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Abstract

The purpose of this paper is to construct two superimposed optimization meth-
ods for solving the mixed equilibrium problem and variational inclusion. We show
that the proposed superimposed methods converge strongly to a solution of some
optimization problem. Note that our methods do not involve any projection.
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1 Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let C be a
nonempty closed convex subset of H. Let B : C → H be a nonlinear mapping and
K : C ×C → R be a bifunction. The equilibrium problem is to find an x in C such that

K(x, y) + 〈Bx, y − x〉 ≥ 0, ∀y ∈ C.

The theory of equilibrium problems provides us a natural, novel and unified frame-
work to study a wide class of applications. The ideas and techniques involved are being
used in a variety of diverse areas and proved to be productive and innovative. It has
been shown by Blum and Oettli [1] and Noor and Oettli [15] that variational inequal-
ities and mathematical programming problems can be viewed as special realizations of
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abstract equilibrium problems. Equilibrium problems have numerous applications, in-
cluding but not limited to problems in economics, game theory, finance, traffic analysis,
circuit network analysis and mechanics. There are a great number of numerical methods
for solving equilibrium problems under various assumptions on K and B. Please see,
e.g., [2, 4, 5, 7, 11, 12, 13, 17, 18, 21, 24, 27, 28, 29, 31, 32, 33, 34].

In 1997, Combettes and Hirstoaga [6] introduced an iterative method solving equi-
librium problems, and proved a strong convergence theorem. Subsequently, Takahashi
and Takahashi [23], Yao, Liou and Yao [30], and Zeng and Yao [35] considered several
iterative schemes for finding a common element of the set of solutions of the equilibrium
problem and the set of common fixed points of a family of finitely or infinite many non-
expansive mappings. Moreover, Marino, Cianciaruso, Muglia and Yao [3] presented an
iterative method for finding common solutions of an equilibrium problem and a varia-
tional inequality.

On the other hand, let A : H → H be a single-valued nonlinear mapping and
R : H → 2H be a set-valued mapping. We consider the following variational inclusion,
which is to find a point x in H such that

0 ∈ A(x) + R(x), (1.1)

where 0 is the zero vector in H. The set of solutions of problem (1.1) is denoted by
(A + R)−10. If H = Rm, problem (1.1) becomes the generalized equation introduced
by Robinson [19]. If A = 0, problem (1.1) becomes the inclusion problem introduced
by Rockafellar [20]. Problem (1.1) provides a convenient framework for a unified study
of mathematical programming, complementarity, variational inequalities, optimal con-
trol, mathematical economics, equilibria, game theory, etc. Meanwhile, various types of
variational inclusion problems have been extended and generalized.

In this paper, we are interested in solving the equilibrium problem with those K
given by

K(x, y) = F (x, y) + G(x, y),

where F,G : C × C → R are two bifunctions satisfying some special properties (see
Section 2). This is the well-known mixed equilibrium problem, i.e., to find an x in C
such that

F (x, y) + G(x, y) + 〈Bx, y − x〉 ≥ 0, ∀y ∈ C. (1.2)

The solution set of (1.2) is denoted by EP (F,G,B).
Recently, Zhang et al. [36] introduced a new iterative scheme for finding a common

element of the set of solutions of problem (1.2) and the set of fixed points of nonexpansive
mappings in Hilbert spaces. Peng et al. [16] introduced another iterative scheme by the
viscosity approximate method for finding a common element of the set of solutions of a
variational inclusion with set-valued maximal monotone mapping and inverse strongly
monotone mappings, the set of solutions of an equilibrium problem, and the set of fixed
points of a nonexpansive mapping. For more related works, please see also, [8, 9, 10].

Motivated and inspired by the above works, the purpose of this paper is to construct
two superimposed optimization methods for solving the mixed equilibrium problem and
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variational inclusion. Consequently, we show that the suggested superimposed methods
converge strongly to a solution of some optimization problem. Note that our methods
do not use any projection.

We would like to express our deep thanks to the referees. With their valuable com-
ments and suggestions, we have made several improvements in the final version.

2 Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. We write xn ⇀ x
and xn → x for the weak and strong convergence of {xn} to x in H, respectively. The
set of fixed points of a mapping T on a subset C of H is Fix(T ) = {x ∈ C : Tx = x}.

Let R be a mapping of H into 2H . The effective domain of R is

dom(R) = {x ∈ H : Rx 6= ∅}.

A multi-valued mapping R is said to be a monotone operator on H if

〈x− y, u− v〉 ≥ 0, ∀x, y ∈ dom(R),∀u ∈ Rx,∀v ∈ Ry.

