
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 202095, 8 pages
http://dx.doi.org/10.1155/2013/202095

Research Article
Strong Convergence Theorems for Semigroups of
Asymptotically Nonexpansive Mappings in Banach Spaces

D. R. Sahu,1 Ngai-Ching Wong,2,3 and Jen-Chih Yao3,4

1 Department of Mathematics, Banaras Hindu University, Varanasi 221005, India
2Department of Applied Mathematics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
3 Center for Fundamental Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
4Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

Correspondence should be addressed to Ngai-Ching Wong; wong@math.nsysu.edu.tw

Received 4 February 2013; Accepted 4 April 2013

Academic Editor: Qamrul Hasan Ansari

Copyright © 2013 D. R. Sahu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let𝑋 be a real reflexive Banach space with a weakly continuous duality mapping 𝐽
𝜑
. Let𝐶 be a nonempty weakly closed star-shaped

(with respect to 𝑢) subset of𝑋. LetF= {𝑇(𝑡) : 𝑡 ∈ [0, +∞)} be a uniformly continuous semigroup of asymptotically nonexpansive
self-mappings of𝐶, which is uniformly continuous at zero.Wewill show that the implicit iteration scheme:𝑦

𝑛
= 𝛼
𝑛
𝑢+(1−𝛼

𝑛
)𝑇(𝑡
𝑛
)𝑦
𝑛
,

for all 𝑛 ∈ N, converges strongly to a common fixed point of the semigroupF for some suitably chosen parameters {𝛼
𝑛
} and {𝑡

𝑛
}.

Our results extend and improve corresponding ones of Suzuki (2002), Xu (2005), and Zegeye and Shahzad (2009).

1. Introduction

Let 𝐶 be a nonempty subset of a (real) Banach space 𝑋 and
𝑇 : 𝐶 → 𝐶 a mapping. The fixed point set of 𝑇 is defined
by 𝐹(𝑇) = {𝑥 ∈ 𝐶 : 𝑇𝑥 = 𝑥}. We say that 𝑇 is nonexpansive
if ‖𝑇𝑥 − 𝑇𝑦‖ ≤ ‖𝑥 − 𝑦‖ for all 𝑥, 𝑦 in 𝐶 and asymptotically
nonexpansive if there exists a sequence {𝑘𝑛} in [1, +∞) with
lim𝑛→∞𝑘𝑛 = 1 such that ‖𝑇

𝑛
𝑥−𝑇
𝑛
𝑦‖ ≤ 𝑘𝑛‖𝑥−𝑦‖ for all 𝑥, 𝑦

in 𝐶 and 𝑛 in N.
Set R+ := [0, +∞). We call a one-parameter familyF :=

{𝑇(𝑡) : 𝑡 ∈ R+} of mappings from 𝐶 into 𝐶 a strongly con-
tinuous semigroup of Lipschitzian mappings if

(1) for each 𝑡 > 0, there exists a bounded function 𝑘(⋅) :
(0, +∞) → (0, +∞) such that
𝑇 (𝑡) 𝑥 − 𝑇 (𝑡) 𝑦

 ≤ 𝑘 (𝑡)
𝑥 − 𝑦

 ∀𝑥, 𝑦 ∈ 𝐶, (1)

(2) 𝑇(0)𝑥 = 𝑥 for all 𝑥 in 𝐶,
(3) 𝑇(𝑠 + 𝑡) = 𝑇(𝑠)𝑇(𝑡) for all 𝑠, 𝑡 in R+,
(4) for each 𝑥 in 𝐶, the mapping 𝑇(⋅)𝑥 from R+ into 𝐶 is

continuous.
Note that lim inf 𝑡→0+𝑘(𝑡) ≥ 1. If 𝑘(𝑡) = 𝐿 for all 𝑡 > 0 in (1),
thenF is called a strongly continuous semigroup of uniformly

𝐿-Lipschitzian mappings. If 𝑘(𝑡) = 1 for all 𝑡 > 0 in (1), then
F is called a strongly continuous semigroup of nonexpansive
mappings. If 𝑘(𝑡) ≥ 1 for all 𝑡 > 0 and lim𝑡→+∞𝑘(𝑡) = 1

in (1), then F is called a strongly continuous semigroup of
asymptotically nonexpansive mappings. Moreover, F is said
to be (right) uniformly continuous if it also holds:

(5) For any bounded subset 𝐵 of 𝐶, we have

lim
𝑡→0+

sup
𝑥∈𝐵

‖𝑇 (𝑡) 𝑥 − 𝑥‖ = 0. (2)

We denote by 𝐹(F) the set of common fixed points ofF; that
is, 𝐹(F) := ⋂

𝑡∈R+ 𝐹(𝑇(𝑡)).
The class of asymptotically nonexpansive mappings was

introduced by Goebel and Kirk [1] in 1972. They proved
that if 𝐶 is a nonempty closed convex bounded subset of a
uniformly convex Banach space, then every asymptotically
nonexpansivemapping has a fixed point. Several authors have
studied the problem of the existence of fixed points of asymp-
totically nonexpansive mappings in Banach spaces having
rich geometric structure; see [2] and the references therein.

Consider a nonempty closed convex subset 𝐶 of a (real)
Banach space 𝑋. A classical method to study nonexpansive
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mappings is to approximate them by contractions. More
precisely, for a fixed element 𝑢 in 𝐶, define for each 𝑡 in (0, 1)
a contraction 𝐺𝑡 by

𝐺𝑡𝑥 = 𝑡𝑢 + (1 − 𝑡) 𝑇𝑥 ∀𝑥 ∈ 𝐶. (3)

Let 𝑥𝑡 be the fixed point of 𝐺𝑡; that is,

𝑥𝑡 = 𝑡𝑢 + (1 − 𝑡) 𝑇𝑥𝑡. (4)

Browder [3] (Reich [4], resp.) proves that as 𝑡 → 0
+, the

point 𝑥𝑡 converges strongly to a fixed point of 𝑇 if 𝑋 is a
Hilbert space (uniformly smooth Banach space, resp.). Many
authors (see, e.g., [5–13]) have studied strong convergence
of approximates {𝑥𝑡} for asymptotically nonexpansive self-
mappings 𝑇 in Banach spaces under the additional assump-
tion 𝑥𝑡 − 𝑇𝑥𝑡 → 0 as 𝑛 → ∞. This additional assumption
can be removed when 𝑇 is uniformly asymptotically regular.

Suzuki [14] initiated the following implicit iteration pro-
cess for a semigroup F := {𝑇(𝑡) : 𝑡 ∈ R+} of nonexpansive
mappings in a Hilbert space:

𝑦𝑛 = 𝛼𝑛𝑢 + (1 − 𝛼𝑛) 𝑇 (𝑡𝑛) 𝑦𝑛, ∀𝑛 ∈ N. (5)

Xu [15] extended Suzuki’s result to uniformly convex Banach
spaces with weakly sequentially continuous duality map-
pings. Recently, Zegeye and Shahzad [16] extended results
of Xu [15] and established the following strong convergence
theorem.

