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Abstract

A convex subset B of a real locally convex space X is said to have the separation
property if it can be separated from any closed convex subset A of X, which is disjoint
from B, by a closed hyperplane. The strong separation theorem says that if B is
weakly compact then it has the separation property. In this paper, we present several
versions for the converse and discuss some applications. For example, we prove that
a normed space is reflexive if and only if its closed unit ball has the separation
property. Results in this paper can be considered as generalizations and supplements
of the famous James’ Theorem.

1 Introduction

Definition. Let B be a bounded convex subset of a real locally convex (Hausdorff) space

X. B is said to have the separation property if it can be strictly separated from any closed

convex subset A of X, which is disjoint from B, by a closed hyperplane, i.e. there is a

continuous linear functional f of X such that

inf{f(x) : x ∈ A} > sup{f(x) : x ∈ B}.

B is said to have James’ property if every continuous linear functional f of X attains its

supremum on B, i.e. there is a b in B such that

f(b) = sup{f(x) : x ∈ B}.
∗This research is partially supported by National Science Council of Taiwan, R.O.C.
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The classical strong separation theorem of Klee [7] states that if B is weakly compact

then B has the separation property. It is also plain that if B has the separation property

then B has James’ property. In this paper, we shall investigate possible converses of the

above two implications.

In a series of papers [2–6], R.C. James established the famous James’ Theorem which

was extended by J. D. Pryce [8] as

James’ Theorem. For a complete bounded convex subset B of a locally convex space

X, B is weakly compact if and only if B has James’ property.

A major application of James’ Theorem is a characterization of the reflexivity of Banach

spaces: A Banach space E is reflexive if and only if the closed unit ball of E has James’

property.

James’ Theorem cannot be extended further to incomplete bounded convex sets. In [5],

R.C. James presented a counter example to show that a bounded convex set with James’

property is not necessarily weakly compact even if it is the closed unit ball of a normed

space. We shall use the same example to show that a bounded convex set with James’

property does not necessarily have the separation property, either (see Example 6). In

other words, the separation property is closer to weak compactness than James’ property

in general. As an evidence, we obtain

Theorem 1. A bounded convex body (i.e. convex set with nonempty interior) B in

a real normed space X is weakly compact if and only if B has the separation property.

In particular, a real normed space is reflexive if and only if its closed unit ball has the

separation property.

Conjecture. A bounded convex subset B of a real locally convex space X is weakly

compact if and only if B has the separation property.

We shall present in Theorem 3 a sufficient condition under which our conjecture holds.

Theorem 7 demonstrates an application of our results. It shows clearly that even a partial

answer of our conjecture can quite improve many classical results, in particular, for those

involving completeness conditions. Although we discuss only real locally convex spaces in

this paper, our results should be easily extended to complex cases.
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2 Main results

In the following, B always denotes a bounded convex subset of a real locally convex space

X. We note that if B has the separation property then B is weakly closed. It is clear that

Theorem 1 is a corollary of James’ Theorem and the following lemma.

Lemma 2. Let B be a bounded convex body in a real normed space X. If B has the

separation property then B is complete.

Proof. W.L.O.G. we can assume 0 ∈ B. Let B̃ be the closure of B in the completion

X̃ of X. Note that B̃ is a bounded convex body in X̃. For any nonzero b in B̃, λb belongs

to the boundary of B̃, where λ = sup{k : kb ∈ B̃} ≥ 1. We want to show that B̃ = B. It

suffices to verify that B contains the boundary of B̃.