A monotone operator R on H is said to be maximal if its graph is not strictly contained
in the graph of any other monotone operator on H. Let R be a maximal monotone
operator on H and let R−10 = {x ∈ H : 0 ∈ Rx}.

For a maximal monotone operator R on H and λ > 0, we may define a single-valued
operator

JR
λ = (I + λR)−1 : H → dom(R),

which is called the resolvent of R for λ. It is known that the resolvent JR
λ is firmly

nonexpansive, i.e.,

‖JR
λ x− JR

λ y‖2 ≤ 〈JR
λ x− JR

λ y, x− y〉, ∀x, y ∈ C,

and R−10 = Fix(JR
λ ) for all λ > 0.

Let C be a nonempty closed convex subset of real Hilbert space H. Recall that a
mapping S : C → C is said to be nonexpansive if

‖Sx− Sy‖ ≤ ‖x− y‖, ∀x, y ∈ C.

A mapping A : C → H is α-inverse-strongly monotone if there exists α > 0 such that

〈Ax−Ay, x− y〉 ≥ α‖Ax−Ay‖2, ∀x, y ∈ C.

It is clear that any α-inverse-strongly monotone mapping is monotone and 1
α -Lipschitz

continuous.
Throughout this paper, we assume that two bifunctions F,G : C × C → R satisfies

the following conditions:
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(F1) F (x, x) = 0 for all x in C;

(F2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;

(F3) for each x, y, z in C, we have lim supt→0+ F (tz + (1− t)x, y) ≤ F (x, y);

(F4) for each x in C, the function y 7→ F (x, y) is convex and weakly lower semicontin-
uous.

(G1) G(x, x) = 0 for all x in C;

(G2) G is monotone, and weakly upper semicontinuous in the first variable;

(G3) G is convex in the second variable.

(H) For fixed µ > 0 and x in C, there exists a bounded set K ⊂ C and a in K such
that

−F (a, z) + G(z, a) +
1
µ
〈a− z, z − x〉 < 0, ∀z ∈ C\K.

Lemma 2.1. ([3]) Let C be a nonempty closed convex subset of a real Hilbert space H.
Let F,G : C ×C → R be two bifunctions which satisfy conditions (F1)-(F4), (G1)-(G3)
and (H). Let µ > 0 and x ∈ C. Then, there exists a unique z := Tµx in C such that

F (z, y) + G(z, y) +
1
µ
〈y − z, z − x〉 ≥ 0, ∀y ∈ C.

Furthermore,

(i) The single-valued map Tµ thus defined is firmly nonexpansive, i.e., for any x, y in
H, we have

‖Tµx− Tµy‖2 ≤ 〈Tµx− Tµy, x− y〉, ∀x, y ∈ H.

(ii) EP (F,G, 0) is closed and convex, and EP (F,G, 0) = Fix(Tµ).

Lemma 2.2. ([14]) Let C be a nonempty closed convex subset of a real Hilbert space
H. Let a mapping A : C → H be α-inverse strongly monotone and λ > 0 be a constant.
Then, we have

‖(I − λA)x− (I − λA)y‖2 ≤ ‖x− y‖2 + λ(λ− 2α)‖Ax−Ay‖2, ∀x, y ∈ C.

In particular, if 0 ≤ λ ≤ 2α, then I − λA is nonexpansive.

Lemma 2.3. ([26]) Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1− γn)an + δn,

where {γn} is a sequence in (0, 1) and {δn} is a real sequence such that

(1)
∑∞

n=1 γn = +∞;

(2) lim supn→∞ δn/γn ≤ 0 or
∑∞

n=1 |δn| < +∞.

Then limn→∞ an = 0.
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3 Results

Let C be a nonempty closed and convex subset of a real Hilbert space H. Let A,B be
two nonlinear operators of C into H. Let R be a maximal monotone operator on H with
the resolvent JR

λ = (I + λR)−1. Let F,G : C × C → R be two bifunctions. Set

Γ := EP (F,G,B) ∩ (A + R)−10.

We consider the following optimization problem:

min{‖x‖ : x ∈ Γ}, (3.1)

the least-squares solutions to the constrained linear inverse problem.
Throughout, we assume Γ 6= ∅ together with the following conditions.

(1) 0 < a ≤ λ ≤ b < 2α and 0 < c ≤ µ ≤ d < 2β are all constants.

(2) A,B are α, β-inverse strongly-monotone mappings of C into H, respectively.

(3) The effective domain of R is included in C.

(4) F and G satisfy conditions (F1)-(F4), (G1)-(G3) and (H).

Let Tµ be the single-valued firmly nonexpansive map defined in Lemma 2.1. It is
easy to see that

z = Tµ(I − µB)z = JR
λ (I − λA)z, ∀z ∈ Γ. (3.2)

In order to solve (3.1), we introduce the following superimposed optimization method:

xt = Tµ(I − µB)JR
λ ((1− t)I − λA)xt, t ∈ (0, 1− λ

2α
).

