ(y, Ty)} ≤ 0.

Hence we have ϕ(u, Ty) ≤ ϕ(u, y) and then u ∈ A(T ). Rewriting the characteriza-
tion of the retraction R, we have that for any v ∈ B(T ),

0 ≤
⟨
T kx − RT kx, JRT kx − Jv

⟩
.

So putting q = limn→∞ RTnx, we have that

⟨T kx − RT kx,Jv − Jq⟩ ≤ ⟨T kx − RT kx, JRT kx − Jq⟩

≤ ∥T kx − RT kx∥ · ∥JRT kx − Jq∥

≤ K∥JRT kx − Jq∥,

where K is an upper bound for ∥T kx−RT kx∥. Summing up these inequalities for
k = 0, 1, . . . , n − 1, we arrive to⟨

Snx − 1
n

n−1∑
k=0

RT kx, Jv − Jq

⟩
≤ K

1
n

n−1∑
k=0

∥JRT kx − Jq∥.

Suppose that {Snix} converges weakly to a point u. Remembering that J is con-
tinuous, we get

⟨u − q, Jv − Jq⟩ ≤ 0,∀v ∈ B(T ).

Putting v = u because u ∈ A(T ) = B(T ), we have u = q. Thus the sequence
{Snx} converges weakly to the point q. Additionally, if C is closed and convex,
then {Snx} ⊂ C and hence q ∈ C. Since q ∈ A(T ) and q ∈ C we have q ∈ F (T ).
Therefore {Snx} converges weakly to an element q ∈ F (T ). ¤

Using Theorem 6.2, we obtain the following theorems.
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Theorem 6.3 (Lin and Takahashi [26]). Let E be a uniformly convex Banach
space with a Fréchet differentiable norm and let C be a nonempty subset of E. Let
T : C → C be a generalized nonspreading mapping such that A(T ) = B(T ) ̸= ∅.
Let R be the sunny generalized nonexpansive retraction of E onto B(T ). Then for
any x ∈ C,

Snx =
1
n

n−1∑
k=0

T kx

converges weakly to an element q ∈ A(T ), where q = limn→∞ RTnx.

Proof. If α+β = −γ−δ = 1 in (3.1), then the mapping is generalizing nonspreading.
Therefore we have the desired result from Theorem 6.2. ¤
Theorem 6.4. Let E be a uniformly convex Banach space with a Fréchet differen-
tiable norm. Let T : E → E be a generic (α, β, γ, δ, ε, ζ)-generalized nonspreading
mapping such that α+γ > 0 and ε+ζ ≥ 0. Assume that F (T ) ̸= ∅ and let R be the
sunny generalized nonexpansive retraction of E onto F (T ). Then for any x ∈ E,

Snx =
1
n

n−1∑
k=0

T kx

converges weakly to an element q ∈ F (T ), where q = limn→∞ RTnx.

Proof. We also know that α + γ > 0 together with ε + ζ ≥ 0 implies that

ϕ(Tx, u) ≤ ϕ(x, u)

for all x ∈ E and u ∈ F (T ). We also have that A(T ) = A(T ) ∩ E = F (T ) and
B(T ) = B(T ) ∩ E = F (T ). Then A(T ) = B(T ). Therefore we have the desired
result from Theorem 6.2. ¤
Theorem 6.5 (Takahashi, Wong and Yao [37]). Let H be a Hilbert space and let C
be a nonempty subset of H. Let T : C → C be a generic generalized hybrid mapping
with A(T ) ̸= ∅ and let P be the mertic projection of H onto A(T ). Then for any
x ∈ C,

Snx =
1
n

n−1∑
k=0

T kx

converges weakly to an element p ∈ A(T ).

Proof. As in the proof of Theorem 3.4, a generic generalized hybrid mapping in a
Hilbert space is a generic generalized nonspreading mapping in a Banach space. We
also note that A(T ) = B(T ) from the definitions of A(T ) and B(T ) . Since A(T )
is a nonempty closed convex subset of H, there exists the metric projection of H
onto A(T ). In a Hilbert space, the metric projection of H onto A(T ) is equivalent
to the sunny generalized nonexpansive retraction of E onto A(T ). Therefore we
have the desired result from Theorem 6.2. ¤
Theorem 6.6 (Kocourek, Takahashi and Yao [20]). Let H be a Hilbert space and
let C be a nonempty closed convex subset of H. Let T : C → C be a generalized
hybrid mapping with F (T ) ̸= ∅ and let P be the mertic projection of H onto F (T ).
Then for any x ∈ C,

Snx =
1
n

n−1∑
k=0

T kx
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converges weakly to an element p ∈ F (T ).