Theorem ZS. Let 𝐶 be a nonempty closed convex bounded
subset of a real uniformly convex Banach space𝑋with aweakly
continuous duality mapping 𝐽𝜑 with gauge 𝜑. LetF := {𝑇(𝑡) :

𝑡 ∈ R+} be a strongly continuous asymptotically nonexpansive
semigroups with net {𝑘(𝑡)} ⊂ [1, +∞). Assume that 𝐹(F) is
a sunny nonexpansive retract of 𝐶 with 𝑃 as the sunny non-
expansive retraction. Assume that {𝑡𝑛} ⊂ (0, +∞) and {𝛼𝑛} ⊂
(0, 1) such that (1 − 𝛼𝑛)𝑘(𝑡𝑛) ≤ 1 for all 𝑛 ∈ N, lim𝑛→∞𝑡𝑛 =
lim𝑛→∞(𝛼𝑛/𝑡𝑛) = 0, and {𝛼𝑛/(1 − (1 − 𝛼𝑛)𝑘(𝑡𝑛))} is bounded.
Let 𝑢 in 𝐶 be fixed.

(1) There exists a sequence {𝑦𝑛} in 𝐶 such that

𝑦𝑛 = 𝛼𝑛𝑢 + (1 − 𝛼𝑛) 𝑇 (𝑡𝑛) 𝑦𝑛 ∀𝑛 ∈ N, (6)

which converges strongly to an element of 𝐹(F).
(2) Every sequence {𝑥𝑛} defined iteratively with any 𝑥1 in

𝐶, and

𝑥𝑛+1 = 𝛼𝑛𝑢 + (1 − 𝛼𝑛) 𝑇 (𝑡𝑛) 𝑥𝑛 ∀𝑛 ∈ N, (7)

converges strongly to an element of𝐹(F), provided that
‖𝑥𝑛+1 − 𝑥𝑛‖ ≤ 𝐷𝛼𝑛 for some 𝐷 > 0.

Problem 1. Is it possible to drop the uniform convexity
assumption inTheorem ZS?

Motivated by Schu [13], the purpose of this paper is to
further analyze strong convergence of (6) and (7) for strongly

continuous semigroups of asymptotically nonexpansivemap-
pings defined on a set which is not necessarily convex. It is
important and actually quite surprising that we are able to do
so for the class of Banach spaces which are not necessarily
uniformly convex. It should be noted that, in this generality,
Theorem ZS does not apply. Our results are definitive, settle
Problem 1, and also improve results of Suzuki [14], Xu [15],
and Zegeye and Shahzad [16].

2. Preliminaries

Let 𝐶 be a nonempty subset of a (real) Banach space 𝑋 with
dual space 𝑋∗. We call a mapping 𝑇 : 𝐶 → 𝐶 weakly con-
tractive if

𝑇𝑥 − 𝑇𝑦
 ≤

𝑥 − 𝑦
 − 𝜓 (

𝑥 − 𝑦
) ∀𝑥, 𝑦 ∈ 𝐶, (8)

where 𝜓 : [0, +∞) → [0, +∞) is a continuous and nonde-
creasing function such that 𝜓(0) = 0, 𝜓(𝑡) > 0 for 𝑡 > 0, and
lim𝑡→+∞𝜓(𝑡) = +∞.

By a gaugewemean a continuous strictly increasing func-
tion 𝜑 defined on R+ := [0, +∞) such that 𝜑(0) = 0 and
lim𝑟→+∞𝜑(𝑟) = +∞. Associated with a gauge 𝜑, the (gen-
erally multivalued) duality mapping 𝐽𝜑 : 𝑋 → 𝑋

∗ is defined
by

𝐽𝜑 (𝑥) := {𝑥
∗
∈ 𝑋
∗
: ⟨𝑥, 𝑥

∗
⟩ = ‖𝑥‖ 𝜑 (‖𝑥‖) ,

𝑥
∗ = 𝜑 (‖𝑥‖)} .

(9)

Clearly, the (normalized) duality mapping 𝐽 corresponds to
the gauge 𝜑(𝑡) = 𝑡. In general,

𝐽𝜑 (𝑥) =
𝜑 (‖𝑥‖)

‖𝑥‖
𝐽 (𝑥) , 𝑥 ̸= 0. (10)

Recall that 𝑋 is said to have a weakly (resp, sequentially)
continuous duality mapping if there exists a gauge 𝜑 such
that the duality mapping 𝐽𝜑 is single valued and (resp, seq-
uentially) continuous from 𝑋 with the weak topology to 𝑋∗
with the weak∗ topology. Every ℓ𝑝 (1 < 𝑝 < +∞) space has
a weakly continuous duality mapping with the gauge 𝜑(𝑡) =
𝑡
𝑝−1 (for more details see [17, 18]). We know that if 𝑋 admits
a weakly sequentially continuous duality mapping, then 𝑋

satisfies Opial’s condition; that is, if {𝑥𝑛} is a sequence weakly
convergent to 𝑥 in𝑋, then there holds the inequality

lim sup
𝑛→∞

𝑥𝑛 − 𝑥
 < lim sup
𝑛→∞

𝑥𝑛 − 𝑦
 , 𝑦 ∈ 𝑋with𝑦 ̸= 𝑥.

(11)

Browder [19] initiated the study of certain classes of non-
linear operators by means of a duality mapping 𝐽𝜑. Define

Φ (𝑡) := ∫

𝑡

0

𝜑 (𝑠) 𝑑𝑠 ∀𝑡 ≥ 0. (12)

Then, it is known that 𝐽𝜑(𝑥) is the subdifferential of the convex
functionΦ(‖ ⋅ ‖) at 𝑥; that is,

𝐽𝜑 (𝑥) = 𝜕Φ (‖𝑥‖) , 𝑥 ∈ 𝑋, (13)
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where 𝜕 denotes the subdifferential in the sense of convex
analysis. We need the subdifferential inequality

Φ(
𝑥 + 𝑦

) ≤ Φ (‖𝑥‖) + ⟨𝑦, 𝑗 (𝑥 + 𝑦)⟩

∀𝑥, 𝑦 ∈ 𝑋, 𝑗 (𝑥 + 𝑦) ∈ 𝐽𝜑 (𝑥 + 𝑦) .

(14)

For a smooth𝑋, we have

Φ(
𝑥 + 𝑦

) ≤ Φ (‖𝑥‖) + ⟨𝑦, 𝐽𝜑 (𝑥 + 𝑦)⟩ ∀𝑥, 𝑦 ∈ 𝑋, (15)

or considering the normalized duality mapping 𝐽, we have

𝑥 + 𝑦


2
≤ ‖𝑥‖

2
+ 2 ⟨𝑦, 𝐽 (𝑥 + 𝑦)⟩ ∀𝑥, 𝑦 ∈ 𝑋. (16)

Assume that a sequence {𝑥𝑛} in 𝑋 converges weakly to a
point 𝑥 in𝑋. Then the following identity holds;

lim sup
𝑛→∞

Φ(
𝑥𝑛 − 𝑦

) = lim sup
𝑛→∞

Φ(
𝑥𝑛 − 𝑥

) + Φ (
𝑥 − 𝑦

)

∀𝑦 ∈ 𝑋.