Note that the net {xt} above is well-defined. More precisely, for any t in (0, 1− λ
2α),

we define a mapping
St := Tµ(I − µB)JR

λ ((1− t)I − λA).

Since Tµ, JR
λ , I − µB and I − λ

1−tA (see Lemmas 2.2 and 2.2) are all nonexpansive, we
have, for any x, y in C,

‖Stx− Sty‖ =
∥∥∥Tµ(I − µB)JR

λ ((1− t)I − λA)x− Tµ(I − µB)JR
λ ((1− t)I − λA)y

∥∥∥
≤ ‖((1− t)I − λA)x− ((1− t)I − λA)y‖

= (1− t)‖(x− λ

1− t
Ax)− (y − λ

1− t
Ay)‖

≤ (1− t)‖x− y‖.

Thus, the mapping St is a contraction on C, and consequently there exists a unique fixed
point xt of St in C.
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Theorem 3.1. The net {xt} defined by

xt = Tµ(I − µB)JR
λ ((1− t)I − λA)xt, t ∈ (0, 1− λ

2α
). (3.3)

converges strongly, as t → 0+, to the unique point x∗ in Γ of minimum norm. Moreover,
we have

‖x∗‖2 ≤ 〈x∗, z〉, ∀z ∈ Γ.

Proof. Step 1. We first show that {xt} and {Axt} are both uniformly bounded, and

lim
t→0+

‖Axt −Az‖ = 0, ∀z ∈ Γ. (3.4)

Let z ∈ Γ. Note that

z = JR
λ (z − λAz) = JR

λ

(
tz + (1− t)(z − λAz/(1− t))

)
.

From (3.2), (3.3), the nonexpansivity of Tµ, JR
λ , I − µB and I − λA/(1 − t) (Lemmas

2.1 and 2.2), and the convexity of ‖ · ‖2, we obtain

‖xt − z‖2

= ‖Tµ(I − µB)JR
λ ((1− t)I − λA)xt − Tµ(I − µB)z‖2

≤
∥∥∥JR

λ

(
(1− t)xt − λAxt

)
− z

∥∥∥2
(3.5)

=
∥∥∥JR

λ

(
(1− t)(xt − λAxt/(1− t))

)
− JR

λ

(
tz + (1− t)(z − λAz/(1− t))

)∥∥∥2

≤
∥∥∥(

(1− t)(xt − λAxt/(1− t))
)
−

(
tz + (1− t)(z − λAz/(1− t))

)∥∥∥2

=
∥∥∥(1− t)

(
(xt − λAxt/(1− t))− (z − λAz/(1− t))

)
+ t(−z)

∥∥∥2
(3.6)

≤ (1− t)‖(xt − λAxt/(1− t))− (z − λAz/(1− t))‖2 + t‖z‖2 (3.7)
≤ (1− t)‖xt − z‖2 + t‖z‖2

It follows that

‖xt − z‖ ≤ ‖z‖.

Therefore, {xt} is bounded. Since A is α-inverse strongly monotone, it is 1
α -Lipschitz

continuous. We deduce immediately that {Axt} is also bounded.
On the other hand, from the α-inverse strong monotonicity of A, we derive

‖(xt − λAxt/(1− t))− (z − λAz/(1− t))‖2

= ‖(xt − z)− λ(Axt −Az)/(1− t)‖2

= ‖xt − z‖2 − 2λ

1− t
〈Axt −Az, xt − z〉+

λ2

(1− t)2
‖Axt −Az‖2

≤ ‖xt − z‖2 − 2αλ

1− t
‖Axt −Az‖2 +

λ2

(1− t)2
‖Axt −Az‖2

= ‖xt − z‖2 +
λ

(1− t)2
(λ− 2(1− t)α)‖Axt −Az‖2. (3.8)
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It follows from (3.7) and (3.8) that

‖xt − z‖2 ≤ (1− t)
(
‖xt − z‖2 +

λ

(1− t)2
(λ− 2(1− t)α)‖Axt −Az‖2

)
+ t‖z‖2.

Consequently,

λ

(1− t)
(2(1− t)α− λ)‖Axt −Az‖2 ≤ t‖z‖2 → 0, as t → 0+.

As a result,

lim
t→0+

‖Axt −Az‖ = 0.

