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Abstract. An interesting result of Doyle and Hocking states that a topological n-manifold
is invertible if and only if it is a homeomorphic image of the n-sphere Sn. We shall prove that
the sphere of any infinite-dimensional normed space is invertible. We shall also discuss the
invertibility of other infinite-dimensional objects as well as an infinite-dimensional version of
the Doyle-Hocking theorem.

1. Introduction

The most interesting application of invertibility in finite-dimensional spaces is the Doyle-
Hocking characterization of the n-sphere Sn.

Theorem 1 (Doyle and Hocking [8]). A topological n-manifold is homeomorphic to Sn if and
only if it is invertible.

A (non-empty) topological space X is said to be invertible [9] if for each proper open subset
U of X there is a homeomorphism T (called an inverting homeomorphism) of X onto X sending
X \U into U . Recall that a subset U of X is proper if both U and its complement X \U are not
empty. It is clear that invertibility is a topological property, i.e. preserved by homeomorphisms.
In many cases, we may expect that a topological property which holds locally in an arbitrary
proper open subset U of X holds indeed globally in all of X. For examples, we have

Proposition 2 ([9, 15, 10, 13, 16]). Let U be a proper open subset of an invertible space X.
If U has any of the following properties then X also has the corresponding properties: (1) T0,
(2) T1, (3) Hausdorff, (4) regular, (5) completely regular, (6) normal, (7) first countable, (8)
second countable, (9) separable, (10) metrizable, (11) uniformizable, (12) compact, (13) pseu-
docompact, (14) extremally disconnected; unless X is a two point space, the list also includes:
(15) T1 and connected, and (16) T1 and path connected.

Recall that a topological space X is locally compact if every point x in X has a compact
neighborhood U , i.e. x belongs to the interior of the compact subset U of X. Since locally
compact invertible spaces must be compact, the intervals (0, 1), [0, 1) and (0, 1], and the n-
space Rn (n = 1, 2, . . . ) cannot be invertible. By a simple connectedness argument, one can
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see that the compact interval [0, 1] is not invertible, either. On the other hand, all finite-
dimensional spheres Sn (n = 1, 2, . . . ), the set Q of all rational points of the real line R, and
the Cantor set are all invertible. Moreover, it is easy to show that a topological space X is
invertible if and only if for any proper closed subset F and proper open subset U of X there
is a homeomorphism of X onto itself sending F into U . Consequently, one can see that many
fractal figures are invertible along the line of reasoning in [9], in which together with several
continua the universal one-dimensional plane curve is proved to be invertible. It seems to us
that invertibility may be a useful tool in studying fractal geometry. Finally, an interesting
presentation of the theory of function spaces of invertible spaces can be found in [18].

This paper is devoted to an infinite-dimensional version of Theorem 1. In particular, we
shall show

Theorem 3. The unit sphere of any normed space of finite or infinite dimension is invertible.
Moreover, the inverting homeomorphisms T can be chosen to have period 2, i.e. T ◦ T is the
identity map of the sphere.

Conjecture 4. All infinite-dimensional invertible topological Hilbert manifolds are homeomor-
phic to the unit sphere of the underlying Hilbert space.

Recall that a topological space X is called a (topological) manifold modeled on a topological
vector space E if there is an open cover of X each member of which is homeomorphic to E.
The following result of Toruńczyk tells us that we may consider merely Hilbert manifolds (i.e.
the case that the model space E is a Hilbert space).

Theorem 5 (Toruńczyk [19, 20]). All infinite-dimensional Fréchet (i.e. complete metrizable
locally convex) spaces are homeomorphic to Hilbert spaces.

The invertibility of infinite-dimensional spheres and other convex objects will be verified in
Section 2. Some approaches to solving Conjecture 4 will be presented in Section 3.

2. Main results

Recall that a convex subset of a topological vector space is called a convex body if it has
non-empty interior. Since the unit ball of a normed space is a bounded convex body, Theorem
3 follows from the following seemingly more general

Theorem 6. The (topological) boundary S of any bounded convex body V in any normed space
N is invertible. Moreover, the inverting homeomorphisms can be chosen to have period 2.

