INVERTIBILITY IN INFINITE-DIMENSIONAL SPACES

CHIA-CHUAN TSENG AND NGAI-CHING WONG

Abstract

An interesting result of Doyle and Hocking states that a topological n-manifold is invertible if and only if it is a homeomorphic image of the n-sphere S^{n}. We shall prove that the sphere of any infinite-dimensional normed space is invertible. We shall also discuss the invertibility of other infinite-dimensional objects as well as an infinite-dimensional version of the Doyle-Hocking theorem.

1. Introduction

The most interesting application of invertibility in finite-dimensional spaces is the DoyleHocking characterization of the n-sphere S^{n}.

Theorem 1 (Doyle and Hocking [8]). A topological n-manifold is homeomorphic to S^{n} if and only if it is invertible.

A (non-empty) topological space X is said to be invertible [9] if for each proper open subset U of X there is a homeomorphism T (called an inverting homeomorphism) of X onto X sending $X \backslash U$ into U. Recall that a subset U of X is proper if both U and its complement $X \backslash U$ are not empty. It is clear that invertibility is a topological property, i.e. preserved by homeomorphisms. In many cases, we may expect that a topological property which holds locally in an arbitrary proper open subset U of X holds indeed globally in all of X. For examples, we have

Proposition $2([9,15,10,13,16])$. Let U be a proper open subset of an invertible space X. If U has any of the following properties then X also has the corresponding properties: (1) T_{0}, (2) T_{1}, (3) Hausdorff, (4) regular, (5) completely regular, (6) normal, (7) first countable, (8) second countable, (9) separable, (10) metrizable, (11) uniformizable, (12) compact, (13) pseudocompact, (14) extremally disconnected; unless X is a two point space, the list also includes: (15) T_{1} and connected, and (16) T_{1} and path connected.

Recall that a topological space X is locally compact if every point x in X has a compact neighborhood U, i.e. x belongs to the interior of the compact subset U of X. Since locally compact invertible spaces must be compact, the intervals $(0,1),[0,1)$ and $(0,1]$, and the n space $\mathbb{R}^{n}(n=1,2, \ldots)$ cannot be invertible. By a simple connectedness argument, one can

[^0]see that the compact interval $[0,1]$ is not invertible, either. On the other hand, all finitedimensional spheres $S^{n}(n=1,2, \ldots)$, the set \mathbb{Q} of all rational points of the real line \mathbb{R}, and the Cantor set are all invertible. Moreover, it is easy to show that a topological space X is invertible if and only if for any proper closed subset F and proper open subset U of X there is a homeomorphism of X onto itself sending F into U. Consequently, one can see that many fractal figures are invertible along the line of reasoning in [9], in which together with several continua the universal one-dimensional plane curve is proved to be invertible. It seems to us that invertibility may be a useful tool in studying fractal geometry. Finally, an interesting presentation of the theory of function spaces of invertible spaces can be found in [18].

This paper is devoted to an infinite-dimensional version of Theorem 1. In particular, we shall show

Theorem 3. The unit sphere of any normed space of finite or infinite dimension is invertible. Moreover, the inverting homeomorphisms T can be chosen to have period 2, i.e. $T \circ T$ is the identity map of the sphere.

Conjecture 4. All infinite-dimensional invertible topological Hilbert manifolds are homeomorphic to the unit sphere of the underlying Hilbert space.

Recall that a topological space X is called a (topological) manifold modeled on a topological vector space E if there is an open cover of X each member of which is homeomorphic to E. The following result of Toruńczyk tells us that we may consider merely Hilbert manifolds (i.e. the case that the model space E is a Hilbert space).

Theorem 5 (Toruńczyk [19, 20]). All infinite-dimensional Fréchet (i.e. complete metrizable locally convex) spaces are homeomorphic to Hilbert spaces.

The invertibility of infinite-dimensional spheres and other convex objects will be verified in Section 2. Some approaches to solving Conjecture 4 will be presented in Section 3.