Step 2. Next, we show

lim
t→0+

∥∥∥xt − JR
λ

(
(1− t)xt − λAxt

)∥∥∥ = 0. (3.9)

Using the firm nonexpansivity of JR
λ , for any z in Γ we have∥∥∥JR

λ

(
(1− t)xt − λAxt

)
− z

∥∥∥2

=
∥∥∥JR

λ

(
(1− t)xt − λAxt

)
− JR

λ

(
z − λAz

)∥∥∥2

≤
〈
(1− t)xt − λAxt − (z − λAz), JR

λ

(
(1− t)xt − λAxt

)
− z

〉
=

1
2

(
‖(1− t)xt − λAxt − (z − λAz)‖2 +

∥∥∥JR
λ

(
(1− t)xt − λAxt

)
− z

∥∥∥2

−
∥∥∥(1− t)xt − λ(Axt − λAz)− JR

λ

(
(1− t)xt − λAxt

)∥∥∥2)
.

By the nonexpansivity of I − λA/(1− t), we have

‖(1− t)xt − λAxt − (z − λAz)‖2

= ‖(1− t)((xt − λAxt/(1− t)− (z − λAz/(1− t))) + t(−z)‖2

≤ (1− t)‖(xt − λAxt/(1− t)− (z − λAz/(1− t))‖2 + t‖z‖2

≤ (1− t)‖xt − z‖2 + t‖z‖2.

Thus, ∥∥∥JR
λ

(
(1− t)xt − λAxt

)
− z

∥∥∥2

≤ 1
2

(
(1− t)‖xt − z‖2 + t‖z‖2 +

∥∥∥JR
λ

(
(1− t)xt − λAxt

)
− z

∥∥∥2

−
∥∥∥(1− t)xt − JR

λ

(
(1− t)xt − λAxt

)
− λ(Axt −Az)

∥∥∥2)
.
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This together with (3.5) gives

‖xt − z‖2

≤
∥∥∥JR

λ

(
(1− t)xt − λAxt

)
− z

∥∥∥2

≤ (1− t)‖xt − z‖2 + t‖z‖2 −
∥∥∥(1− t)xt − JR

λ

(
(1− t)xt − λAxt

)
− λ(Axt −Az)

∥∥∥2

= (1− t)‖xt − z‖2 + t‖z‖2 −
∥∥∥(1− t)xt − JR

λ

(
(1− t)xt − λAxt

)∥∥∥2

+2λ
〈
(1− t)xt − JR

λ

(
(1− t)xt − λAxt

)
, Axt −Az

〉
− λ2‖Axt −Az‖2

≤ (1− t)‖xt − z‖2 + t‖z‖2 −
∥∥∥(1− t)xt − JR

λ

(
(1− t)xt − λAxt

)∥∥∥2

+2λ
∥∥∥(1− t)xt − JR

λ

(
(1− t)xt − λAxt

)∥∥∥‖Axt −Az‖. (3.10)

Hence, ∥∥∥(1− t)xt − JR
λ

(
(1− t)xt − λAxt

)∥∥∥2

≤ t‖z‖2 + 2λ
∥∥∥(1− t)xt − JR

λ

(
(1− t)xt − λAxt

)∥∥∥‖Axt −Az‖.

Since ‖Axt −Az‖ → 0 as t → 0+ by Step 1, we deduce

lim
t→0+

∥∥∥(1− t)xt − JR
λ

(
(1− t)xt − λAxt

)∥∥∥ = 0.

Therefore,

lim
t→0+

∥∥∥xt − JR
λ

(
(1− t)xt − λAxt

)∥∥∥ = 0.

Step 3. We show that ‖xt − Tµ(I − µB)xt‖ → 0 as t → 0+.
Set

ut = JR
λ ((1− t)xt − λAxt), ∀t ∈ (0, 1− λ

2α
).

Then by (3.3),
xt = Tµ(I − µB)ut.

It follows from Step 2 and the nonexpansivity of Tµ and I − µB that

‖xt − Tµ(I − µB)xt‖ = ‖Tµ(I − µB)ut − Tµ(I − µB)xt‖
≤ ‖ut − xt‖ → 0.

Step 4. We show that {xt} strongly converges to the unique point x∗ in Γ of minimum
norm as t → 0+.
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From (3.6) and the nonexpansivity of I − λ
1−tA, we have

‖xt − z‖2 ≤
∥∥∥(1− t)

(
(xt −

λ

1− t
Axt)− (z − λ

1− t
Az)

)
− tz

∥∥∥2

= (1− t)2
∥∥∥(xt −

λ

1− t
Axt)− (z − λ

1− t
Az)

∥∥∥2

−2t(1− t)
〈
z, (xt −

λ

1− t
Axt)− (z − λ

1− t
Az)

〉
+ t2‖z‖2

≤ (1− t)2‖xt − z‖2 − 2t(1− t)
〈
z, xt −

λ

1− t
(Axt −Az)− z

〉
+ t2‖z‖2

= (1− 2t)‖xt − z‖2 + 2t
{
− (1− t)

〈
z, xt −

λ

1− t
(Axt −Az)− z

〉}
+t2(‖z‖2 + ‖xt − z‖2).