Proof. We may assume that N is a real normed space of dimension greater than 1. In fact, if
the underlying field is complex then we may consider the real normed space NR instead. NR
is the vector space N over the real field R equipped with the norm ‖ · ‖R, where ‖x‖R = ‖x‖
for all x in N . It is plain that (N, V ) and (NR, V ) are homeomorphic as topological pairs.
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The case that N is the one-dimensional line R is trivial. Moreover, we may assume that V is
open and contains 0 since the boundary of any convex body coincides with the boundary of
its interior.

Recall that in the proof of the invertibility of finite dimensional spheres Sn, one utilizes
the stereographic projection of Sn \ {∞} onto Rn and the inversions of Rn with respect to
circles. To achieve an infinite dimensional version of these type of arguments, the first task
for us is to replace S with a homeomorphic image S2 which looks “round” enough to have a
stereographic projection onto a closed hyperplane of N . Then the inverting homeomorphisms
will be obtained exactly the same way as in the finite dimensional case.

Let r be the gauge functional of the open convex set V , namely,

r(x) = inf{λ > 0 : x ∈ λV }, ∀x ∈ N.

r is a sublinear functional of N since V is convex. In other words, r(x + y) ≤ r(x) + r(y) and
r(λx) = λr(x) for all x, y in N and λ ≥ 0.

Claim 1. There is a constant α > 1 such that 1
αUN ⊆ V ⊆ αUN ; or equivalently,

1
α

r(x) ≤ ‖x‖ ≤ αr(x), ∀x ∈ N,(1)

where UN = {x ∈ N : ‖x‖ ≤ 1} is the closed unit ball of N

In fact, the openness and boundedness of V establish the inclusions for some constant α > 1.
For the norm inequalities, we observe that for any non-zero x in N , x/‖x‖ ∈ UN ⊆ αV implies
that r(x/‖x‖) ≤ α or r(x) ≤ α‖x‖. Similarly, since x/r(x) belongs to the closure of V ⊆ αUN ,
we have ‖x/r(x)‖ ≤ α or ‖x‖ ≤ αr(x), as asserted.

As a consequence of Claim 1, the family {Br,1/n(x) : n = 1, 2, . . . } is a local base at each
x in N in the norm topology, where Br,1/n(x) = {y ∈ N : r(y − x) ≤ 1/n}. It is easy to see
that S = {x ∈ N : r(x) = 1}. Fix an arbitrary x0 in S and let f be a continuous (real) linear
functional of N supporting V at x0, i.e. f(x) ≤ f(x0) = 1, ∀x ∈ V . Write

N = Rx0 ⊕Kerf

as a direct sum of the line Rx0 in the direction of x0 and the closed hyperplane Kerf = {y ∈
X : f(y) = 0} determined by f . For each x in N , write

x = f(x)x0 + yx

for some (unique) yx in Kerf . Define another sublinear functional r2 of N by

r2(x) =
√

f(x)2 + r(yx)2, ∀x ∈ N.

Claim 2. There are positive constants c and d such that cr2(x) ≤ r(x) ≤ dr2(x),∀x ∈ N .

By the norm inequalities (1), we have

|f(x)| ≤ ‖f‖‖x‖ ≤ α‖f‖r(x)
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and

r(yx) = r(x− f(x)x0) ≤ α‖x− f(x)x0‖ ≤ α(‖x‖+ |f(x)|‖x0‖) ≤ α2(1 + ‖f‖‖x0‖)r(x)

for all x in N . Consequently,

r2(x)2 ≤ (α2‖f‖2 + α4(1 + ‖f‖‖x0‖)2)r(x)2, ∀x ∈ N.

On the other hand,

r(x) ≤ r(f(x)x0) + r(yx) ≤ α|f(x)|‖x0‖+ r(yx) ≤ α2|f(x)|+ r(yx) ≤ α2(|f(x)|+ r(yx)),

and hence

r(x) ≤
√

2α2r2(x),

for all x in N .

It follows from Claims 1 and 2 that the family {Br2,1/n(x) : n = 1, 2, . . . } forms a local base
at each x in N in the norm topology. As a result, we have proved

Claim 3. A sequence (xn) converges to x in N if and only if r2(xn − x) −→ 0 as n −→∞.

Note also that r and r2 coincide on Kerf . Let

S2 = {x ∈ N : r2(x) = 1}.
It is easy to see that h(x) = x/r2(x) defines a homeomorphism of S onto S2. As invertibility
is a topological property, it suffices to show that S2 is invertible.