Suppose there were an element b in the boundary of B̃ such that b /∈ B. Let b be

contained in a supporting hyperplane H of B̃ such that H = {x ∈ X̃ : f(x) = 1} and

B̃ ⊂ {x ∈ X̃ : f(x) ≤ 1} for some continuous linear functional f of X̃. In particular,

f(b) = 1. Let bn = (1 + 1
n
)b for n = 1, 2, 3, · · ·. Let BX̃(a; δ) denote the open ball

{x ∈ X̃ : ‖x − a‖ < δ}. Since BX̃(bn; 1
n
) ∩ {x ∈ X̃ : f(x) > 1 + 1

n
} is non-empty and

open in X̃ for each n = 1, 2, · · ·, and X is dense in X̃, we can choose an’s from X so that

an ∈ BX̃(bn; 1
n
) ∩ {x ∈ X̃ : f(x) > 1 + 1

n
}. Then f(an) > 1 + 1

n
for n = 1, 2, 3, · · ·, and the

sequence an’s converges to b in norm.

Let A be the closed convex hull of an’s in X. We want to show that A ∩ B = ∅.
Suppose an element y in X exists such that y ∈ A ∩ B. Let N be a positive integer

such that BX̃(b; 2
N

) ∩ BX̃(y; 2
N

) = ∅. Since y ∈ A, there exists a sequence yn’s of convex

combinations of an’s converges to y in norm. For each n, write yn =
∑kn

i=1 αn
i ai, where

αn
i ≥ 0 for i = 1, 2, · · · , kn,

∑kn

i=1 αn
i = 1 and kn is a positive integer depending on n. Since

yn → y in norm and f(y) = 1, there exists a positive integer M1 such that f(yn) < 1+ 1
N

for

all n ≥ M1. For each n ≥ M1, 1 + 1
N

> f(
∑kn

i=1 αn
i ai) =

∑kn

i=1 αn
i f(ai) >

∑kn

i=1 αn
i (1 + 1

i
) =

1 +
∑kn

i=1
αn

i

i
. This implies

∑kn

i=1
αn

i

i
< 1

N
. On the other hand, there exists a positive
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integer M2 such that yn ∈ BX̃(y; 2
N

),∀n ≥ M2. For n ≥ M =max{M1,M2}, ‖yn − b‖ =

‖∑kn

i=1 αn
i ai − b‖ = ‖∑kn

i=1 αn
i (ai − b)‖ ≤ ∑kn

i=1 αn
i ‖ai − b‖ < 2

∑kn

i=1
αn

i

i
< 2

N
. This implies

yn ∈ BX̃(b; 2
N

), ∀n ≥ M . This contradicts to the fact that BX̃(b; 2
N

)∩BX̃(y; 2
N

) = ∅. Hence

A ∩B = ∅.

By the separation property of B, there is a continuous linear functional g of X such

that

sup{g(u) : u ∈ B} < inf{g(a) : a ∈ A}.
Let g′ be the continuous extension of g to X̃. Since an → b as n →∞ in X̃,

g′(b) = lim
n→∞

g(an) ≥ inf{g(a) : a ∈ A} > sup{g(u) : u ∈ B} ≥ g′(b).

This is a contradiction! Therefore B = B̃, and thus B is complete. ¤

Let (X,=) be a locally convex space. A subset B of X is said to be absolutely convex if

λa + βb ∈ B whenever a, b ∈ B and | λ | + | β |≤ 1. For any absolutely convex =-bounded

subset B of X, let X(B) be the linear span of B. Then X(B) =
⋃

n nB, and B is absorbing

in X(B). Hence the gauge γB of B, defined by

γB(x) = inf{λ > 0 : x ∈ λB},

is a seminorm on X(B) and

{x ∈ X(B) : γB(x) < 1} ⊂ B ⊂ {x ∈ X(B) : γB(x) ≤ 1}.

Moreover, the boundedness of B ensures that =|X(B) (the relative topology induced by =)

is coarser than the γB(·)-topology. Thus, γB is actually a norm on X(B). We write B
γB

for the closure of B in (X(B), γB), and B
=|X(B) for the closure of B in (X(B),=|X(B)).

Theorem 3. Let B be a bounded absolutely convex subset of a real locally convex space

(X,=) such that (X(B), γB)∗ = (X(B),=|X(B))
∗. Then B is weakly compact if and only if

B has the separation property.