(17)

Remark 2. For any 𝑘 with 0 ≤ 𝑘 ≤ 1, we have

𝜑 (𝑘𝑡) ≤ 𝜑 (𝑡) ∀𝑡 > 0,

Φ (𝑘𝑡) = ∫

𝑘𝑡

0

𝜑 (𝑠) 𝑑𝑠 = 𝑘∫

𝑡

0

𝜑 (𝑘𝑢) 𝑑𝑢

≤ 𝑘∫

𝑡

0

𝜑 (𝑢) 𝑑𝑢 = 𝑘Φ (𝑡) ∀𝑡 > 0.

(18)

We need the following demiclosedness principle for
asymptotically nonexpansive mappings in a Banach space.

Lemma 3 (see [17, Corollary 5.6.4], [10]). Let𝑋 be a Banach
space with a weakly continuous duality mapping 𝐽𝜑 : 𝑋 →

𝑋
∗ with gauge function 𝜑. Let 𝐶 be a nonempty closed convex

subset of 𝑋 and 𝑇 : 𝐶 → 𝐶 an asymptotically nonexpansive
mapping. Then, 𝐼 − 𝑇 is demiclosed at zero; that is, if {𝑥𝑛} is a
sequence in 𝐶 which converges weakly to 𝑥 and if the sequence
{𝑥𝑛 − 𝑇𝑥𝑛} converges strongly to zero, then 𝑥 − 𝑇𝑥 = 0.

Let 𝐶 be a convex subset of a Banach space 𝑋 and 𝐷 a
nonempty subset of 𝐶. Then, a continuous mapping 𝑃 from
𝐶 onto𝐷 is called a retraction if 𝑃𝑥 = 𝑥 for all 𝑥 in𝐷; that is,
𝑃
2
= 𝑃. A retraction𝑃 is said to be sunny if𝑃(𝑃𝑥+𝑡(𝑥−𝑃𝑥)) =

𝑃𝑥 for each 𝑥 in 𝐶 and 𝑡 ≥ 0 with 𝑃𝑥 + 𝑡(𝑥 − 𝑃𝑥) in 𝐶. If the
sunny retraction 𝑃 is also nonexpansive, then 𝐷 is said to be
a sunny nonexpansive retract of 𝐶. The sunny nonexpansive
retraction 𝑄 from 𝐶 onto𝐷 is unique if𝑋 is smooth.

Lemma 4 (see Goebel and Reich [20, Lemma 13.1]). Let 𝐶 be
a convex subset of a smooth Banach space 𝑋, 𝐷 a nonempty
subset of 𝐶, and 𝑃 a retraction from 𝐶 onto 𝐷. Then, the
following are equivalent.

(a) 𝑃 is sunny and nonexpansive.
(b) ⟨𝑥 − 𝑃𝑥, 𝐽(𝑧 − 𝑃𝑥)⟩ ≤ 0 for all 𝑥 ∈ 𝐶, 𝑧 ∈ 𝐷.
(c) ⟨𝑥 − 𝑦, 𝐽(𝑃𝑥 − 𝑃𝑦)⟩ ≥ ‖ 𝑃𝑥 − 𝑃𝑦‖2 for all 𝑥, 𝑦 ∈ 𝐶.

Lemma 5 (see [21]). Let {𝛼𝑛} and {𝛾𝑛} be two real sequences
such that

(i) {𝛼𝑛} ⊂ [0, 1] and ∑
∞

𝑛=1
𝛼𝑛 = +∞,

(ii) lim sup
𝑛→∞

𝛾𝑛 ≤ 0.

Let {𝜆𝑛} be a sequence of nonnegative numbers which satis-
fies the inequality

𝜆𝑛+1 ≤ (1 − 𝛼𝑛) 𝜆𝑛 + 𝛼𝑛𝛾𝑛, 𝑛 ∈ N. (19)

Then, lim𝑛→∞𝜆𝑛 = 0.

3. Existence of Common Fixed Points

We begin with the following.

Proposition 6. Let𝐶 be a nonempty closed subset of a Banach
space 𝑋. Let F = {𝑇(𝑡) : 𝑡 ∈ R+} be a uniformly continuous
semigroup of asymptotically nonexpansive mappings from 𝐶

into itself with a net {𝑘(𝑡) : 𝑡 ∈ (0, +∞)}. Let {𝑏𝑛} be a sequence
in (0, 1) and {𝑡𝑛} a sequence in (0, +∞) with 𝑘(𝑡𝑛) − 1 < 𝑏𝑛 for
all 𝑛 in N. Assume that 𝑢 ∈ 𝐶 and 𝑏𝑛𝑢 + (1 − 𝑏𝑛)𝑇(𝑡𝑛)𝑥 ∈ 𝐶 for
all 𝑥 in 𝐶 and 𝑛 in N.

(a) There exists a sequence {𝑦𝑛} in 𝐶 defined by

𝑦𝑛 = 𝑏𝑛𝑢 + (1 − 𝑏𝑛) 𝑇 (𝑡𝑛) 𝑦𝑛 ∀𝑛 ∈ N. (20)

(b) If the sequence {𝑦𝑛} described by (20) is bounded
and lim𝑛→∞𝑡𝑛 = lim𝑛→∞(𝑏𝑛/𝑡𝑛) = 0, then

𝑦𝑛 − 𝑇 (𝑡) 𝑦𝑛 → 0 𝑎𝑠 𝑛 → ∞, ∀𝑡 > 0. (21)

Proof. (a) Set 𝑛 := (𝑘(𝑡𝑛) − 1)/𝑏𝑛. Since 𝑘(𝑡𝑛) − 1 < 𝑏𝑛 for
all 𝑛 in N, it follows that 𝑛 < 1 ≤ 𝑘(𝑡𝑛), and hence 0 < (1 −

𝑏𝑛)𝑘(𝑡𝑛) = (1 − 𝑏𝑛)(1 + 𝑛𝑏𝑛) < 1 for all 𝑛 in N. For each 𝑛 in
N, the mapping 𝐺𝑛 : 𝐶 → 𝐶 defined by

𝐺𝑛𝑦 := 𝑏𝑛𝑢 + (1 − 𝑏𝑛) 𝑇 (𝑡𝑛) 𝑦, 𝑦 ∈ 𝐶 (22)

is a contraction with Lipschitz constant (1 − 𝑏𝑛)𝑘(𝑡𝑛). There-
fore, there exists a sequence {𝑦𝑛} in 𝐶 described by (20).

(b) Suppose that the sequence {𝑦𝑛} in𝐶 described by (20)
is bounded and lim𝑛→∞𝑡𝑛 = lim𝑛→∞(𝑏𝑛/𝑡𝑛) = 0.
From (20), we have

𝑇 (𝑡𝑛) 𝑦𝑛
 =

1

1 − 𝑏𝑛

𝑦𝑛 − 𝑏𝑛𝑢
 ≤

1

1 − 𝑏𝑛

(
𝑦𝑛

 + 𝑏𝑛 ‖𝑢‖) .