It follows that

‖xt − z‖2 ≤ −
〈
z, xt −

λ

1− t
(Axt −Az)− z

〉
+

t

2
(‖z‖2 + ‖xt − z‖2)

+t‖z‖
∥∥∥xt −

λ

1− t
(Axt −Az)− z

∥∥∥
≤ −

〈
z, xt −

λ

1− t
(Axt −Az)− z

〉
+ tM. (3.11)

Here, M is some constant such that

‖z‖2 + ‖xt − z‖2

2
+ ‖z‖

∥∥∥xt −
λ

1− t
(Axt −Az)− z

∥∥∥ ≤ M, ∀t ∈ (0, 1− λ

2α
).

Let x∗ be any weak* cluster point in C of the bounded net {xt} as t → 0+. Assume
tn → 0+ in (0, 1 − λ

2α) as n → ∞, and xtn ⇀ x∗. Put xn := xtn and un := utn . From
(3.11), we have

‖xn − z‖2 ≤ −
〈
z, xn −

λ

1− tn
(Axn −Az)− z

〉
+ tnM, ∀z ∈ Γ. (3.12)

Now we show x∗ ∈ EP (F,G,B). Setting

vn = Tµ(I − µB)xn,

for any y in C we have

F (vn, y) + G(vn, y) +
1
µ
〈y − vn, vn − (xn − µBxn)〉 ≥ 0.

From the monotonicity of F , we have

G(vn, y) + 〈y − vn,
vn − xn

µ
+ Bxn〉 ≥ F (y, vn), ∀y ∈ C. (3.13)
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Put zs = sy + (1 − s)x∗ ∈ C for s in (0, 1] and y in C. It follows from the β-inverse
strongly monotonicity of B and (3.13) that

〈zs − vn, Bzs〉
= 〈zs − vn, Bzs −Bxn〉+ 〈Bxn, zs − vn〉

≥ 〈zs − vn, Bzs −Bxn〉+ F (zs, vn)−G(vn, zs)−
1
µ
〈zs − vn, vn − xn〉

= 〈zs − vn, Bzs −Bvn〉+ 〈zs − vn, Bvn −Bxn〉

+F (zs, vn)−G(vn, zs)−
1
µ
〈zs − vn, vn − xn〉

≥ 〈zs − vn, Bvn −Bxn〉+ F (zs, vn)−G(vn, zs)−
1
µ
〈zs − vn, vn − xn〉. (3.14)

Note that ‖Bvn − Bxn‖ ≤ 1
β‖vn − xn‖ → 0 by Step 3, and also that vn ⇀ x∗ weakly.

Letting n →∞ in (3.14), we have from the assumptions (F4) and (G2) that

〈zs − x∗, Bzs〉 ≥ F (zs, x
∗)−G(x∗, zs). (3.15)

From (F1), (F3), (G1), (G2), (G3) and (3.15), we also have

0 = F (zs, zs) + G(zs, zs)
≤ sF (zs, y) + (1− s)F (zs, x

∗) + sG(zs, y) + (1− s)G(zs, x
∗)

≤ sF (zs, y) + sG(zs, y) + (1− s)[F (zs, x
∗)−G(x∗, zs)]

≤ sF (zs, y) + sG(zs, y) + (1− s)〈zs − x∗, Bzs〉
= s[F (zs, y) + G(zs, y) + (1− s)〈y − x∗, Bzs〉],

and hence

0 ≤ F (zs, y) + G(zs, y) + (1− s)〈Bzs, y − x∗〉. (3.16)

Letting s → 0+ in (3.16), we have, for each y in C,

0 ≤ F (x∗, y) + G(x∗, y) + 〈y − x∗, Bx∗〉, ∀y ∈ C

That is, x∗ ∈ EP (F,G,B).
Further, we show that x∗ is also in (A + R)−10. Let v ∈ Ru. Setting

un = JR
λ ((1− tn)xn − λAxn), ∀n = 1, 2, . . . ,

we have

(1− tn)xn − λAxn ∈ (I + λR)un ⇒
1− tn

λ
xn −Axn −

un

λ
∈ Run.
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Since R is monotone, we have, for (u, v) ∈ R,〈1− tn
λ

xn −Axn −
un

λ
− v, un − u

〉
≥ 0

⇒ 〈(1− tn)xn − λAxn − un − λv, un − u〉 ≥ 0

⇒ 〈Axn + v, un − u〉 ≤ 1
λ
〈xn − un, un − u〉 − tn

λ
〈xn, un − u〉

⇒ 〈Ax∗ + v, un − u〉 ≤ 1
λ
〈xn − un, un − u〉 − tn

λ
〈xn, un − u〉+ 〈Ax∗ −Axn, un − u〉

≤ 1
λ
‖xn − un‖‖un − u‖+

tn
λ
‖xn‖‖un − u‖+ ‖Ax∗ −Axn‖‖un − u‖.