Observe that f(x) < 1 whenever x = f(x)x0 + yx ∈ S2 \ {x0} since in this case r2(x) =√
f(x)2 + r(yx)2 = 1. This enables us to define a stereographic projection P : S2 \ {x0} −→

Kerf by

P (x) =
yx

1− f(x)
=

x− f(x)x0

1− f(x)
.(2)

Claim 4. P is a homeomorphism.

Firstly, we note that for each x = f(x)x0 + yx in S2 \ {x0} with yx in Kerf ,

P (x)− x0 =
x− f(x)x0

1− f(x)
− x0 =

x− x0

1− f(x)

by (2). Therefore,

x = f(x)x0 + (1− f(x))P (x), ∀x ∈ S2 \ {x0}.(3)

Thus, f(x)2 + r((1− f(x))P (x))2 = r2(x)2 = 1. Since f(x) < 1, we have r((1− f(x))P (x)) =
(1− f(x))r(P (x)). So (1− f(x))r(P (x))2 = 1 + f(x), and thus

f(x) =
r(P (x))2 − 1
r(P (x))2 + 1

, ∀x ∈ S2 \ {x0}.(4)
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Now, suppose x, x′ in S2 \ {x0} are such that P (x) = P (x′). Then we have f(x) = f(x′) by
(4), and consequently, x = x′ by (3). In other words, P is one-to-one. P is also onto. In fact,
for any y in Kerf , we have

P−1(y) =
(r(y)2 − 1)x0 + 2y

r(y)2 + 1

by (3) and (4) again. The continuity of P and P−1 follows from that of f and r, respectively.

Claim 5. S2 is invertible and the inverting homeomorphisms can be chosen to have period 2.

Let U be a proper open subset in S2. Choose an a in U \ {x0}. There exists a δ > 0 such
that the closure of Br2,δ(a) ∩ S2 = {x ∈ S2 : r2(x − a) < δ} is contained in U \ {x0}. Let
b = P (a). Since P is an open map, there exists a δ′ > 0 such that Br2,δ′(b) ∩ Kerf = {y ∈
Kerf : r2(y− b) < δ′} ⊆ P (Br2,δ(a)∩S2). Define the inversion hb,δ′ from Kerf \ {b} onto itself
by the condition that

r2(hb,δ′(x)− b)r2(x− b) = δ′2.(5)

In other words,

hb,δ′(x) = b +
δ′2

r2(x− b)2
(x− b), ∀x ∈ Kerf \ {b}.

Clearly, hb,δ′ = hb,δ′
−1 is continuous and maps {y ∈ Kerf : r2(y − b) > δ′} onto Br2,δ′(b) ∩

Kerf = {y ∈ Kerf : r2(y − b) < δ′}. Define T : S2 −→ S2 by

Tx =





P−1hb,δ′P (x) if x 6= a, x0;
x0 if x = a;
a if x = x0.

It is plain that T is one-to-one, onto and T = T−1. To ensure that T is a homeomorphism, we
need only to check the continuity of T at x0 and at a.

Suppose a sequence xn = f(xn)x0 + yxn in S2 \ {x0} approaches x0. In particular, 1 =
r2(xn)2 = f(xn)2 + r(yxn)2. By (2), we have

r2(P (xn))2 =
r(yxn)2

(1− f(xn))2
=

1− f(xn)2

(1− f(xn))2
=

1 + f(xn)
1− f(xn)

−→ +∞,

since f(xn) −→ f(x0) = 1. It then follows from r2(P (xn)−b) ≥ r2(P (xn))−r2(b) −→ +∞ that
r2(hb,δ′P (xn) − b) = δ′2

r2(P (xn)−b) −→ 0 by (5). Hence, Txn = P−1hb,δ′P (xn) −→ P−1(b) = a

by the continuity of P−1. We have thus proved the continuity of T at x0. Similarly, suppose
a sequence (xn) in S2 \ {x0} approaches a. Then it follows that P (xn) −→ P (a) = b. By (5),
we have

r2(hb,δ′P (xn)− b) =
δ′2

r2(P (xn)− b)
−→ +∞.(6)

Since

Txn = f(Txn)x0 + (1− f(Txn))PTxn(7)
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by (3), we have

1 = r2(Txn)2 = f(Txn)2 + (1− f(Txn))2r(PTxn)2.(8)

Hence, (6) implies that
√

1 + f(Txn)
1− f(Txn)

= r(PTxn) = r(hb,δ′P (xn)) ≥ r(hb,δ′P (xn)− b)− r(−b) −→ +∞.