2. Main Results

Recall that a convex subset of a topological vector space is called a convex body if it has non-empty interior. Since the unit ball of a normed space is a bounded convex body, Theorem 3 follows from the following seemingly more general

Theorem 6. The (topological) boundary S of any bounded convex body V in any normed space N is invertible. Moreover, the inverting homeomorphisms can be chosen to have period 2.

Proof. We may assume that N is a real normed space of dimension greater than 1 . In fact, if the underlying field is complex then we may consider the real normed space $N_{\mathbb{R}}$ instead. $N_{\mathbb{R}}$ is the vector space N over the real field \mathbb{R} equipped with the norm $\|\cdot\|_{\mathbb{R}}$, where $\|x\|_{\mathbb{R}}=\|x\|$ for all x in N. It is plain that (N, V) and $\left(N_{\mathbb{R}}, V\right)$ are homeomorphic as topological pairs.

The case that N is the one-dimensional line \mathbb{R} is trivial. Moreover, we may assume that V is open and contains 0 since the boundary of any convex body coincides with the boundary of its interior.

Recall that in the proof of the invertibility of finite dimensional spheres S^{n}, one utilizes the stereographic projection of $S^{n} \backslash\{\infty\}$ onto \mathbb{R}^{n} and the inversions of \mathbb{R}^{n} with respect to circles. To achieve an infinite dimensional version of these type of arguments, the first task for us is to replace S with a homeomorphic image S_{2} which looks "round" enough to have a stereographic projection onto a closed hyperplane of N. Then the inverting homeomorphisms will be obtained exactly the same way as in the finite dimensional case.

Let r be the gauge functional of the open convex set V, namely,

$$
r(x)=\inf \{\lambda>0: x \in \lambda V\}, \quad \forall x \in N
$$

r is a sublinear functional of N since V is convex. In other words, $r(x+y) \leq r(x)+r(y)$ and $r(\lambda x)=\lambda r(x)$ for all x, y in N and $\lambda \geq 0$.

CLAim 1. There is a constant $\alpha>1$ such that $\frac{1}{\alpha} U_{N} \subseteq V \subseteq \alpha U_{N}$; or equivalently,

$$
\begin{equation*}
\frac{1}{\alpha} r(x) \leq\|x\| \leq \alpha r(x), \quad \forall x \in N \tag{1}
\end{equation*}
$$

where $U_{N}=\{x \in N:\|x\| \leq 1\}$ is the closed unit ball of N
In fact, the openness and boundedness of V establish the inclusions for some constant $\alpha>1$. For the norm inequalities, we observe that for any non-zero x in $N, x /\|x\| \in U_{N} \subseteq \alpha V$ implies that $r(x /\|x\|) \leq \alpha$ or $r(x) \leq \alpha\|x\|$. Similarly, since $x / r(x)$ belongs to the closure of $V \subseteq \alpha U_{N}$, we have $\|x / r(x)\| \leq \alpha$ or $\|x\| \leq \alpha r(x)$, as asserted.

As a consequence of Claim 1 , the family $\left\{B_{r, 1 / n}(x): n=1,2, \ldots\right\}$ is a local base at each x in N in the norm topology, where $B_{r, 1 / n}(x)=\{y \in N: r(y-x) \leq 1 / n\}$. It is easy to see that $S=\{x \in N: r(x)=1\}$. Fix an arbitrary x_{0} in S and let f be a continuous (real) linear functional of N supporting V at x_{0}, i.e. $f(x) \leq f\left(x_{0}\right)=1, \forall x \in V$. Write

$$
N=\mathbb{R} x_{0} \oplus \operatorname{Ker} f
$$

as a direct sum of the line $\mathbb{R} x_{0}$ in the direction of x_{0} and the closed hyperplane $\operatorname{Ker} f=\{y \in$ $X: f(y)=0\}$ determined by f. For each x in N, write