(23)

Without loss of generality, we may assume that {𝑏𝑛} is
bounded away from 1.Then, there exists a positive constant 𝛿
such that 𝑏𝑛 ≤ 𝛿 < 1 for all 𝑛 in N. Since 𝐵 := {𝑦𝑛 : 𝑛 ∈ N} is
bounded, it follows from (23) that {𝑇(𝑡𝑛)𝑦𝑛} is bounded.
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Set 𝐿 := sup{𝑘(𝑡) : 𝑡 ∈ R+}. For 𝑡 > 0, we have

𝑦𝑛 − 𝑇 (𝑡) 𝑦𝑛


≤

[𝑡/𝑡
𝑛
]−1

∑

𝑖=0

𝑇 (𝑖𝑡𝑛) 𝑦𝑛 − 𝑇 ((𝑖 + 1) 𝑡𝑛) 𝑦𝑛


+



𝑇([
𝑡

𝑡𝑛

] 𝑡𝑛)𝑦𝑛 − 𝑇 (𝑡) 𝑦𝑛



≤ [
𝑡

𝑡𝑛

] 𝐿
𝑦𝑛 − 𝑇 (𝑡𝑛) 𝑦𝑛

 + 𝐿



𝑇(𝑡 − [
𝑡

𝑡𝑛

] 𝑡𝑛)𝑦𝑛 − 𝑦𝑛



= 𝐿𝑏𝑛 [
𝑡

𝑡𝑛

]
𝑢 − 𝑇 (𝑡𝑛) 𝑦𝑛

 + 𝐿



𝑇(𝑡 − [
𝑡

𝑡𝑛

] 𝑡𝑛)𝑦𝑛 − 𝑦𝑛



≤ 𝑡𝐿 (
𝑏𝑛

𝑡𝑛

)
𝑢 − 𝑇 (𝑡𝑛) 𝑦𝑛

 + 𝐿 sup
𝑦∈𝐵

𝑇 (𝑠𝑛) 𝑦 − 𝑦
 ,

(24)

for all 𝑛 in N, where 𝑠𝑛 = 𝑡 − [𝑡/𝑡𝑛]𝑡𝑛. Note that 𝑠𝑛 = 𝑡 −

[𝑡/𝑡𝑛]𝑡𝑛 ≤ 𝑡𝑛 → 0 as 𝑛 → ∞. Since F is uniformly con-
tinuous at 0, it follows that sup

𝑦∈𝐵
‖ 𝑇(𝑠𝑛)𝑦 − 𝑦 ‖→ 0 as

𝑛 → ∞. Therefore, 𝑦𝑛 − 𝑇(𝑡)𝑦𝑛 → 0 as 𝑛 → ∞.

Remark 7. (a) If 𝐶 is star shaped with respect to 𝑢 in 𝐶, then
the assumption “𝑏𝑛𝑢 + (1 − 𝑏𝑛)𝑇(𝑡𝑛)𝑥 ∈ 𝐶 for all 𝑥 in 𝐶 and 𝑛
in N” in Proposition 6 is automatically satisfied.

(b) If F = {𝑇(𝑡) : 𝑡 ∈ R+} is a strongly continuous
semigroup of nonexpansive mappings with 𝐹(F) ̸= 0, the
sequence {𝑦𝑛} in 𝐶 described by (20) is bounded (see [15,
Theorem 3.3]).

Theorem 8. Let 𝑋 be a real reflexive Banach space with a
weakly continuous duality mapping 𝐽𝜑 with gauge function 𝜑,
and 𝐶 a nonempty weakly closed subset of 𝑋. LetF = {𝑇(𝑡) :

𝑡 ∈ R+} be a uniformly continuous semigroup of asymptotically
nonexpansive mappings from 𝐶 into itself with a net {𝑘(𝑡) : 𝑡 ∈
(0, +∞)}. Let {𝑏𝑛} be a sequence in (0, 1) and {𝑡𝑛} a sequence in
(0, +∞)with 𝑘(𝑡𝑛)−1 < 𝑏𝑛 for all 𝑛 inN satisfying the condition

lim
𝑛→∞

𝑡𝑛 = lim
𝑛→∞

𝑏𝑛

𝑡𝑛

= lim
𝑛→∞

𝑘 (𝑡𝑛) − 1

𝑏𝑛

= 0. (25)

Assume that 𝑢 ∈ 𝐶 such that the sequence {𝑦𝑛} described by
(20) is bounded in 𝐶. Then,

(a) 𝐹(F) ̸= 0.

(b) {𝑦𝑛} converges strongly to an element 𝑦∗ ∈ 𝐹(F)which
holds the inequality

⟨𝑦
∗
− 𝑢, 𝐽 (𝑦

∗
− V)⟩ ≤ 0 ∀V ∈ 𝐹 (F) . (26)

Proof. By Proposition 6 (b), we have 𝑦𝑛−𝑇(𝑡)𝑦𝑛 → 0 as 𝑛 →

∞ for all 𝑡 > 0. Since {𝑦𝑛} is bounded, there exists a sub-
sequence {𝑦𝑛

𝑖

} of {𝑦𝑛} such that 𝑦𝑛
𝑖

⇀ 𝑦
∗
∈ 𝐶.

(a) For each 𝑟 > 0, we have
𝑇(𝑟)
𝑚
𝑥 − 𝑇(𝑟)

𝑚
𝑦


=
𝑇 (𝑚𝑟) 𝑥 − 𝑇 (𝑚𝑟) 𝑦



≤ 𝑘 (𝑚𝑟)
𝑥 − 𝑦

 ∀𝑥, 𝑦 ∈ 𝐶, 𝑚 ∈ N,

(27)

that is, each 𝑇(𝑟) is asymptotically nonexpansive mapping.
Since lim𝑛→∞‖𝑦𝑛 − 𝑇(𝑡)𝑦𝑛‖ = 0 for all 𝑡 > 0, it follows from
Lemma 3 that 𝑇(𝑡)𝑦∗ = 𝑦∗ for all 𝑡 > 0. Hence, 𝐹(F) ̸= 0.

(b) Since {𝑦𝑛} is bounded, there exists a constant𝑀 ≥ 0

such that ‖𝑦𝑛 − 𝑝‖ ≤ 𝑀 for all 𝑛 in N and 𝑝 in 𝐹(F).
For any V in 𝐹(F), from (15) and Remark 2, we have

Φ(
𝑦𝑛 − 𝑦

∗)

= Φ (
𝑏𝑛𝑢 + (1 − 𝑏𝑛) 𝑇 (𝑡𝑛) 𝑦𝑛 − 𝑦

∗)

≤ Φ ((1 − 𝑏𝑛)
𝑇 (𝑡𝑛) 𝑦𝑛 − 𝑦

∗)

+ 𝑏𝑛 ⟨𝑢 − 𝑦
∗
, 𝐽𝜑 (𝑦𝑛 − 𝑦

∗
)⟩

≤ Φ ((1 − 𝑏𝑛) 𝑘 (𝑡𝑛)
𝑦𝑛 − 𝑦

∗)

+ 𝑏𝑛 ⟨𝑢 − 𝑦
∗
, 𝐽𝜑 (𝑦𝑛 − 𝑦

∗
)⟩

≤ (1 − 𝑏𝑛) 𝑘 (𝑡𝑛)Φ (
𝑦𝑛 − 𝑦

∗)

+ 𝑏𝑛 ⟨𝑢 − 𝑦
∗
, 𝐽𝜑 (𝑦𝑛 − 𝑦

∗
)⟩ .