Proof. The necessity is clear. For the sufficiency, we shall show that for any closed

and bounded convex subset A of (X(B), γB), which is disjoint from B, can be strictly

separated from the closed unit ball B of (X(B), γB). Since the γB(·)−topology is consistent

with the duality 〈(X(B),=|X(B)), (X(B),=|X(B))
∗〉, A is also a closed convex subset of
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(X(B),=|X(B)). By the boundedness of A in (X(B), γB), A is closed in (X,=). The

separation property of B provides an f in (X,=)∗ such that

sup{f(b) : b ∈ B} < inf{f(a) : a ∈ A}.
Let g = f |X(B), then g ∈ (X(B),=|X(B))

∗ = (X(B), γB)∗ and

sup{g(b) : b ∈ B} < inf{g(a) : a ∈ A}.
Therefore, the closed unit ball B of (X(B), γB) has the separation property, too. By

Theorem 1, B is weakly compact in (X(B), γB). Note that the topology =|X(B) is coarser

than the γB(·)- topology. It turns out that B is weakly compact in (X,=) and we complete

the proof. ¤

Remark: The following two examples indicate that the weak compactness of B and the

condition that (X(B), γB)∗ = (X(B),=|X(B))
∗ in last theorem are independent in general.

Example 4. Let B be the closed unit ball of the reflexive Banach space (`2, ‖ · ‖2).

Let (X,=) = (`2, ‖ · ‖∞). Then (X(B), γB) = (`2, ‖ · ‖2) and B is weakly compact in

(X(B), γB). Since the ‖ · ‖∞−topology is coarser than the ‖ · ‖2−topology, B is weakly

compact in (X,=). But

(X(B), γB)∗ = (`2, ‖ · ‖2)
∗ 6= (`2, ‖ · ‖∞)∗ = (X(B),=|X(B))

∗.

¤

Example 5. Let X = `0, the space of finite sequences, and B be the closed unit ball

of the normed space (`0, ‖ · ‖∞). Let = be the weak topology of (`0, ‖ · ‖∞). Then

(X(B), γB)∗ = (`0, ‖ · ‖∞)∗ = (`0,=)∗ = (X(B),=|X(B))
∗.

But B is not weakly compact in (X,=), since (`0, ‖ · ‖∞) is not reflexive. ¤

3 A counter example

The following example is based on a construction of R.C. James [5].

Example 6. Let E be a countable real Hilbert product of increasing finite dimensional

c0-spaces, so that the members of E are of type x = (x1
1; x

2
1, x

2
2; x

3
1, x

3
2, x

3
3; · · ·) with

‖x‖ = [| x1
1 |2 +(sup{| x2

1 |, | x2
2 |})2 + (sup{| x3

1 |, | x3
2 |, | x3

3 |})2 + · · ·]1/2 < ∞. (1)
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Let X be the linear span of all members x of E such that

| xn
1 |=| xn

2 |= · · · =| xn
n | for all n = 1, 2, · · · . (2)

Since E is a Hilbert product of reflexive spaces, E is reflexive. It is easy to see that X is

dense in E. Note that

(*) If x ∈ X and x is a linear combination of n members of X that satisfying (2), then

for each m > 2n at least two of xm
1 , · · · , xm

m are equal.

Thus the sequence 1
n
’s belongs to E but not to X. Therefore X 6= E and X is not

complete. In particular, the closed unit ball B of X is not weakly compact.

We shall verify two facts:

(a) B has James’ property (this part is due to R.C. James [5]).

Let f be an arbitrary continuous linear functional on E and x in E be such that ‖x‖ = 1

and f(x) = ‖f‖. Then there is a sequence of numbers (fn
i ) such that

f(x) = f 1
1 x1

1 + (f 2
1 x2

1 + f 2
2 x2

2) + (f 3
1 x3

1 + f 3
2 x3

2 + f 3
3 x3

3) + · · · . (3)

The norm of x as given by (1) is not changed if for each n we replace each xn
i by + supi |xn

i |,
where the “+” is used if fn

i ≥ 0 and the “−” if fn
i < 0. The changes do not decrease the

sum in (3), so the sum does not change and the new x is a member of the closed unit ball

of X at which f attains its supremum.