$$
x=f(x) x_{0}+y_{x}
$$

for some (unique) y_{x} in $\operatorname{Ker} f$. Define another sublinear functional r_{2} of N by

$$
r_{2}(x)=\sqrt{f(x)^{2}+r\left(y_{x}\right)^{2}}, \quad \forall x \in N
$$

Claim 2. There are positive constants c and d such that $c r_{2}(x) \leq r(x) \leq d r_{2}(x), \forall x \in N$.
By the norm inequalities (1), we have

$$
|f(x)| \leq\|f\|\|x\| \leq \alpha\|f\| r(x)
$$

and

$$
r\left(y_{x}\right)=r\left(x-f(x) x_{0}\right) \leq \alpha\left\|x-f(x) x_{0}\right\| \leq \alpha\left(\|x\|+|f(x)|\left\|x_{0}\right\|\right) \leq \alpha^{2}\left(1+\|f\|\left\|x_{0}\right\|\right) r(x)
$$

for all x in N. Consequently,

$$
r_{2}(x)^{2} \leq\left(\alpha^{2}\|f\|^{2}+\alpha^{4}\left(1+\|f\|\left\|x_{0}\right\|\right)^{2}\right) r(x)^{2}, \quad \forall x \in N .
$$

On the other hand,

$$
r(x) \leq r\left(f(x) x_{0}\right)+r\left(y_{x}\right) \leq \alpha|f(x)|\left\|x_{0}\right\|+r\left(y_{x}\right) \leq \alpha^{2}|f(x)|+r\left(y_{x}\right) \leq \alpha^{2}\left(|f(x)|+r\left(y_{x}\right)\right),
$$

and hence

$$
r(x) \leq \sqrt{2} \alpha^{2} r_{2}(x)
$$

for all x in N.

It follows from Claims 1 and 2 that the family $\left\{B_{r_{2}, 1 / n}(x): n=1,2, \ldots\right\}$ forms a local base at each x in N in the norm topology. As a result, we have proved

Claim 3. A sequence (x_{n}) converges to x in N if and only if $r_{2}\left(x_{n}-x\right) \longrightarrow 0$ as $n \longrightarrow \infty$.
Note also that r and r_{2} coincide on $\operatorname{Ker} f$. Let

$$
S_{2}=\left\{x \in N: r_{2}(x)=1\right\} .
$$

It is easy to see that $h(x)=x / r_{2}(x)$ defines a homeomorphism of S onto S_{2}. As invertibility is a topological property, it suffices to show that S_{2} is invertible.

Observe that $f(x)<1$ whenever $x=f(x) x_{0}+y_{x} \in S_{2} \backslash\left\{x_{0}\right\}$ since in this case $r_{2}(x)=$ $\sqrt{f(x)^{2}+r\left(y_{x}\right)^{2}}=1$. This enables us to define a stereographic projection $P: S_{2} \backslash\left\{x_{0}\right\} \longrightarrow$ $\operatorname{Ker} f$ by

$$
\begin{equation*}
P(x)=\frac{y_{x}}{1-f(x)}=\frac{x-f(x) x_{0}}{1-f(x)} . \tag{2}
\end{equation*}
$$

Claim 4. P is a homeomorphism.
Firstly, we note that for each $x=f(x) x_{0}+y_{x}$ in $S_{2} \backslash\left\{x_{0}\right\}$ with y_{x} in $\operatorname{Ker} f$,

$$
P(x)-x_{0}=\frac{x-f(x) x_{0}}{1-f(x)}-x_{0}=\frac{x-x_{0}}{1-f(x)}
$$

by (2). Therefore,

$$
\begin{equation*}
x=f(x) x_{0}+(1-f(x)) P(x), \quad \forall x \in S_{2} \backslash\left\{x_{0}\right\} . \tag{3}
\end{equation*}
$$