It follows that

〈Ax∗ + v, x∗ − u〉 ≤ 1
λ
‖xn − un‖‖un − u‖+

tn
λ
‖xn‖‖un − u‖

+‖Ax∗ −Axn‖‖un − u‖+ 〈Ax∗ + v, x∗ − un〉. (3.17)

Since 〈xn − x∗, Axn −Ax∗〉 ≥ α‖Axn −Ax∗‖2, Axn → Az and xn ⇀ x∗, we have

Axn → Ax∗. (3.18)

We also observe that tn → 0, ‖xn − un‖ → 0 (Step 1), and thus un ⇀ x∗. From (3.17),
we derive

〈−Ax∗ − v, x∗ − u〉 ≥ 0.

Since R is maximal monotone, we have −Ax∗ ∈ Rx∗. This shows that 0 ∈ (A + R)x∗.
Hence, we have x∗ ∈ EP (F,G,B) ∩ (A + R)−10 = Γ.

At this moment, we can substitute x∗ for z in (3.12) to get

‖xn − x∗‖2 ≤ −
〈
x∗, xn −

λ

1− tn
(Axn −Ax∗)− x∗

〉
+ tnM.

Consequently, the weak convergence of {xn} to x∗ actually implies that xn → x∗ by
(3.18).

Finally, we return to (3.12) again and take the limit as n →∞ to get

‖x∗ − z‖2 ≤ −〈z, x∗ − z〉, ∀z ∈ Γ.

Equivalently,
‖x∗‖2 ≤ 〈x∗, z〉, ∀z ∈ Γ. (3.19)

This clearly implies that
‖x∗‖ ≤ ‖z‖, ∀z ∈ Γ.

This together with (3.19) implies that x∗ is the unique element of Γ of minimum norm.
If x′ is an other weak cluster point of the net {xt} as t → 0+, we will also see that

x′ is in Γ with ‖x′‖ = ‖x∗‖. Then (3.19) implies x′ = x∗. This ensures that xt → x in
norm as t → 0+.
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Theorem 3.2. Let y0 ∈ C. Define

yn+1 = Tµ(I − µB)JR
λ ((1− αn)I − λA)yn, ∀n = 1, 2, . . . . (3.20)

Here, {αn} is a sequence in (0, 1− λ
2α) satisfying conditions

(i) limn→∞ αn = 0 and
∑∞

n=0 αn = +∞;

(ii) limn→∞
αn+1

αn
= 1.

Then the sequence {yn} converges strongly to the unique point x∗ in Γ of minimum norm.

Proof. Step 1. Arguing in parallel to the proof of Theorem 3.1, we first show that both
{yn} and {Ayn} are uniformly bounded, and

lim
n→∞

‖Ayn −Az‖ = 0, ∀z ∈ Γ.

Take any z in Γ. Note that JB
λ (z − λAz) = JB

λ

(
αnz + (1− αn)(z − λAz/(1− αn))

)
for all n = 1, 2, . . .. As in deriving (3.7), we have∥∥∥JR

λ

(
(1− αn)yn − λAyn

)
− z

∥∥∥2

≤ (1− αn)
(
‖yn − z‖2 +

λ(λ− 2(1− αn)α)
(1− αn)2

‖Ayn −Az‖2
)

+ αn‖z‖2 (3.21)

≤ (1− αn)‖yn − z‖2 + αn‖z‖2.

From (3.20) and (3.21), we have

‖yn+1 − z‖2 = ‖Tµ(I − µB)JR
λ ((1− αn)I − λA)yn − Tµ(I − µB)z‖2

≤ ‖JR
λ

(
(1− αn)yn − λAyn

)
− z‖2 (3.22)

≤ (1− αn)‖yn − z‖2 + αn‖z‖2.

≤ max{‖yn − z‖2, ‖z‖2}.

By induction

‖yn − z‖ ≤ max{‖y0 − z‖, ‖z‖}.