(28)

Since 𝑘(𝑡) ≥ 1 for all 𝑡 > 0, we have

Φ(
𝑦𝑛 − 𝑦

∗) ≤
𝑘 (𝑡𝑛) − 1

𝑏𝑛

Φ(
𝑦𝑛 − 𝑦

∗)

+ ⟨𝑢 − 𝑦
∗
, 𝐽𝜑 (𝑦𝑛 − 𝑦

∗
)⟩

≤
𝑘 (𝑡𝑛) − 1

𝑏𝑛

Φ (𝑀)+⟨𝑢 − 𝑦
∗
, 𝐽𝜑 (𝑦𝑛 − 𝑦

∗
)⟩ .

(29)

Observing that (𝑘(𝑡𝑛
𝑖

) − 1)/𝑏𝑛
𝑖

→ 0, 𝑦𝑛
𝑖

⇀ 𝑦
∗, and 𝐽𝜑 is

weakly continuous, we conclude from (29) that 𝑦𝑛
𝑖

→ 𝑦
∗
∈

𝐶 as 𝑖 → ∞ because 𝐶 is closed.
We prove that {𝑦𝑛} converges strongly to 𝑦∗. Suppose,

for contradiction, that {𝑦𝑛
𝑗

} is another subsequence of {𝑦𝑛}
such that 𝑦𝑛

𝑗

→ 𝑧
∗
∈ 𝐶 with 𝑧∗ ̸= 𝑦

∗. Since lim𝑛→∞(𝑦𝑛 −
𝑇(𝑡)𝑦𝑛) = 0 for all 𝑡 > 0, we have 𝑧∗ ∈ 𝐹(F). For any V in
𝐹(F), we have

⟨𝑦𝑛 − 𝑇 (𝑡𝑛) 𝑦𝑛, 𝐽𝜑 (𝑦𝑛 − V)⟩

= ⟨𝑦𝑛 − V + 𝑇 (𝑡𝑛) V − 𝑇 (𝑡𝑛) 𝑦𝑛, 𝐽𝜑 (𝑦𝑛 − V)⟩

=
𝑦𝑛 − V

 𝜑 (
𝑦𝑛 − V

)

− ⟨𝑇 (𝑡𝑛) 𝑦𝑛 − 𝑇 (𝑡𝑛) V, 𝐽𝜑 (𝑦𝑛 − V)⟩

≥ − (𝑘 (𝑡𝑛) − 1)
𝑦𝑛 − V

 𝜑 (
𝑦𝑛 − V

) ∀𝑛 ∈ N.

(30)
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From (20), we have

⟨𝑦𝑛 − 𝑢, 𝐽𝜑 (𝑦𝑛 − V)⟩

= (1 − 𝑏𝑛) ⟨𝑇 (𝑡𝑛) 𝑦𝑛 − 𝑢, 𝐽𝜑 (𝑦𝑛 − V)⟩

= (1 − 𝑏𝑛) ⟨𝑇 (𝑡𝑛) 𝑦𝑛 − 𝑦𝑛 + 𝑦𝑛 − 𝑢, 𝐽𝜑 (𝑦𝑛 − V)⟩ .

(31)

It follows that

⟨𝑦𝑛 − 𝑢, 𝐽𝜑 (𝑦𝑛 − V)⟩

≤
1 − 𝑏𝑛

𝑏𝑛

⟨𝑇 (𝑡𝑛) 𝑦𝑛 − 𝑦𝑛, 𝐽𝜑 (𝑦𝑛 − V)⟩

≤ (1 − 𝑏𝑛)
𝑘 (𝑡𝑛) − 1

𝑏𝑛

𝑦𝑛 − V
 𝜑 (

𝑦𝑛 − V
)

≤
𝑘 (𝑡𝑛) − 1

𝑏𝑛

𝑀𝜑(𝑀)

(32)

for all V in 𝐹(F) and 𝑛 in N. Since lim𝑛→∞(𝑘(𝑡𝑛) − 1)/𝑏𝑛 = 0,
we obtain from (32) that

⟨𝑦
∗
− 𝑢, 𝐽𝜑 (𝑦

∗
− 𝑧
∗
)⟩ ≤ 0,

⟨𝑧
∗
− 𝑢, 𝐽𝜑 (𝑧

∗
− 𝑦
∗
)⟩ ≤ 0.

(33)

Addition of (33) yields

⟨𝑦
∗
− 𝑧
∗
, 𝐽𝜑 (𝑦

∗
− 𝑧
∗
)⟩ ≤ 0. (34)

Hence, 𝑦∗ = 𝑧
∗, a contradiction. Therefore, {𝑦𝑛} converges

strongly to 𝑦∗ ∈ 𝐶.
Finally, from (32), we conclude that 𝑦∗ satisfies (26).

Let F = {𝑇(𝑡) : 𝑡 ∈ R+} be a strongly continuous semi-
group of asymptotically nonexpansive mappings from 𝐶 into
itself and 𝑢 ∈ 𝐶.Motivated byMorales and Jung [22,Theorem
1] and Morales [23, Theorem 2], we define

𝐸
𝑢

F (𝐶) = {𝜆𝑢 + (1 − 𝜆) 𝑇 (𝑡) 𝑥 : 𝑥 ∈ 𝐶, 𝜆 ∈ [0, 1] , 𝑡 > 0} .

(35)

Corollary 9. Let 𝑋 be a real reflexive Banach space with a
weakly continuous duality mapping 𝐽𝜑 with gauge function 𝜑
and 𝐶 a nonempty weakly closed subset of 𝑋. LetF = {𝑇(𝑡) :

𝑡 ∈ R+} be a uniformly continuous semigroup of asymptotically
nonexpansive mappings from 𝐶 into itself with a net {𝑘(𝑡) : 𝑡 ∈
(0, +∞)}. Let {𝑏𝑛} be a sequence in (0, 1) and {𝑡𝑛} a sequence in
(0, +∞) with 𝑘(𝑡𝑛) − 1 < 𝑏𝑛 for all 𝑛 in N satisfying condition
(25). Assume that 𝑢 ∈ 𝐶 such that 𝐶 is star shaped with respect
to 𝑢, and set 𝐸𝑢F(𝐶) defined by (35) is bounded.

(a) For each 𝑛 in N, there is exactly one point 𝑦𝑛 in 𝐶

described by (20).
(b) 𝐹(F) is nonempty.Moreover, {𝑦𝑛} converges strongly to

an element 𝑦∗ in 𝐹(F) which holds (26).

Corollary 9 improves and generalizes several recent
results of this nature. Indeed, it extends [13, Theorem 1.7]
from the class of asymptotically nonexpansive mappings to
a uniformly continuous semigroup of asymptotically nonex-
pansive mappings without uniformly asymptotic regularity
assumption. In particular, Corollary 9 improves Theorem ZS
in the following ways.

(1) Convexity of 𝐶 is not required.
(2) The assumption “uniform convexity” of the underly-

ing space is not required.
(3) For convergence of {𝑦𝑛}, condition “𝐹(F) is a sunny

nonexpansive retract of 𝐶” is not assumed.