Thus, $f(x)^{2}+r((1-f(x)) P(x))^{2}=r_{2}(x)^{2}=1$. Since $f(x)<1$, we have $r((1-f(x)) P(x))=$ $(1-f(x)) r(P(x))$. So $(1-f(x)) r(P(x))^{2}=1+f(x)$, and thus

$$
\begin{equation*}
f(x)=\frac{r(P(x))^{2}-1}{r(P(x))^{2}+1}, \quad \forall x \in S_{2} \backslash\left\{x_{0}\right\} . \tag{4}
\end{equation*}
$$

Now, suppose x, x^{\prime} in $S_{2} \backslash\left\{x_{0}\right\}$ are such that $P(x)=P\left(x^{\prime}\right)$. Then we have $f(x)=f\left(x^{\prime}\right)$ by (4), and consequently, $x=x^{\prime}$ by (3). In other words, P is one-to-one. P is also onto. In fact, for any y in $\operatorname{Ker} f$, we have

$$
P^{-1}(y)=\frac{\left(r(y)^{2}-1\right) x_{0}+2 y}{r(y)^{2}+1}
$$

by (3) and (4) again. The continuity of P and P^{-1} follows from that of f and r, respectively.

Claim 5. S_{2} is invertible and the inverting homeomorphisms can be chosen to have period 2.
Let U be a proper open subset in S_{2}. Choose an a in $U \backslash\left\{x_{0}\right\}$. There exists a $\delta>0$ such that the closure of $B_{r_{2}, \delta}(a) \cap S_{2}=\left\{x \in S_{2}: r_{2}(x-a)<\delta\right\}$ is contained in $U \backslash\left\{x_{0}\right\}$. Let $b=P(a)$. Since P is an open map, there exists a $\delta^{\prime}>0$ such that $B_{r_{2}, \delta^{\prime}}(b) \cap \operatorname{Ker} f=\{y \in$ $\left.\operatorname{Ker} f: r_{2}(y-b)<\delta^{\prime}\right\} \subseteq P\left(B_{r_{2}, \delta}(a) \cap S_{2}\right)$. Define the inversion $h_{b, \delta^{\prime}}$ from $\operatorname{Ker} f \backslash\{b\}$ onto itself by the condition that

$$
\begin{equation*}
r_{2}\left(h_{b, \delta^{\prime}}(x)-b\right) r_{2}(x-b)=\delta^{\prime 2} \tag{5}
\end{equation*}
$$

In other words,

$$
h_{b, \delta^{\prime}}(x)=b+\frac{{\delta^{\prime}}^{2}}{r_{2}(x-b)^{2}}(x-b), \quad \forall x \in \operatorname{Ker} f \backslash\{b\}
$$

Clearly, $h_{b, \delta^{\prime}}=h_{b, \delta^{\prime}}{ }^{-1}$ is continuous and maps $\left\{y \in \operatorname{Ker} f: r_{2}(y-b)>\delta^{\prime}\right\}$ onto $B_{r_{2}, \delta^{\prime}}(b) \cap$ $\operatorname{Ker} f=\left\{y \in \operatorname{Ker} f: r_{2}(y-b)<\delta^{\prime}\right\}$. Define $T: S_{2} \longrightarrow S_{2}$ by

$$
T x= \begin{cases}P^{-1} h_{b, \delta^{\prime}} P(x) & \text { if } x \neq a, x_{0} \\ x_{0} & \text { if } x=a \\ a & \text { if } x=x_{0}\end{cases}
$$

It is plain that T is one-to-one, onto and $T=T^{-1}$. To ensure that T is a homeomorphism, we need only to check the continuity of T at x_{0} and at a.