Proof. If α+β = −γ−δ = 1 and ε = ζ = 0 in (3.1), then the mapping is generalizing
nonspreading. Then we have from Theorem 6.5 that {Snx} converges weakly to
an element p ∈ A(T ). Since C is closed and convex and {Snx} ⊂ C, the weakly
convergent point p of {Snx} is in C. Hence we have from A(T ) ∩ C = F (T ) that
p ∈ F (T ). This completes the proof. ¤

Remark We do not know whether a nonlinear ergodic theorem of Baillon’s type
for nonspreading mappings holds or not.

7. Weak convergence theorems

In this section, we prove a weak convergence theorem of Mann’s type for generic
generalized nonspreading mappings in a Banach space. Before showing it, we prove
the following lemma which is related to [40].

Lemma 7.1. Let E be a smooth and uniformly convex Banach space and let C be
a nonempty convex subset of E. Let T : C → C be a mapping such that B(T ) ̸= ∅.
Let {αn} be a sequence of real numbers such that 0 < αn < 1 and let {xn} be a
sequence in C generated by x1 = x ∈ C and

xn+1 = αnxn + (1 − αn)Txn, ∀n ∈ N.

If RB(T ) is a sunny generalized nonexpansive retraction of C onto B(T ), then
{RB(T )xn} converges strongly to an element z ∈ B(T ).

Proof. Let m ∈ B(T ). Then we have that

ϕ(xn+1, m) = ϕ(αnxn + (1 − αn)Txn,m)

≤ αnϕ(xn,m) + (1 − αn)ϕ(Txn,m)

≤ αnϕ(xn,m) + (1 − αn)ϕ(xn,m)

= ϕ(xn, m).

Then limn→∞ ϕ(xn,m) exists. Since {ϕ(xn,m)} is bounded, {xn} and {Txn} are
bounded. Define yn = RB(T )xn for all n ∈ N. Since ϕ(xn+1,m) ≤ ϕ(xn,m) for all
m ∈ B(T ), from yn ∈ B(T ) we have

(7.1) ϕ(xn+1, yn) ≤ ϕ(xn, yn).

From Lemma 2.6 and (7.1), we have

ϕ(xn+1, yn+1) = ϕ(xn+1, RB(T )xn+1)

≤ ϕ(xn+1, yn) − ϕ(RB(T )xn+1, yn)

= ϕ(xn+1, yn) − ϕ(yn+1, yn)

≤ ϕ(xn+1, yn)

≤ ϕ(xn, yn).

Thus ϕ(xn, yn) is a convergent sequence. We also have from (7.1) that for all m ∈ N,

ϕ(xn+m, yn) ≤ ϕ(xn, yn).

From yn+m = RB(T )xn+m and Lemma 2.6, we have

ϕ(yn+m, yn) + ϕ(xn+m, yn+m) ≤ ϕ(xn+m, yn) ≤ ϕ(xn, yn)
18



and hence
ϕ(yn+m, yn) ≤ ϕ(xn, yn) − ϕ(xn+m, yn+m).

Using Lemma 2.3, we have that

g(∥yn+m − yn∥) ≤ ϕ(yn+m, yn) ≤ ϕ(xn, yn) − ϕ(xn+m, yn+m),

where g : [0,∞) → [0,∞) is a continuous, strictly increasing and convex function
such that g(0) = 0. Then the properties of g yield that RB(T )xn converges strongly
to an element z of B(T ). ¤

Using Lemma 7.1 and the technique developed by [13], we prove the following
theorem.

Theorem 7.2. Let E be a uniformly convex and uniformly smooth Banach space
and let C be a nonempty convex subset of E. Let T : C → C be a generic generalized
nonspreading mapping such that A(T ) = B(T ) ̸= ∅. Let R be the sunny generalized
nonexpansive retraction of E onto B(T ). Let {αn} be a sequence of real numbers
such that 0 < αn < 1 and lim infn→∞ αn(1 − αn) > 0. Then a sequence {xn}
generated by x1 = x ∈ C and

xn+1 = αnxn + (1 − αn)Txn, ∀n ∈ N

converges weakly to z ∈ A(T ), where z = limn→∞ Rxn.