(b) B does not have the separation property.

Let

x = (

√
3

2n+j−1
)n=1,2,3,···
j=1,···,n =

√
3(

1

2
;

1

22
,

1

23
;

1

23
,

1

24
,

1

25
; · · · ; 1

2n
,

1

2n+1
, · · · , 1

22n−1
; · · ·).

By (*), x 6∈ X and ‖x‖ = 1. Let

x1 =
√

3(1
2
; 1

22 ,
1
22 ;

1
23 ,

1
23 ,

1
23 ; · · · ; 1

2n , · · · , 1
2n ; · · ·).

x2 =
√

3(1
2
; 1

22 ,
1
23 ;

1
23 ,

1
23 ,

1
23 ; · · · ; 1

2n , · · · , 1
2n ; · · ·).

x3 =
√

3(1
2
; 1

22 ,
1
23 ;

1
23 ,

1
24 ,

1
25 ;

1
24 ,

1
24 ,

1
24 ,

1
24 ; · · · ; 1

2n , · · · , 1
2n ; · · ·).

...

xn =
√

3(1
2
; 1

22 ,
1
23 ;

1
23 ,

1
24 ,

1
25 ; · · · ; 1

2n , 1
2n+1 , · · · , 1

22n−1 ;
1

2n+1 ,
1

2n+1 , · · · , 1
2n+1 ; · · ·).

...
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It is easy to see that xn ∈ X and ‖xn‖ = 1 for all n = 1, 2, · · · and xn → x in norm as

n →∞. Let an = (1 + 1
n
)xn. It follows that an ∈ X, ‖an‖ = 1 + 1

n
for all n = 1, 2, · · ·, and

an → x in norm as n →∞.

Let A be the closed convex hull of an’s in X. We want to verify that A and the closed

unit ball B of X are disjoint. Suppose y = (ym
i )m=1,2,···

i=1,···,n is an element of the convex hull of

an’s. Let y =
∑k

i=1 αiani
for some positive integer k, where αi ≥ 0 and

∑k
i=1 αi = 1. Then

‖y‖ = 1+ p where p =
∑k

i=1
αi

ni
> 0, and ym

1 > ym
2 > · · · > ym

m for m = 1, · · · , nk (W.L.O.G.

assume n1 < n2 < · · · < nk). In particular, the convex hull of an’s is disjoint from B. If a

is a cluster point of the convex hull of an’s in E with ‖a‖ = 1 then am
1 > am

2 > · · · > am
m

for all m. In fact, there exists a sequence yn’s in the convex hull of an’s such that yn → a

as n → ∞, say yn =
∑kn

i=1 αn
i ai =

∑kn

i=1 αn
i (1 + 1

i
)xi where αn

i ≥ 0,
∑kn

i=1 αn
i = 1 and kn is

a positive integer. Then for any positive integer m, 1 ≤ j ≤ m,

(yn)m
j =

√
3

2m
(
m−1∑
i=1

αn
i +

m−1∑
i=1

αn
i

i
) +

√
3

2m+j−1
(

kn∑
i=m

αn
i +

kn∑
i=m

αn
i

i
).

Now, for any positive integer m, 1 ≤ j ≤ m− 1,

am
j − am

j+1 = lim
n→∞

[(yn)m
j − (yn)m

j+1]

= (

√
3

2m+j−1
−

√
3

2m+j
)[ lim

n→∞
(

kn∑
i=m

αn
i +

kn∑
i=m

αn
i

i
)]

≥ (

√
3

2m+j−1
−

√
3

2m+j
)( lim

n→∞

kn∑
i=m

αn
i ).