Suppose a sequence $x_{n}=f\left(x_{n}\right) x_{0}+y_{x_{n}}$ in $S_{2} \backslash\left\{x_{0}\right\}$ approaches x_{0}. In particular, $1=$ $r_{2}\left(x_{n}\right)^{2}=f\left(x_{n}\right)^{2}+r\left(y_{x_{n}}\right)^{2}$. By (2), we have

$$
r_{2}\left(P\left(x_{n}\right)\right)^{2}=\frac{r\left(y_{x_{n}}\right)^{2}}{\left(1-f\left(x_{n}\right)\right)^{2}}=\frac{1-f\left(x_{n}\right)^{2}}{\left(1-f\left(x_{n}\right)\right)^{2}}=\frac{1+f\left(x_{n}\right)}{1-f\left(x_{n}\right)} \longrightarrow+\infty
$$

since $f\left(x_{n}\right) \longrightarrow f\left(x_{0}\right)=1$. It then follows from $r_{2}\left(P\left(x_{n}\right)-b\right) \geq r_{2}\left(P\left(x_{n}\right)\right)-r_{2}(b) \longrightarrow+\infty$ that $r_{2}\left(h_{b, \delta^{\prime}} P\left(x_{n}\right)-b\right)=\frac{\delta^{\prime 2}}{r_{2}\left(P\left(x_{n}\right)-b\right)} \longrightarrow 0$ by (5). Hence, $T x_{n}=P^{-1} h_{b, \delta^{\prime}} P\left(x_{n}\right) \longrightarrow P^{-1}(b)=a$ by the continuity of P^{-1}. We have thus proved the continuity of T at x_{0}. Similarly, suppose a sequence $\left(x_{n}\right)$ in $S_{2} \backslash\left\{x_{0}\right\}$ approaches a. Then it follows that $P\left(x_{n}\right) \longrightarrow P(a)=b$. By (5), we have

$$
\begin{equation*}
r_{2}\left(h_{b, \delta^{\prime}} P\left(x_{n}\right)-b\right)=\frac{\delta^{\prime 2}}{r_{2}\left(P\left(x_{n}\right)-b\right)} \longrightarrow+\infty \tag{6}
\end{equation*}
$$

Since

$$
\begin{equation*}
T x_{n}=f\left(T x_{n}\right) x_{0}+\left(1-f\left(T x_{n}\right)\right) P T x_{n} \tag{7}
\end{equation*}
$$

by (3), we have

$$
\begin{equation*}
1=r_{2}\left(T x_{n}\right)^{2}=f\left(T x_{n}\right)^{2}+\left(1-f\left(T x_{n}\right)\right)^{2} r\left(P T x_{n}\right)^{2} . \tag{8}
\end{equation*}
$$

Hence, (6) implies that

$$
\sqrt{\frac{1+f\left(T x_{n}\right)}{1-f\left(T x_{n}\right)}}=r\left(P T x_{n}\right)=r\left(h_{b, \delta^{\prime}} P\left(x_{n}\right)\right) \geq r\left(h_{b, \delta^{\prime}} P\left(x_{n}\right)-b\right)-r(-b) \longrightarrow+\infty .
$$

Consequently, $f\left(T x_{n}\right) \longrightarrow 1$ since f is bounded on the norm bounded set S_{2}. It then follows from (7) and (8) that $r_{2}\left(T x_{n}-x_{0}\right)^{2}=\left(f\left(T x_{n}\right)-1\right)^{2}+\left(1-f\left(T x_{n}\right)\right)^{2} r\left(P T x_{n}\right)^{2}=\left(f\left(T x_{n}\right)-\right.$ $1)^{2}+1-f\left(T x_{n}\right)^{2} \longrightarrow 0$. Hence, $T x_{n} \longrightarrow x_{0}$. The continuity of T at a is thus verified.