Therefore, {yn} is bounded. Since A is α-inverse strongly monotone, it is 1
α -Lipschitz

continuous. We deduce immediately that {Ayn} is also bounded.
From (3.20) and Lemma 2.2, we have

‖yn+1 − yn‖
= ‖Tµ(I − µB)JR

λ ((1− αn)I − λA)yn − Tµ(I − µB)JR
λ ((1− αn−1)I − λA)yn−1‖

≤ ‖((1− αn)I − λA)yn − ((1− αn−1)I − λA)yn−1‖
= ‖(1− αn)(I − λA/(1− αn))yn − (1− αn)(I − λA/(1− αn))yn−1 + (αn−1 − αn)yn−1‖
≤ (1− αn)‖(I − λA/(1− αn))yn − (1− αn)(I − λA/(1− αn))yn−1‖+ |αn − αn−1|‖yn−1‖
≤ (1− αn)‖yn − yn−1‖+ |αn − αn−1| sup

k
‖yk‖.
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It follows from Lemma 2.3 that

lim
n→∞

‖yn+1 − yn‖ = 0. (3.23)

By (3.21) and (3.22), we obtain

‖yn+1 − z‖2 ≤ (1− αn)‖yn − z‖2 +
λ

(1− αn)
(λ− 2(1− αn)α)‖Ayn −Az‖2 + αn‖z‖2.

Therefore,

λ

(1− αn)
(2(1− αn)α− λ)‖Ayn −Az‖2

≤ ‖yn − z‖2 − ‖yn+1 − z‖2 + αn(‖z‖2 − ‖yn − z‖2)
≤ ‖yn+1 − yn‖(‖yn − z‖+ ‖yn+1 − z‖) + αn(‖z‖2 − ‖yn − z‖2)
→ 0.

This implies that

lim
n→∞

‖Ayn −Az‖ = 0.

Step 2. Next, we verify

lim
n→∞

∥∥∥yn − JR
λ ((1− αn)I − λA)yn

∥∥∥ = 0.

Using (3.22) and as deriving (3.10) in the proof of Theorem 3.1, we have

‖yn+1 − z‖2 ≤
∥∥∥JR

λ

(
(1− αn)yn − λAyn

)
− z

∥∥∥2

≤ (1− αn)‖yn − z‖2 + αn‖z‖2 −
∥∥∥(1− αn)yn − JR

λ

(
(1− αn)yn − λAyn

)∥∥∥2

+2λ
∥∥∥(1− αn)yn − JR

λ

(
(1− αn)yn − λAyn

)∥∥∥‖Ayn −Az‖.

Hence, ∥∥∥(1− αn)yn − JR
λ

(
(1− αn)yn − λAyn

)∥∥∥2

≤ ‖yn − z‖2 − ‖yn+1 − z‖2 + αn(‖z‖2 − ‖yn − z‖2)

+2λ
∥∥∥(1− αn)yn − JR

λ

(
(1− αn)yn − λAyn

)∥∥∥‖Ayn −Az‖

≤ (‖yn − z‖+ ‖yn+1 − z‖)‖yn+1 − yn‖+ αn(‖z‖2 − ‖yn − z‖2)

+2λ
∥∥∥(1− αn)yn − JR

λ

(
(1− αn)yn − λAyn

)∥∥∥‖Ayn −Az‖.

Since αn → 0, ‖yn+1 − yn‖ → 0 by (3.23) and ‖Ayn −Az‖ → 0 by Step 1, we deduce

lim
n→∞

∥∥∥(1− αn)yn − JR
λ

(
(1− αn)yn − λAyn

)∥∥∥ = 0.
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Therefore,

lim
n→∞

∥∥∥yn − JR
λ

(
(1− αn)yn − λAyn

)∥∥∥ = 0.

Step 3. We next show that

lim
n→∞

‖yn − Tµ(I − µB)yn‖ = 0.

Set
un = JR

λ ((1− αn)yn − λAyn), ∀n = 1, 2, . . . .

Then
yn+1 = Tµ(I − µB)un, ∀n = 1, 2, . . . .

It follows from Step 2 that

‖yn+1 − Tµ(I − µB)yn‖ = ‖Tµ(I − µB)un − Tµ(I − µB)yn‖
≤ ‖un − yn‖ → 0.

By (3.23) we see that
‖yn − Tµ(I − µB)yn‖ → 0.

Step 4. We show that yn → x∗ which is the unique element in Γ with minimum norm
(as given in Theorem 3.1).

Let {ynk
} be a subsequence of the bounded sequence {yn} weakly converging to some

x̃ in C. By a similar argument as that of Step 4 in the proof of Theorem 3.1, we can
show that x̃ ∈ Γ. It follows from Theorem 3.1 that

lim
k→∞

〈x∗, ynk
− x∗〉 = 〈x∗, x̃− x∗〉 = 〈x∗, x̃〉 − ‖x∗‖2 ≥ 0.