Consequently, f(Txn) −→ 1 since f is bounded on the norm bounded set S2. It then follows
from (7) and (8) that r2(Txn − x0)2 = (f(Txn)− 1)2 + (1− f(Txn))2r(PTxn)2 = (f(Txn)−
1)2 + 1− f(Txn)2 −→ 0. Hence, Txn −→ x0. The continuity of T at a is thus verified.

Finally, we show that T (S2 \ U) ⊆ U . If x0 ∈ S2 \ U then Tx0 = a ∈ U . If x 6= x0 and
x ∈ S2 \ U then x does not belong to the closure of Br2,δ(a) ∩ S2. This implies P (x) does not
belongs to the closure of Br2,δ′(b) ∩Kerf . In other words, P (x) ∈ {y ∈ Kerf : r2(y − b) > δ′},
and thus hb,δ′P (x) ∈ Br2,δ′(b)∩Kerf ⊆ P (Br2,δ(a)∩ S2). Consequently, Tx = P−1hb,δ′P (x) ∈
Br2,δ(a) ∩ S2 ⊆ U . Hence, T (S2 \ U) ⊆ U , as asserted.

Since S is homeomorphic to S2, we conclude that S is invertible. Moreover, the inverting
homeomorphisms of S can be chosen to have period 2 as we can do so for the inverting
homeomorphisms T of S2.

In fact, Theorem 3 also implies Theorem 6 by quoting a deep result of Bessaga and Klee.
Recall that the characteristic cone of a convex body V in a topological linear space X is the
set ccV = {y ∈ X : there is an x in X with x + λy ∈ V , ∀λ > 0}. If ccV is a linear subspace
of X of codimension m (0 ≤ m ≤ ∞) then we say that V has type m. V has type ∞ also if
ccV is not a linear subspace of X. In the following, we write (X, V ) ' (Y, U) to indicate the
existence of a relative homeomorphism from a topological space X onto a topological space Y

which sends the topological subspace V of X onto the topological subspace U of Y .

Theorem 7 (Bessaga and Klee [2], see also [3, p. 110]). Let V1 and V2 be closed convex bodies
in a topological linear space X. Then (X, V1) ' (X, V2) if and only if V1 and V2 have the same
type. In this case, the topological boundaries of V1 and V2 are also homeomorphic.

It is evident that all closed bounded convex bodies in a normed space N have the same type,
i.e. the dimension of N . Therefore, Theorems 3 and 6 imply each other. In fact, much more
can be said with the help of Theorem 7.

Corollary 8. Every infinite-dimensional normed space N is invertible.

Proof. Let N1 = N × R be the normed space direct product of N and the real line R. Then
N = {x ∈ N1 : f(x) = 0} for some continuous linear functional f of N1. Since the closed
half-space {x ∈ N1 : f(x) ≤ 0} and the closed unit ball of N1 have the same type (= ∞), N is
homeomorphic to the unit sphere of N1 by Theorem 7. Consequently, N is invertible.
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Remark 9. The invertibility of infinite-dimensional complete normed spaces should not be
surprising. Unlike the finite dimensional case, every infinite-dimensional Banach space E is
homeomorphic to its unit sphere S [14, 3]. A key ingredient of the proof is the topological
equivalence L ' L×R for every infinite-dimensional Banach space L. The assertion will follow
from this since S is homeomorphic to an (infinite-dimensional) closed hyperplane L of E which
is in turn homeomorphic to L × R ' E (see [3, p. 190]). One even has that every infinite-
dimensional Hilbert space is real analytically isomorphic to its unit sphere [7]. However, this
equivalence between spaces and their unit spheres may not extend to non-complete spaces. In
fact, for every infinite-dimensional Banach space E there is a dense linear subspace L of E

such that L is not homeomorphic to L×R [17]. Consequently, the unit sphere of L×R, which
is homeomorphic to L as in the proof of Corollary 8, is not homeomorphic to the whole space
L× R.

Corollary 10. An infinite-dimensional metrizable locally convex space X is invertible when-
ever X is complete or σ-compact.