Finally, we show that $T\left(S_{2} \backslash U\right) \subseteq U$. If $x_{0} \in S_{2} \backslash U$ then $T x_{0}=a \in U$. If $x \neq x_{0}$ and $x \in S_{2} \backslash U$ then x does not belong to the closure of $B_{r_{2}, \delta}(a) \cap S_{2}$. This implies $P(x)$ does not belongs to the closure of $B_{r_{2}, \delta^{\prime}}(b) \cap \operatorname{Ker} f$. In other words, $P(x) \in\left\{y \in \operatorname{Ker} f: r_{2}(y-b)>\delta^{\prime}\right\}$, and thus $h_{b, \delta^{\prime}} P(x) \in B_{r_{2}, \delta^{\prime}}(b) \cap \operatorname{Ker} f \subseteq P\left(B_{r_{2}, \delta}(a) \cap S_{2}\right)$. Consequently, $T x=P^{-1} h_{b, \delta^{\prime}} P(x) \in$ $B_{r_{2}, \delta}(a) \cap S_{2} \subseteq U$. Hence, $T\left(S_{2} \backslash U\right) \subseteq U$, as asserted.

Since S is homeomorphic to S_{2}, we conclude that S is invertible. Moreover, the inverting homeomorphisms of S can be chosen to have period 2 as we can do so for the inverting homeomorphisms T of S_{2}.

In fact, Theorem 3 also implies Theorem 6 by quoting a deep result of Bessaga and Klee. Recall that the characteristic cone of a convex body V in a topological linear space X is the set $\mathrm{cc} V=\{y \in X$: there is an x in X with $x+\lambda y \in V, \forall \lambda>0\}$. If $c c V$ is a linear subspace of X of codimension $m(0 \leq m \leq \infty)$ then we say that V has type m. V has type ∞ also if ${ }_{\mathrm{cc}} V$ is not a linear subspace of X. In the following, we write $(X, V) \simeq(Y, U)$ to indicate the existence of a relative homeomorphism from a topological space X onto a topological space Y which sends the topological subspace V of X onto the topological subspace U of Y.

Theorem 7 (Bessaga and Klee [2], see also [3, p. 110]). Let V_{1} and V_{2} be closed convex bodies in a topological linear space X. Then $\left(X, V_{1}\right) \simeq\left(X, V_{2}\right)$ if and only if V_{1} and V_{2} have the same type. In this case, the topological boundaries of V_{1} and V_{2} are also homeomorphic.

It is evident that all closed bounded convex bodies in a normed space N have the same type, i.e. the dimension of N. Therefore, Theorems 3 and 6 imply each other. In fact, much more can be said with the help of Theorem 7.

Corollary 8. Every infinite-dimensional normed space N is invertible.
Proof. Let $N_{1}=N \times \mathbb{R}$ be the normed space direct product of N and the real line \mathbb{R}. Then $N=\left\{x \in N_{1}: f(x)=0\right\}$ for some continuous linear functional f of N_{1}. Since the closed half-space $\left\{x \in N_{1}: f(x) \leq 0\right\}$ and the closed unit ball of N_{1} have the same type $(=\infty), N$ is homeomorphic to the unit sphere of N_{1} by Theorem 7. Consequently, N is invertible.

Remark 9. The invertibility of infinite-dimensional complete normed spaces should not be surprising. Unlike the finite dimensional case, every infinite-dimensional Banach space E is homeomorphic to its unit sphere $S[14,3]$. A key ingredient of the proof is the topological equivalence $L \simeq L \times \mathbb{R}$ for every infinite-dimensional Banach space L. The assertion will follow from this since S is homeomorphic to an (infinite-dimensional) closed hyperplane L of E which is in turn homeomorphic to $L \times \mathbb{R} \simeq E$ (see [3, p. 190]). One even has that every infinitedimensional Hilbert space is real analytically isomorphic to its unit sphere [7]. However, this equivalence between spaces and their unit spheres may not extend to non-complete spaces. In fact, for every infinite-dimensional Banach space E there is a dense linear subspace L of E such that L is not homeomorphic to $L \times \mathbb{R}[17]$. Consequently, the unit sphere of $L \times \mathbb{R}$, which is homeomorphic to L as in the proof of Corollary 8 , is not homeomorphic to the whole space $L \times \mathbb{R}$.