As this holds true for all weakly convergent subsequences of {yn}, we can conclude that
lim infn→∞〈x∗, yn − x∗〉 ≥ 0. Since yn − un → 0 by Step 2, we also have

lim inf
k→∞

〈x∗, un − x∗〉 ≥ 0. (3.24)

Using the firmly nonexpansivity of JR
λ and the nonexpansivity of I − λ

1−αn
A, we get

‖un − x∗‖2

=
∥∥∥JR

λ

(
(1− αn)yn − λAyn

)
− JR

λ (x∗ − λAx∗)
∥∥∥2

≤ 〈(1− αn)yn − λAyn − (x∗ − λAx∗), un − x∗〉
= (1− αn)〈yn − λAyn/(1− αn)− (x∗ − λAx∗/(1− αn)), un − x∗〉 − αn〈x∗, un − x∗〉
≤ (1− αn)‖yn − λAyn/(1− αn)− (x∗ − λAx∗/(1− αn))‖‖un − x∗‖ − αn〈x∗, un − x∗〉
≤ (1− αn)‖yn − x∗‖‖un − x∗‖ − αn〈x∗, un − x∗〉

≤ 1− αn

2
‖yn − x∗‖2 +

1
2
‖un − x∗‖2 − αn〈x∗, un − x∗〉.
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It follows that

‖un − x∗‖2 ≤ (1− αn)‖yn − x∗‖2 − 2αn〈x∗, un − x∗〉.

Therefore, by (3.22) we have

‖yn+1 − x∗‖2 ≤ ‖un − x∗‖2

≤ (1− αn)‖yn − x∗‖2 − 2αn〈x∗, un − x∗〉.

Applying Lemma 2.3 with (3.24) to the last inequality, we deduce yn → x∗ as asserted.

Remark 3.3. We note that in Theorems 3.1 and 3.2, we add an additional assumption:
the effective domain of R is included in C. This assumption is indeed not restrictive.
The readers can find an example which satisfies this assumption in [25].

Remark 3.4. In Theorem 3.1, we have proved the facts that limt→0+ ‖Axt − Az‖ =
0,∀z ∈ Γ(by (3.4)) and limt→0+ xt = x∗. Thus, we deduce immediately that the image
of Γ under A consists of exactly one point Ax∗, that is, A(Γ) = {Ax∗}.

This fact brings us a question: whether or not A(Γ) = {Ax∗} implies Γ is a singleton
set.

The answer is no. We give here an example to clarify this point. Let T : C → C
be a nonexpansive mapping with a nonempty fixed point set Fix(T ). It is easy to see
that I − T is monotone and Lipschitzian. If we take A = I − T and Γ = Fix(T ), then
A(Γ) = {Ax∗} = {0} for any fixed point x∗ of T . However, Fix(T ) can contain more
than one points, in general.

We end this paper with an example showing that the set

Γ = EP (F,G,B) ∩ (A + R)−10.

can be nonempty in our setting.

Example 3.5. Let C = H = R. Let F,G : C × C → R be defined by

F (x, y) = x− y and G(x, y) = 0, ∀x, y ∈ C.

Let A,B : C → H be defined by

Ax = −1 and Bx = max{0, x}, ∀x ∈ C.

Define R : H → 2H by
Rx = {x}, ∀x ∈ H.

Clearly, F,G satisfy conditions (F1)–(F4) and (G1)–(G3). For condition (H), we can
set a = x and K = [x, x+µ]. On the other hand, by setting α = β = 1, we see that A,B
are α, β-inverse strongly-monotone from C into H, respectively. The effective domain of
the maximal monotone operator R is C. So all the assumptions on A,B, F, G and R in
Theorems 3.1 and 3.2 are satisfied.
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In this case, it is easy to see that EP (F,G,B) = {1} and

(A + R)−10 = {x ∈ C : 0 ∈ Ax + Rx} = {x ∈ C : 0 ∈ {−1 + x}} = {1}.

Hence, Γ = EP (F,G,B) ∩ (A + R)−10 = {1} is nonempty.
Let λ, µ ∈ (0, 2). It is straightforward to obtain

JR
λ x = x/(1 + λ) and Tµx = x + µ, ∀x ∈ H,x ∈ C.

Direct computation gives

xt =
λ + µ

λ + µ + t(1− µ)
, ∀t ∈ (0, 1− λ/2),

as given in Theorem 3.1. As t → 0+, we see that xt → 1, which is the unique point in Γ.
Similarly, with the positive null sequence {αn} given in Theorem 3.2, we have

yn+1 =
(1− αn)yn + λ

1 + λ
(1− µ) + µ, ∀n = 0, 1, 2, . . . .

It is not difficult to see that yn → 1, the unique point in Γ.
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