Proof. X is homeomorphic to a Hilbert space if X is complete by Theorem 5, or to a pre-
Hilbert space if X is σ-compact by a result of Bessaga and Dobrowolski [1]. In both cases, X

is invertible.

Corollary 11. Every non-empty open convex subset of an invertible topological vector space is
invertible. Every closed convex body in an infinite-dimensional Fréchet space or an algebraically
ℵ0-dimensional normed space is invertible.

Proof. We may assume that 0 ∈ V . If V is an open convex subset of a topological vector
space X then the map h(x) = x

1−r(x) is a homeomorphism of V onto X, where r is the gauge
functional of V (see [3, p. 114]). Similarly, V is homeomorphic to the whole space if V is
a closed convex body in either an infinite-dimensional Fréchet space (see [3, p. 190]) or an
algebraically ℵ0-dimensional normed space [5]. In all three cases, V is invertible.

Recall that a subset A of a topological vector space is said to be infinite-dimensional if
the vector subspace spanned by A is of infinite dimension. The first example of an invertible
infinite-dimensional compact set is the Hilbert cube [0, 1]ω given in [9]. [0, 1]ω is the product
space of countably infinitely many copies of the compact interval [0, 1], and can be embedded
into the separable Hilbert space `2 as the set {(xn) : |xn| ≤ 1/n}. In fact, it was proved in [9]
that the product space of arbitrary infinitely many copies of [0, 1] is invertible. In a similar
manner, one can show that the product space of arbitrary infinitely many copies of the real
line R is also invertible. This turns out to give another proof of the invertibility of infinite-
dimensional separable Fréchet spaces, which are known to be homeomorphic to the countable
product of lines R by the Kadec-Anderson Theorem (see [3, p. 189]).

Corollary 12. Let A be an infinite-dimensional separable closed convex set in a Fréchet space.
A is invertible if and only if A is either compact or not locally compact.
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Proof. If A is compact then A is homeomorphic to the Hilbert cube (see [3, p. 100]). If A is
not locally compact then A is homeomorphic to `2 [6]. Therefore, A is invertible in both cases.
Finally, we note that locally compact invertible space must be compact. Consequently, if A is
locally compact but not compact then A cannot be invertible.

3. Conjectures

We do not know too much about the invertibility of the boundary of a closed convex set
except for bounded convex bodies (Theorem 6). The following result of Klee might give us
some hints.

Proposition 13 (Klee [14]). Suppose C is a closed convex body in an infinite-dimensional
reflexive Banach space E. Then the boundary of C is homeomorphic to E or to E × Sn for
some finite n.

Concerning Conjecture 4, we collect some results of Henderson which might be useful.

Theorem 14 (Henderson [11, 12]). Let H be a separable Hilbert space. Every separable metric
H-manifold M can be embedded as an open subset U of H such that the boundary of U and
the closure of U are homeomorphic to U , and its complement H \ U is homeomorphic to H.

In the proof of Theorem 1, Doyle and Hocking [8] utilized a high dimensional Jordan Curve
Theorem [4]. In attacking Conjecture 4, we also found that an infinite dimensional version of
Jordan Curve Theorem is needed. We state it as

Conjecture 15. Let V be a connected open subset of an infinite-dimensional Hilbert space H.
If the boundary of V is homeomorphic to the unit sphere of H then V is homeomorphic to the
open unit ball of H.

We would like to say a few words to explain why Conjecture 15 is an infinite dimensional
extension of the Jordan Curve Theorem. Suppose V is a connected open subset of the plane
R2, and the boundary of V is homeomorphic to the unit circle S1. Under the usual embedding
of R2 into the unit sphere S2, we may consider the boundary of V as a homeomorphic image
of S1 into S2. By the Jordan Curve Theorem, this image divides S2 into two components each
of which is homeomorphic to the open unit ball of R2. By connectedness, V is homeomorphic
to one of them. This is also an essential part of Doyle and Hocking’s arguments in proving
Theorem 1 in [8].

Finally, we would like to express our gratitude to the referee for many useful comments.

References

[1] C. Bessaga and T. Dobrowolski, Affine and homeomorphic embedding into `2, Proc. Amer. Math. Soc. 125
(1997), 259–268.

[2] C. Bessaga and V. L. Klee, Two topological properties of topological linear spaces, Israel J. Math. 2 (1964),
211–220.



INVERTIBILITY IN INFINITE-DIMENSIONAL SPACES 9
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