Corollary 10. An infinite-dimensional metrizable locally convex space X is invertible whenever X is complete or σ-compact.

Proof. X is homeomorphic to a Hilbert space if X is complete by Theorem 5, or to a preHilbert space if X is σ-compact by a result of Bessaga and Dobrowolski [1]. In both cases, X is invertible.

Corollary 11. Every non-empty open convex subset of an invertible topological vector space is invertible. Every closed convex body in an infinite-dimensional Fréchet space or an algebraically \aleph_{0}-dimensional normed space is invertible.

Proof. We may assume that $0 \in V$. If V is an open convex subset of a topological vector space X then the map $h(x)=\frac{x}{1-r(x)}$ is a homeomorphism of V onto X, where r is the gauge functional of V (see [3, p. 114]). Similarly, V is homeomorphic to the whole space if V is a closed convex body in either an infinite-dimensional Fréchet space (see [3, p. 190]) or an algebraically \aleph_{0}-dimensional normed space [5]. In all three cases, V is invertible.

Recall that a subset A of a topological vector space is said to be infinite-dimensional if the vector subspace spanned by A is of infinite dimension. The first example of an invertible infinite-dimensional compact set is the Hilbert cube $[0,1]^{\omega}$ given in $[9] .[0,1]^{\omega}$ is the product space of countably infinitely many copies of the compact interval $[0,1]$, and can be embedded into the separable Hilbert space ℓ_{2} as the set $\left\{\left(x_{n}\right):\left|x_{n}\right| \leq 1 / n\right\}$. In fact, it was proved in [9] that the product space of arbitrary infinitely many copies of $[0,1]$ is invertible. In a similar manner, one can show that the product space of arbitrary infinitely many copies of the real line \mathbb{R} is also invertible. This turns out to give another proof of the invertibility of infinitedimensional separable Fréchet spaces, which are known to be homeomorphic to the countable product of lines \mathbb{R} by the Kadec-Anderson Theorem (see [3, p. 189]).

Corollary 12. Let A be an infinite-dimensional separable closed convex set in a Fréchet space. A is invertible if and only if A is either compact or not locally compact.

Proof. If A is compact then A is homeomorphic to the Hilbert cube (see [3, p. 100]). If A is not locally compact then A is homeomorphic to $\ell_{2}[6]$. Therefore, A is invertible in both cases. Finally, we note that locally compact invertible space must be compact. Consequently, if A is locally compact but not compact then A cannot be invertible.

3. Conjectures

We do not know too much about the invertibility of the boundary of a closed convex set except for bounded convex bodies (Theorem 6). The following result of Klee might give us some hints.

Proposition 13 (Klee [14]). Suppose C is a closed convex body in an infinite-dimensional reflexive Banach space E. Then the boundary of C is homeomorphic to E or to $E \times S^{n}$ for some finite n.

Concerning Conjecture 4, we collect some results of Henderson which might be useful.
Theorem 14 (Henderson [11, 12]). Let H be a separable Hilbert space. Every separable metric H-manifold M can be embedded as an open subset U of H such that the boundary of U and the closure of U are homeomorphic to U, and its complement $H \backslash U$ is homeomorphic to H.

In the proof of Theorem 1, Doyle and Hocking [8] utilized a high dimensional Jordan Curve Theorem [4]. In attacking Conjecture 4, we also found that an infinite dimensional version of Jordan Curve Theorem is needed. We state it as

Conjecture 15. Let V be a connected open subset of an infinite-dimensional Hilbert space H. If the boundary of V is homeomorphic to the unit sphere of H then V is homeomorphic to the open unit ball of H.