Proof. Let m ∈ B(T ). Then we have that

ϕ(xn+1, m) = ϕ(αnxn + (1 − αn)Txn,m)

≤ αnϕ(xn,m) + (1 − αn)ϕ(Txn,m)

≤ αnϕ(xn,m) + (1 − αn)ϕ(xn,m)

= ϕ(xn, m).

So limn→∞ ϕ(xn,m) exists. Then we have that the sequence {xn} is bounded. This
implies that {Txn} is bounded. Put r = supn∈N{∥xn∥, ∥Txn∥}. Using Lemma 2.2,
we have that

ϕ(xn+1,m) = ϕ(αnxn + (1 − αn)Txn,m)

≤ ∥αnxn + (1 − αn)Txn∥2 − 2⟨αnxn + (1 − αn)Txn, Jm⟩ + ∥m∥2

≤ αn∥xn∥2 + (1 − αn)∥Txn∥2 − αn(1 − αn)g(∥Txn − xn∥)
− 2αn⟨xn, Jm⟩ − 2(1 − αn)⟨Txn, Jm⟩ + ∥m∥2

= αn(∥xn∥2 − 2⟨xn, Jm⟩ + ∥m∥2)

+ (1 − αn)(∥Txn∥2 − 2⟨Txn, Jm⟩ + ∥m∥2) − αn(1 − αn)g(∥Txn − xn∥)
= αnϕ(xn,m) + (1 − αn)ϕ(Txn,m) − αn(1 − αn)g(∥Txn − xn∥)
≤ αnϕ(xn,m) + (1 − αn)ϕ(xn,m) − αn(1 − αn)g(∥Txn − xn∥)
= ϕ(xn,m) − αn(1 − αn)g(∥Txn − xn∥).

Then we obtain

αn(1 − αn)g(∥Txn − xn∥) ≤ ϕ(xn, m) − ϕ(xn+1,m).

From the assumption of {αn}, we have that

lim
n→∞

g(∥Txn − xn∥) = 0.
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Since E is reflexive and {xn} is bounded, there exists a subsequence {xni} of {xn}
such that xni ⇀ v for some v ∈ E. Since E is uniformly convex and uniformly
smooth, and limn→∞ ∥Txn − xn∥ = 0, we have from Proposition 4.1 that v is an
attractive point of T . Let {xni} and {xnj} be two subsequences of {xn} such that
xni ⇀ u and xnj ⇀ v. We know that u, v ∈ A(T ). Put a = limn→∞(ϕ(xn, u) −
ϕ(xn, v)). Since

ϕ(xn, u) − ϕ(xn, v) = 2⟨xn, Jv − Ju⟩ + ∥u∥2 − ∥v∥2,

we have a = 2⟨u, Jv−Ju⟩+∥u∥2−∥v∥2 and a = 2⟨v, Jv−Ju⟩+∥u∥2−∥v∥2. From
these equalities, we obtain that

⟨u − v, Ju − Jv⟩ = 0.

Since E is strictly convex, it follows that u = v; see [32]. Therefore {xn} converges
weakly to an element u of A(T ). On the other hand, we know from Lemma 7.1
that {RB(T )xn} converges strongly to an element z ∈ B(T ). From Lemma 2.6, we
also have

⟨xn − RB(T )xn, JRB(T )xn − Ju⟩ ≥ 0.

Since J is continuous, we have ⟨u − z, Jz − Ju⟩ ≥ 0. Since J is monotone, we also
have ⟨u − z, Jz − Ju⟩ ≤ 0. Thus we have ⟨u − z, Jz − Ju⟩ = 0. Since E is strictly
convex, we have z = u. This completes the proof. ¤

As in the proofs of Theorems 6.4 and 6.5, from Theorem 7.2 we can prove the
following weak convergence theorems.

Theorem 7.3. Let E be a uniformly convex and uniformly smooth Banach space.
Let T : E → E be a generic (α, β, γ, δ, ε, ζ)-generalized nonspreading mapping such
that α + γ > 0 and ε + ζ ≥ 0. Assume that F (T ) ̸= ∅ and let R be the sunny
generalized nonexpansive retraction of E onto F (T ). Let {αn} be a sequence of real
numbers such that 0 < αn < 1 and lim infn→∞ αn(1 − αn) > 0. Then a sequence
{xn} generated by x1 = x ∈ C and

xn+1 = αnxn + (1 − αn)Txn, ∀n ∈ N

converges weakly to z ∈ F (T ), where z = limn→∞ Rxn.