If limn→∞
∑kn

i=m αn
i = 0 then for any given ε > 0, there exists a positive integer M such

that
∑kn

i=m αn
i < ε for all n ≥ M . This implies

∑m
i=1 αn

i=1 > 1− ε for all n ≥ M . It follows

that for all n ≥ M ,

(yn)m
j ≥

√
3

2m
(
m−1∑
i=1

αn
i +

m−1∑
i=1

αn
i

i
) ≥

√
3

2m
(1 +

1

m
)(

m−1∑
i=1

αn
i ) >

√
3

2m
(1 +

1

m
)(1− ε).

Therefore

am
j = lim

n→∞
(yn)m

j ≥
√

3

2m
(1 +

1

m
)(1− ε).

Let ε → 0, we have am
j ≥

√
3

2m (1 + 1
m

) for all positive integer m and 1 ≤ j ≤ m. Then

‖a‖ > 1, which contradicts to the fact that ‖a‖ = 1. Hence limn→∞
∑kn

i=m αn
i > 0 and

am
j − am

j+1 ≥ (

√
3

2m+j−1
−

√
3

2m+j
)( lim

n→∞

kn∑
i=m

αn
i ) > 0
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for all positive integer m and 1 ≤ j ≤ m− 1. By (*), a 6∈ X and consequently, a 6∈ B ⊂ X.

Hence A and B are disjoint. Next, we show that A and B cannot be strictly separated.

Suppose there were a continuous linear functional f of E such that

sup{f(b) : b ∈ B} = ‖f‖ < inf{f(a); a ∈ A}.

Since an → x as n →∞,

inf{f(a); a ∈ A} ≤ lim
n→∞

f(an) = f(x) ≤ ‖f‖.

This is a contradiction! Hence A and B cannot be strictly separated. ¤

4 Applications

Let us recall the classical theorem that a Banach space is reflexive if and only if its unit

ball is weakly sequentially compact [1]. The following extends some James’ results from

Banach spaces to normed spaces, cf. [4].

Theorem 7. Let B be the closed unit ball of a real normed space N . Then the following

are equivalent:

(1) B is weakly compact.

(2) B is weakly countably compact.

(3) For each sequence xn’s in B there is an x in B such that for all continuous linear

functionals f ,

limf(xn) ≤ f(x) ≤ limf(xn).

(4) If Kn’s is a decreasing sequence of closed convex sets in X and B ∩Kn is non-empty

for each n, then B ∩ (∩n≥1Kn) is non-empty.

(5) B is weakly sequentially compact.

(6) If S is a weakly closed set and B ∩ S is empty, then d(B,S) = inf{‖b− s‖ : b ∈ B, s ∈
S} > 0.

(7) B has the separation property.
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Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) and (1) ⇒ (5) ⇒ (6) ⇒ (7) are

proved in [4], and the implication (7) ⇒ (1) follows from Theorem 1.

We shall show that (4) ⇒ (7). Suppose (4) holds but there were a closed convex set

A disjoint from B which cannot be strictly separated from B by a closed hyperplane. In

particular, d(A,B) = 0. We can thus choose an’s in A and bn’s in B such that ‖an−bn‖ → 0

as n → ∞. Let Kn be the closed convex hull of {bn, bn+1, · · ·} for n = 1, 2, · · ·. We want

to show that ∩n≥1Kn = ∅. If there exists an element b in ∩n≥1Kn, then for all continuous

linear functionals f , we have

limf(bn) ≤ f(b) ≤ limf(bn).

As

|f(an)− f(bn)| ≤ ‖f‖‖an − bn‖ → 0,

we have

limf(an) ≤ f(b) ≤ limf(an). ∀f ∈ X∗.

By the strong separation theorem, b is in the closed convex hull of {an, an+1, · · ·} for n =

1, 2, · · ·. Then b ∈ A∩B. This is a contradiction and thus ∩n≥1Kn = ∅. This again conflicts

with (4). Hence B has the separation property. ¤

We end this paper with an open problem which seems to be an intermediate (and

possibly critical) step to our conjecture.

Problem. Does the continuous linear image of a bounded convex set with the separa-

tion property still have the separation property?

It is clear that similar questions concerning weak compactness and James’ property

have positive answers.
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