We would like to say a few words to explain why Conjecture 15 is an infinite dimensional extension of the Jordan Curve Theorem. Suppose V is a connected open subset of the plane \mathbb{R}^{2}, and the boundary of V is homeomorphic to the unit circle S^{1}. Under the usual embedding of \mathbb{R}^{2} into the unit sphere S^{2}, we may consider the boundary of V as a homeomorphic image of S^{1} into S^{2}. By the Jordan Curve Theorem, this image divides S^{2} into two components each of which is homeomorphic to the open unit ball of \mathbb{R}^{2}. By connectedness, V is homeomorphic to one of them. This is also an essential part of Doyle and Hocking's arguments in proving Theorem 1 in [8].

Finally, we would like to express our gratitude to the referee for many useful comments.

References

[1] C. Bessaga and T. Dobrowolski, Affine and homeomorphic embedding into ℓ^{2}, Proc. Amer. Math. Soc. 125 (1997), 259-268.
[2] C. Bessaga and V. L. Klee, Two topological properties of topological linear spaces, Israel J. Math. 2 (1964), 211-220.
[3] C. Bessaga and A. Pełczyński, Selected Topics in infinite-dimensional topology, Polish Scientific Publishers, Warszawa, 1975.
[4] M. Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74-76.
[5] H. Corson and V. Klee, Topological classification of convex sets, Proc. Symp. Pure Math. 7 - Convexity, Amer. Math. Soc., Providence, R. I., 1963, 37-51.
[6] T. Dobrowolski and H. Toruńczyk, Separable complete ANR's admitting a group structure are Hilbert manifolds, Topology and its Applications 12 (1981), 229-235.
[7] T. Dobrowolski, Every infinite-dimensional Hilbert space is real-analytically isomorphic with its unit sphere, J. Funct. Analy. 134 (1995), 350-362.
[8] P. H. Doyle and J. G. Hocking, A characterization of Euclidean n-spaces, Mich. Math. J., 7 (1960), 199-200.
[9] , Invertible spaces, Amer. Math. Monthly, 68 (1961), 959-965.
[10] W. J. Gray, On the metrizability of invertible spaces, Amer. Math. Monthly 71 (1964), 533-534.
[11] D. W. Henderson, Open subsets of Hilbert space, Compositio Math. 21 (1969), 312-318.
[12] _, Infinite-dimensional manifolds are open subsets of Hilbert space, Topology 9 (1970), 25-33.
[13] S. K. Hildebrand and R. L. Poe, The separation axioms for invertible spaces, Amer. Math. Monthly 75 (1968), 391-392.
[14] V. L. Klee, Topological equivalence of a Banach space with its unit cell, Bull. Amer. Math. Soc. 67 (1961), 286-290.
[15] N. Levine, Some remarks on invertible spaces, Amer. Math. Monthly 70 (1963), 181-183.
[16] P. E. Long, L. L. Herrington, and D. S. Jankovic, Almost-invertible spaces, Bull. Korean Math. Soc. 23 (1986), 91-102.
[17] J. van Mill, Domain invariance in infinite-dimensional linear spaces, Proc. Amer. Math. Soc. 101 (1987), 173-180.
[18] S. A. Naimpally, Function spaces of invertible spaces, Amer. Math. Monthly 73 (1966), 513-515.
[19] H. Toruńczyk, Characterizing Hilbert space topology, Fund. Math. CXI (1981), 247-262.
[20] \qquad , A correction of two papers concerning Hilbert manifolds, Fund. Math. CXXV (1985), 89-93.

Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan, R.O.C.

E-mail address: wong@math.nsysu.edu.tw

[^0]: Date: March 30, 1998; accepted by Proc. Amer. Math. Soc.
 1991 Mathematics Subject Classification. 46B20, 57N20, 57N50.
 Key words and phrases. Invertible spaces, spheres, infinite-dimensional topology, infinite-dimensional manifolds.

 Partially supported by National Science Council of Republic of China. Grant Number: NSC 83-0208-M-1100171, 87-2115-M-110-002 .