Next, we show that𝐹(F) is a nonempty sunny nonexpan-
sive retract of 𝐶.

Theorem 10. Let 𝑋 be a real reflexive Banach space with a
weakly continuous duality mapping 𝐽𝜑 with gauge function 𝜑.
Let 𝐶 be a nonempty closed convex-bounded subset of 𝑋. Let
F = {𝑇(𝑡) : 𝑡 ∈ R+} be a uniformly continuous semigroup of
asymptotically nonexpansive mappings from 𝐶 into itself with
net {𝑘(𝑡) : 𝑡 ∈ (0, +∞)}. Then, 𝐹(F) is a nonempty sunny
nonexpansive retract of 𝐶.

Proof. By Theorem 8 (a), 𝐹(F) ̸= 0. As in Theorem 8 (b), for
each 𝑢 in 𝐶 the sequence {𝑦𝑛} converges strongly to an ele-
ment 𝑦∗ in 𝐹(F). Define a mapping 𝑄 : 𝐶 → 𝐹(F) by

𝑄𝑢 = lim
𝑛→∞

𝑦𝑛. (36)

By (32), we have

⟨𝑦𝑛 − 𝑢, 𝐽𝜑 (𝑦𝑛 − V)⟩ ≤
𝑘 (𝑡𝑛) − 1

𝑏𝑛

diam (𝐶) 𝜑 (diam (𝐶))

(37)

for all 𝑢 in 𝐶, V in 𝐹(F), and 𝑛 in N, where diam(𝐵) is the
diameter of set 𝐵. Letting 𝑛 → ∞, we obtain that

⟨𝑄𝑢 − 𝑢, 𝐽𝜑 (𝑄𝑢 − V)⟩ ≤ 0 ∀V ∈ 𝐹 (F) . (38)

Therefore, by Lemma 4, we conclude that 𝑄 is sunny nonex-
pansive.

Remark 11. In view of Remark 7 (b), the nonemptℎness of the
commonfixed point set of a uniformly continuous semigroup
of nonexpansive mappings implies that the sequence {𝑦𝑛} in
𝐶 described by (20) is bounded. So we can drop the bound-
edness assumption of domain𝐶 inTheorem 10, provided that
𝐹(F) ̸= 0.

Corollary 12. Let 𝑋 be a real reflexive Banach space with
a weakly continuous duality mapping 𝐽𝜑 with gauge function
𝜑 and 𝐶 a nonempty weakly closed subset of 𝑋. Let F =

{𝑇(𝑡) : 𝑡 ∈ R+} be a uniformly continuous semigroup of non-
expansive mappings from 𝐶 into itself with 𝐹(F) ̸= 0. Let {𝑏𝑛}
be a sequence in (0, 1) and {𝑡𝑛} a sequence in (0, +∞) such that
lim𝑛→∞𝑡𝑛 = lim𝑛→∞(𝑏𝑛/𝑡𝑛) = 0. Assume that 𝑢 ∈ 𝐶 and that
𝐶 is star shaped with respect to 𝑢.
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(a) For each 𝑛 in N, there is exactly one point 𝑦𝑛 in 𝐶 des-
cribed by (20).

(b) {𝑦𝑛} converges strongly to an element𝑦∗ in𝐹(F)which
holds (26).

Corollary 12 is an improvement of [14, Theorem 3] and
[15, Theorem 3.3], where strong convergence theorems were
established in Hilbert and uniformly convex Banach spaces,
respectively.

4. Approximation of Common Fixed Points

Theorem 13. Let 𝑋 be a real reflexive Banach space with a
weakly continuous duality mapping 𝐽𝜑 with gauge function 𝜑.
Let 𝐶 be a nonempty closed convex bounded subset of 𝑋 and
F = {𝑇(𝑡) : 𝑡 ∈ R+} a uniformly continuous semigroup of
asymptotically nonexpansive mappings from 𝐶 into itself with
a net {𝑘(𝑡) : 𝑡 ∈ (0, +∞)}. For given 𝑢, 𝑥1 in 𝐶, let {𝑥𝑛} be
a sequence in 𝐶 generated by (7), where {𝛼𝑛} is a sequence in
(0, 1) and {𝑡𝑛} is a decreasing sequence in (0, +∞) satisfying the
following conditions.

(C1) lim𝑛→∞𝑡𝑛 = lim𝑛→∞(𝛼𝑛/𝑡𝑛) = 0 and ∑
∞

𝑛=1
𝛼𝑛 = ∞,

(C2) lim𝑛→∞(|𝛼𝑛−𝛼𝑛+1|/𝛼𝑛) = 0 or∑
∞

𝑛=1
|𝛼𝑛−𝛼𝑛+1| < +∞,

(C3) lim𝑛→∞(‖𝑇(𝑡𝑛 − 𝑡𝑛+1)𝑥𝑛 − 𝑥𝑛‖/𝛼𝑛+1) = 0,
(C4) (1 − 𝛼𝑛)𝑘(𝑡𝑛) ≤ 1 for all 𝑛 ∈ N and lim𝑛→∞((𝑘(𝑡𝑛) −

1)/𝛼𝑛) = 0.

Then,

(a) 𝐹(F) ̸= 0.
(b) {𝑥𝑛} converges strongly to 𝑄𝐹(F)(𝑢), where 𝑄𝐹(F) is a

sunny nonexpansive retraction of 𝐶 onto 𝐹(F).

Proof. It follows fromTheorem 10 that 𝐹(F) ̸= 0, and there is
a sunny nonexpansive retraction 𝑄𝐹(F) of 𝐶 onto 𝐹(F). Set
𝑦
∗
:= 𝑄𝐹(F)(𝑢), 𝐵 := {𝑥𝑛}, 𝐿 := sup{𝑘(𝑡) : 𝑡 > 0}, and𝑀 :=

sup{‖𝑥𝑛 − 𝑦
∗
‖ : 𝑛 ∈ N}. Since 𝐶 is bounded, there exists a

constant𝐾 > 0 such that

𝑥𝑛+1 − 𝑥𝑛
 ≤ 𝐾,

𝑇 (𝑡𝑛) 𝑥𝑛 − 𝑢
 ≤ 𝐾 ∀𝑛 ∈ N. (39)

Hence, for all 𝑛 > 1, we have

𝑥𝑛+1 − 𝑥𝑛


≤
(𝛼𝑛 − 𝛼𝑛−1) (𝑢 − 𝑇 (𝑡𝑛−1) 𝑥𝑛−1)

+ (1 − 𝛼𝑛) (𝑇 (𝑡𝑛) 𝑥𝑛 − 𝑇 (𝑡𝑛−1) 𝑥𝑛−1)


≤
𝛼𝑛 − 𝛼𝑛−1

 𝐾

+ (1 − 𝛼𝑛)
𝑇 (𝑡𝑛) 𝑥𝑛 − 𝑇 (𝑡𝑛−1) 𝑥𝑛−1



≤
𝛼𝑛 − 𝛼𝑛−1

 𝐾

+ (1 − 𝛼𝑛) (
𝑇 (𝑡𝑛) 𝑥𝑛 − 𝑇 (𝑡𝑛) 𝑥𝑛−1



+
𝑇 (𝑡𝑛) 𝑥𝑛−1 − 𝑇 (𝑡𝑛−1) 𝑥𝑛−1

)