Theorem 7.4 (Takahashi, Wong and Yao [37]). Let H be a Hilbert space and let C
be a nonempty convex subset of H. Let T : C → C be a generic generalized hybrid
mapping with A(T ) ̸= ∅ and let P be the mertic projection of H onto A(T ). Let
{αn} be a sequence of real numbers such that 0 < αn < 1 and lim infn→∞ αn(1 −
αn) > 0. Then a sequence {xn} generated by x1 = x ∈ C and

xn+1 = αnxn + (1 − αn)Txn, ∀n ∈ N

converges weakly to z ∈ A(T ), where z = limn→∞ Pxn.

Remark We do not know whether a weak convergence theorem of Mann’s type
for nonspreading mappings holds or not.

Acknowledgements. The first author was partially supported by Grant-in-Aid for
Scientific Research No. 23540188 from Japan Society for the Promotion of Science.
The second and the third authors were partially supported by the grant NSC 99-
2115-M-110-007-MY3 and the grant NSC 99-2115-M-037-002-MY3, respectively.

20



References

[1] Y. I. Alber, Metric and generalized projections in Banach spaces: Properties and applications,

in Theory and Applications of Nonlinear Operators of Accretive and Monotone Type (A. G.
Kartsatos Ed.), Marcel Dekker, New York, 1996, pp. 15–50.

[2] J.-B. Baillon, Un theoreme de type ergodique pour les contractions non lineaires dans un
espace de Hilbert, C.R. Acad. Sci. Paris Ser. A-B 280 (1975), 1511-1514.

[3] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium prob-
lems, Math. Student 63 (1994), 123–145.

[4] F. E. Browder, Convergence theorems for sequences of nonlinear operators in Banach spaces,
Math. Z. 100 (1967), 201–225.

[5] P.L. Combettes and A. Hirstoaga, Equilibrium problems in Hilbert spaces, J. Nonlinear Con-
vex Anal. 6 (2005), 117–136.

[6] S. Dhompongsa, W. Fupinwong, W. Takahashi and J.-C. Yao, Fixed Point Theorems for
Nonlinear Mappings and Strict Convexity of Banach Spaces, J. Nonlinear Convex Anal. 11

(2010), 175–183.
[7] K. Goebel and W. A. Kirk, Topics in metric fixed point theory, Cambridge University Press,

Cambridge, 1990.
[8] N. Hirano, K. Kido and W. Takahashi, Nonexpansive retractions and nonlinear ergodic the-

orems in Banach spaces, Nonlinear Anal. 12 (1988), 1269–1281.
[9] T. Honda, T. Ibaraki and W. Takahashi, Duality theorems and convergence theorems for

nonlineaqr mappings in Banach spaces, Int. J. Math. Statis. 6 (2010), 46–64.

[10] T. Ibaraki and W. Takahashi, Weak and strong convergence theorems for new resolvents of
maximal monotone operators in Banach spaces, Adv. Math. Econ. 10 (2007), 51–64.

[11] T. Ibaraki and W. Takahashi, Mosco convergence of sequences of retracts of four nonlinear
projections in Banach spaces, in Nonlinear Analysis and Convex Analtsis (W. Takahashi and

T. Tanaka Eds.), Yokohama Publishers, Yokohama, 2007, pp. 139–147.
[12] T. Ibaraki and W. Takahashi, A new projection and convergence theorems for the projections

in Banach spaces, J. Approx. Theory 149 (2007), 1–14.
[13] T. Ibaraki and W. Takahashi, Weak convergence theorem for new nonexpansive mappings in

Banach spaces and its applications, Taiwanese J. Math. 11 (2007), 929–944.
[14] T. Ibaraki and W. Takahashi, Fixed point theorems for new nonlinear mappings of nonex-

pansive type in Banach spaces, J. Nonlinear Convex Anal. 10 (2009), 21–32.
[15] T. Ibaraki and W. Takahashi, Generalized nonexpansive mappings and a proximal-type algo-

rithm in Banach spaces, Contemp. Math., 513, Amer. Math. Soc., Providence, RI, 2010, pp.
169–180.

[16] S. Iemoto and W. Takahashi, Approximating fixed points of nonexpansive mappings and

nonspreading mappings in a Hilbert space, Nonlinear Anal. 71 (2009), 2082–2089.
[17] S. Itoh and W. Takahashi, The common fixed point theory of singlevalued mappings and

multivalued mappings, Pacific J. Math. 79 (1978), 493–508.
[18] S. Kamimura and W. Takahashi, Strong convergence of a proximal-type algorithm in a Ba-

nach apace, SIAM J. Optim. 13 (2002), 938–945.
[19] T. Kawasaki and W. Takahashi, Fixed point and nonlinear ergodic theorems for new nonlinear

mappings in Hilbert spaces, to appear.
[20] P. Kocourek, W. Takahashi and J. -C. Yao, Fixed point theorems and weak convergence

theorems for generalized hybrid mappings in Hilbert spaces, Taiwanese J. Math. 14 (2010),
2497–2511.