≤
𝛼𝑛 − 𝛼𝑛−1

 𝐾 + (1 − 𝛼𝑛) 𝑘 (𝑡𝑛)
𝑥𝑛 − 𝑥𝑛−1



+
𝑇 (𝑡𝑛) 𝑥𝑛−1 − 𝑇 (𝑡𝑛−1) 𝑥𝑛−1



≤ (1 − 𝛼𝑛) 𝑘 (𝑡𝑛)
𝑥𝑛 − 𝑥𝑛−1



+
𝛼𝑛 − 𝛼𝑛−1

 𝐾 + 𝑘 (𝑡𝑛)
𝑇 (𝑡𝑛−1 − 𝑡𝑛) 𝑥𝑛−1 − 𝑥𝑛−1



≤ (1 − 𝛼𝑛)
𝑥𝑛 − 𝑥𝑛−1

 +
𝛼𝑛 − 𝛼𝑛−1

 𝐾

+ 𝐿
𝑇 (𝑡𝑛−1 − 𝑡𝑛) 𝑥𝑛−1 − 𝑥𝑛−1



+ (1 − 𝛼𝑛) (𝑘 (𝑡𝑛) − 1)
𝑥𝑛 − 𝑥𝑛−1



≤ (1 − 𝛼𝑛)
𝑥𝑛 − 𝑥𝑛−1



+
𝛼𝑛 − 𝛼𝑛−1

 𝐾 + 𝐿
𝑇 (𝑡𝑛−1 − 𝑡𝑛) 𝑥𝑛−1 − 𝑥𝑛−1



+ (𝑘 (𝑡𝑛) − 1)𝐾.

(40)

Hence, by Lemma 5 and assumptions (C1)∼(C4), we conclude
that 𝑥𝑛+1 − 𝑥𝑛 → 0 as 𝑛 → ∞. Fix 𝑡 > 0, we have

𝑥𝑛 − 𝑇 (𝑡) 𝑥𝑛


≤

[𝑡/𝑡
𝑛
]−1

∑

𝑖=0

𝑇 (𝑖𝑡𝑛) 𝑥𝑛 − 𝑇 ((𝑖 + 1) 𝑡𝑛) 𝑥𝑛


+



𝑇([
𝑡

𝑡𝑛

] 𝑡𝑛)𝑥𝑛 − 𝑇 (𝑡) 𝑥𝑛



≤ [
𝑡

𝑡𝑛

] 𝐿
𝑥𝑛 − 𝑇 (𝑡𝑛) 𝑥𝑛



+ 𝐿



𝑇(𝑡 − [
𝑡

𝑡𝑛

] 𝑡𝑛)𝑥𝑛 − 𝑥𝑛



≤ 𝐿 [
𝑡

𝑡𝑛

] (
𝑥𝑛 − 𝑥𝑛+1

 +
𝑥𝑛+1 − 𝑇 (𝑡𝑛) 𝑥𝑛

)

+ 𝐿



𝑇(𝑡 − [
𝑡

𝑡𝑛

] 𝑡𝑛)𝑥𝑛 − 𝑥𝑛



≤ 𝐿(
𝑡

𝑡𝑛

)
𝑥𝑛 − 𝑥𝑛+1



+ 𝑡𝐿 (
𝛼𝑛

𝑡𝑛

)
𝑢 − 𝑇 (𝑡𝑛) 𝑥𝑛



+ 𝐿 max {𝑇 (𝑠) 𝑥𝑛 − 𝑥𝑛
 : 0 ≤ 𝑠 ≤ 𝑡𝑛}

(41)

for all 𝑛 in N, which gives that 𝑥𝑛 − 𝑇(𝑡)𝑥𝑛 → 0 as 𝑛 → ∞.
We may assume that 𝑥𝑛

𝑖

⇀ 𝑝 ∈ 𝐶 as 𝑖 → ∞. In view of the
assumption that the dualitymapping 𝐽𝜑 is weakly sequentially
continuous, it follows from Lemma 3 that 𝑝 ∈ 𝐹(F).Thus, by
the weak continuity of 𝐽𝜑 and Lemma 4, we have

lim sup
𝑛→∞

⟨𝑢 − 𝑄𝐹(F) (𝑢) , 𝐽𝜑 (𝑥𝑛 − 𝑄𝐹(F) (𝑢))⟩

= lim
𝑖→∞

⟨𝑢 − 𝑄𝐹(F) (𝑢) , 𝐽𝜑 (𝑥𝑛
𝑖

− 𝑄𝐹(F) (𝑢))⟩
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= ⟨𝑢 − 𝑄𝐹(F) (𝑢) , 𝐽𝜑 (𝑝 − 𝑄𝐹(F) (𝑢))⟩

≤ 0.

(42)

Define 𝛾𝑛 := max{0, ⟨𝑢 − 𝑦∗, 𝐽𝜑(𝑥𝑛+1 − 𝑦
∗
)⟩}. From (7), we

obtain

Φ(
𝑥𝑛+1 − 𝑦

∗)

= Φ (
𝛼𝑛 (𝑢 − 𝑦

∗
) + (1 − 𝛼𝑛) (𝑇 (𝑡𝑛) 𝑥𝑛 − 𝑦

∗
)
)

≤ Φ ((1 − 𝛼𝑛)
𝑇
𝑛
𝑥𝑛 − 𝑦

∗)

+ 𝛼𝑛 ⟨𝑢 − 𝑦
∗
, 𝐽𝜑 (𝑥𝑛+1 − 𝑦

∗
)⟩

≤ Φ ((1 − 𝛼𝑛) 𝑘 (𝑡𝑛)
𝑥𝑛 − 𝑦

∗) + 𝛼𝑛𝛾𝑛.

(43)

Since (1 − 𝛼𝑛)𝑘(𝑡𝑛) ≤ 1 for all 𝑛 in N, it follows from Remark
2 that

Φ(
𝑥𝑛+1 − 𝑦

∗)

≤ (1 − 𝛼𝑛) 𝑘 (𝑡𝑛)Φ (
𝑥𝑛 − 𝑦

∗) + 𝛼𝑛𝛾𝑛

≤ (1 − 𝛼𝑛)Φ (
𝑥𝑛 − 𝑦

∗)

+ 𝛼𝑛𝛾𝑛 + (𝑘 (𝑡𝑛) − 1)Φ (𝑀) .

(44)

Note that lim𝑛→∞𝛾𝑛 = 0 and lim𝑛→∞((𝑘(𝑡𝑛) − 1)/𝛼𝑛) = 0.
Using Lemma 5, we obtain that {𝑥𝑛} converges strongly to 𝑦

∗.

One can carry over Theorem 13 to the so-called viscosity
approximation technique (see Xu [21]). We derive a more
general result in this direction which is an improvement
upon several convergence results in the context of viscosity
approximation technique.

Theorem 14. Let 𝑋 be a real reflexive Banach space with a
weakly continuous duality mapping 𝐽𝜑 with gauge function
𝜑. Let 𝐶 be a nonempty closed convex-bounded subset of 𝑋,
𝑓 : 𝐶 → 𝐶 a weakly contraction with function 𝜓, and F =

{𝑇(𝑡) : 𝑡 ∈ R+} a uniformly continuous semigroup of asympto-
tically nonexpansive mappings from 𝐶 into itself with a net
{𝑘(𝑡) : 𝑡 ∈ (0, +∞)}. For an arbitrary initial value 𝑥1 in 𝐶,
let {𝑥𝑛} be a sequence in 𝐶 generated by

𝑥𝑛+1 = 𝛼𝑛𝑓𝑥𝑛 + (1 − 𝛼𝑛) 𝑇 (𝑡𝑛) 𝑥𝑛 ∀𝑛 ∈ N. (45)

Here, {𝛼𝑛} is a sequence in (0, 1), and {𝑡𝑛} is a decreasing
sequence in (0, +∞) satisfying conditions (C1)∼(C4). Then,

(a) 𝐹(F) ̸= 0.
(b) {𝑥𝑛} converges strongly to 𝑥∗ in 𝐹(F), where 𝑥∗ =

𝑄𝐹(F)(𝑓𝑥
∗
) and𝑄𝐹(F) is a sunny nonexpansive retrac-

tion of 𝐶 onto 𝐹(F).

Proof. It follows from Theorem 10 that 𝐹(F) ̸= 0, and there
is a sunny nonexpansive retraction 𝑄𝐹(F) of 𝐶 onto 𝐹(F).
Since 𝑄𝐹(F)𝑓 is a weakly contractive mapping from 𝐶 into
itself, it follows from [24,Theorem 1] that there exists a unique

element 𝑥∗ in 𝐶 such that 𝑥∗ = 𝑄𝐹(F)(𝑓𝑥
∗
). Such 𝑥∗ in 𝐶 is

an element of 𝐹(F). Now, we define a sequence {𝑧𝑛} in 𝐶 by

𝑧𝑛+1 = 𝛼𝑛𝑓𝑥
∗
+ (1 − 𝛼𝑛) 𝑇 (𝑡𝑛) 𝑧𝑛 ∀𝑛 ∈ N. (46)

ByTheorem 13, we have that 𝑧𝑛 → 𝑥
∗
= 𝑄𝐹(F)(𝑓𝑥

∗
). By

boundedness of {𝑥𝑛} and {𝑧𝑛}, there exists a constant𝑀 ≥ 0

such that ‖𝑥𝑛 − 𝑧𝑛‖ ≤ 𝑀 for all 𝑛 ∈ N. Observe that
𝑥𝑛+1 − 𝑧𝑛+1



≤ 𝛼𝑛
𝑓𝑥𝑛 − 𝑓𝑥

∗

+ (1 − 𝛼𝑛)
𝑇 (𝑡𝑛) 𝑥𝑛 − 𝑇 (𝑡𝑛) 𝑧𝑛



≤ 𝛼𝑛 (
𝑓𝑥𝑛 − 𝑓𝑧𝑛

 +
𝑓𝑧𝑛 − 𝑓𝑥

∗)

+ (1 − 𝛼𝑛)
𝑇 (𝑡𝑛) 𝑥𝑛 − 𝑇 (𝑡𝑛) 𝑧𝑛



≤ 𝛼𝑛 (
𝑥𝑛 − 𝑧𝑛

 − 𝜓 (
𝑥𝑛 − 𝑧𝑛

) +
𝑧𝑛 − 𝑥

∗)

+ (1 − 𝛼𝑛) 𝑘 (𝑡𝑛)
𝑥𝑛 − 𝑧𝑛



≤
𝑥𝑛 − 𝑧𝑛

 − 𝛼𝑛𝜓 (
𝑥𝑛 − 𝑧𝑛

)

+ 𝛼𝑛
𝑧𝑛 − 𝑥

∗ + (1 − 𝛼𝑛) (𝑘 (𝑡𝑛) − 1)
𝑥𝑛 − 𝑧𝑛



≤
𝑥𝑛 − 𝑧𝑛

 − 𝛼𝑛𝜓 (
𝑥𝑛 − 𝑧𝑛

)

+ 𝛼𝑛 [
𝑧𝑛 − 𝑥

∗ +
(𝑘 (𝑡𝑛) − 1)

𝛼𝑛

𝑀] .

(47)

By [25, Lemma 3.2], we obtain ‖ 𝑥𝑛 − 𝑧𝑛 ‖→ 0. Therefore,
𝑥𝑛 → 𝑥

∗
= 𝑄𝐹(F)(𝑓𝑥

∗
).

Theorem 15. Let 𝑋 be a real reflexive Banach space with a
weakly continuous duality mapping 𝐽𝜑 with gauge function 𝜑.
Let𝐶 be a nonempty closed convex subset of𝑋 and𝑓 : 𝐶 → 𝐶

a weakly contraction. LetF = {𝑇(𝑡) : 𝑡 ∈ R+} be a uniformly
continuous semigroup of nonexpansive mappings from 𝐶 into
itself with 𝐹(F) ̸= 0. For given 𝑥1 in𝐶, let {𝑥𝑛} be a sequence in
𝐶 generated by (45), where {𝛼𝑛} is a sequence in (0, 1) and {𝑡𝑛}
is a decreasing sequence in (0, +∞) satisfying conditions (C1)∼
(C3). Then, {𝑥𝑛} converges strongly to 𝑥∗ ∈ 𝐹(F), where 𝑥∗ =
𝑄𝐹(F)(𝑓𝑥

∗
) and𝑄𝐹(F) is a sunny nonexpansive retraction of𝐶

onto 𝐹(F).

Remark 16. (a) For a related result concerning the strong
convergence of the explicit iteration procedure 𝑧𝑛+1 := (𝜆/

𝑘𝑛)𝑇
𝑛
(𝑧𝑛) to some fixed point of an asymptotically nonexpan-

sive mapping 𝑇 on star-shaped domain in a reflexive Banach
space with a weakly continuous duality mapping, we refer the
reader to Schu [13].

(b)We remark that condition “‖𝑥𝑛+1−𝑥𝑛‖ ≤ 𝐷𝛼𝑛 for some
𝐷 > 0” implies that ‖𝑥𝑛+1 − 𝑥𝑛‖ → 0 as 𝛼𝑛 → 0. Thus, the
assumption “‖𝑥𝑛+1 − 𝑥𝑛‖ ≤ 𝐷𝛼𝑛 for some 𝐷 > 0” imposed
inTheorem ZS is very strong. In our results, such assumption
is avoided. Under a mild assumption, Theorem 13 shows that
the sequence {𝑥𝑛} generated by (7) converges strongly to a
common fixed point of a uniformly continuous semigroup
of asymptotically nonexpansive mappings in a real Banach
space without uniform convexity. Therefore, Theorem 13 is a
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significant improvement of a number of known results (e.g.,
Theorem ZS and [12, Theorem 4.7]) for semigroups of asym-
ptotically nonexpansive mappings. Corollary 9 andTheorem
13 provide an affirmative answer to Problem 1.
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