[21] P. Kocourek, W. Takahashi and J. -C. Yao, Fixed point theorems and ergodic theorems for
nonlinear mappings in Banach spaces, Adv. Math. Econ. 15 (2011), 67–88.

[22] F. Kohsaka and W. Takahashi, Generalized nonexpansive retractions and a proximal-type
algorithm in Banach spaces, J. Nonlinear Convex Anal. 8 (2007), 197-209.

[23] F. Kohsaka and W. Takahashi, Existence and approximation of fixed points of firmly
nonexpansive-type mappings in Banach spaces, SIAM J. Optim. 19 (2008), 824-835.

[24] F. Kohsaka and W. Takahashi, Fixed point theorems for a class of nonlinear mappings related
to maximal monotone operators in Banach spaces, Arch. Math. (Basel) 91 (2008), 166-177.

[25] L.-J. Lin and W. Takahashi, Attractive point theorems and ergodic theorems for nonlinear

mappings in Hilbert spaces, Taiwanese J. Math., to appear.

21



[26] L.-J. Lin and W. Takahashi, Attractive point theorems for generalized nonspreading mappings

in Banach spaces, J. Convex Anal., to appear.
[27] L.-J. Lin, W. Takahashi and Z.-T. Yu, Attractive point theorems and ergodic theorems for

2-generalized nonspreading mappings in Banach spaces, J. Convex Anal., to appear.
[28] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506–510.

[29] S. Matsushita and W. Takahashi, A strong convergence theorem for relatively nonexpansive
mappings in a Banach space, J. Approx. Theory 134 (2005), 257–266.

[30] S. Reich, A weak convergence theorem for the alternating method with Bregman distances,
in Theory and Applications of Nonlinear Operators of Accretive and Monotone Type (A. G.

Kartsatos Ed.), Marcel Dekker, New York, 1996, pp. 313-318.
[31] W. Takahashi, A nonlinear ergodic theorem for an amenable semigroup of nonexpansive

mappings in a Hilbert space, Proc. Amer. Math. Soc. 81 (1981), 253–256.
[32] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.

[33] W. Takahashi, Convex Analysis and Approximation of Fixed Points (Japanese), Yokohama
Publishers, Yokohama, 2000.

[34] W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohama Publishers, Yoko-
hama, 2009.

[35] W. Takahashi, Fixed point theorems for new nonexpansive mappings in a Hilbert space, J.
Nonlinear Convex Anal. 11 (2010), 79–88.

[36] W. Takahashi and Y. Takeuchi, Nonlinear ergodic theorem without convexity for generalized

hybrid mappings in a Hilbert space, J. Nonlinear Convex Anal. 12 (2011), 399–406.
[37] W. Takahashi, N.-C. Wong and J. C. Yao, Attractive point and weak convergence theorems

for new generalized hybrid mappings in Hilbert spaces, to appear.
[38] W. Takahashi and J. C. Yao, Fixed point theorems and ergodic theorems for nonlinear map-

pings in a Hilbert space, Taiwanese J. Math. 15 (2011), 457–472.
[39] W. Takahashi and J. C. Yao, Nonlinear operators of monotone type and convergence theorems

with equilibrium problems in Banach spaces, Taiwanese J. Math. 15 (2011), 787–818.
[40] W. Takahashi and J. C. Yao, Weak and strong convergence theorems for positively homoge-

neous nonexpansive mappings in Banach spaces, Taiwanese J. Math. 15 (2011), 961–980.
[41] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1981), 1127–

1138.

(Wataru Takahashi) Department of Mathematical and Computing Sciences, Tokyo In-
stitute of Technology, Tokyo 152-8552, Japan

E-mail address: wataru@is.titech.ac.jp

(Ngai-Ching Wong) Department of Applied Mathematics, National Sun Yat-sen Uni-

versity, Kaohsiung 80424, Taiwan
E-mail address: wong@math.nsysu.edu.tw

(Jen-Chih Yao) Center for General Education, Kaohsiung Medical University, Kaoh-
siung 80702, Taiwan

E-mail address: yaojc@kmu.edu.tw

22


