ON C*-ALGEBRAS CUT DOWN BY CLOSED PROJECTIONS: CHARACTERIZING ELEMENTS VIA THE EXTREME BOUNDARY

LAWRENCE G. BROWN AND NGAI-CHING WONG

ABSTRACT. Let A be a C*-algebra. Let z be the maximal atomic projection and p a closed projection in A^{**} . It is known that x in A^{**} has a continuous atomic part, *i.e.* zx = za for some a in A, whenever x is uniformly continuous on the set of pure states of A. Under some additional conditions, we shall show that if x is uniformly continuous on the set of pure states of A supported by p, or its weak* closure, then pxp has a continuous atomic part, *i.e.* zpxp = zpap for some a in A.

1. INTRODUCTION

Let A be a C*-algebra with Banach dual A^* and double dual A^{**} . Let

$$Q(A) = \{ \varphi \in A^* : \varphi \ge 0 \text{ and } \|\varphi\| \le 1 \}$$

be the quasi-state space of A. When $A = C_0(X)$ for some locally compact Hausdorff space X, the weak^{*} compact convex set $Q(C_0(X))$ consists of all positive regular Borel measures μ on X with $\|\mu\| = \mu(X) \leq 1$. In this case, the extreme boundary of $Q(C_0(X)) \cong X \cup \{\infty\}$. The point ∞ at infinity is isolated if and only if X is compact. For a non-abelian C^{*}-algebra A, the extreme boundary of Q(A) is the pure state space $P(A) \cup \{0\}$, in which P(A) consists of pure states of A and the zero functional 0 is isolated if and only if A is unital. In the Kadison function representation (see *e.g.* [16]), the self-adjoint part A_{sa}^{**} of the W^{*}-algebra A^{**} is isometrically and order isomorphic to the ordered Banach space of all bounded affine real-valued functionals on Q(A) vanishing at 0. Moreover, x is in A_{sa} if and only if in addition x is weak^{*} continuous on Q(A).

Let z be the maximal atomic projection in A^{**} . Note that $A^{**} = (1-z)A^{**} \oplus zA^{**}$; in which zA^{**} is the direct sum of type I factors and $(1-z)A^{**}$ has no type I factor direct summand of A^{**} . In particular, z is a central projection in A^{**} supporting all pure states of A. In other words, $\varphi(x) = \varphi(zx)$ for all x in A^{**} and all pure states φ of A. For an abelian C*-algebra $C_0(X)$, the enveloping W*-algebra $C_0(X)^{**} = \bigoplus_{\infty} \{L^{\infty}(\mu) : \mu \in \mathcal{C}\} \oplus_{\infty} \ell^{\infty}(X)$, where \mathcal{C} is a maximal family of mutually singular continuous measures on X. In this way, every x in $C_0(X)^{**}$ can be written as a direct sum $x = x_d + x_a$ of the diffuse part x_d and the atomic part x_a , and $zx = x_a \in \ell^{\infty}(X)$. Note that a measure μ on X is atomic if $\langle x, \mu \rangle = \int x_a d\mu = \langle zx, \mu \rangle$, or equivalently, μ is supported by z. Alternatively, atomic measures are exactly countable linear sums of point masses. In general,

 $Key\ words\ and\ phrases.$ C*-algebras, faces of compact convex sets, atomic parts.

 $^{2000\} Mathematics\ Subject\ Classification.\ 46L05,\ 46L85.$

atomic positive functionals of a non-abelian C*-algebra A are countable linear sums of pure states of A ([13, 14]).

We call zA^{**} the *atomic part* of A^{**} . An element x of A^{**} is said to *have a continuous atomic part* if zx = za for some a in A (cf. [18]). In this case, x and a agree on $P(A) \cup \{0\}$ since $\varphi(x) = \varphi(zx) = \varphi(za) = \varphi(a)$ for all pure states φ of A. In particular, $\varphi \mapsto \varphi(x)$ is uniformly continuous on $P(A) \cup \{0\}$. Shultz [18] showed that x in A^{**} has a continuous atomic part whenever x, x^*x and xx^* are uniformly continuous on $P(A) \cup \{0\}$. Later, Brown [7] proved:

Theorem 1 ([7]). Let x be an element of A^{**} . Then x has a continuous atomic part (i.e. $zx \in zA$) if and only if x is uniformly continuous on $P(A) \cup \{0\}$.

The Stone-Weierstrass problem for C*-algebras conjectures that if B is a C*-subalgebra of a C*-algebra A separating points in $P(A) \cup \{0\}$ then A = B (see *e.g.* [11]). The facial structure of the compact convex set Q(A) sheds some light on solving the Stone-Weierstrass problem. The classical papers of Tomita [19, 20], Effros [12], Prosser [17], and Akemann, Andersen and Pedersen [5], among others, have been exploring the interrelationship among weak* closed faces of Q(A), closed projections in A^{**} and norm closed left ideals of A, in the hope that this will help to solve the Stone-Weierstrass problem.

Recall that a projection p in A^{**} is *closed* if the face

$$F(p) = \{\varphi \in Q(A) : \varphi(1-p) = 0\}$$

of Q(A) supported by p is weak* closed (and thus weak* compact). In the abelian case $A = C_0(X)$, closed projections arise exactly from characteristic functions of closed subsets of X. Closed projections p in A^{**} are also in one-to-one correspondence with norm closed left ideals L of A via

$$L = A^{**}(1-p) \cap A.$$

Note also that the Banach double dual L^{**} of L, identified with the weak^{*} closure of L in A^{**} , is a weak^{*} closed left ideal of the W^{*}-algebra A^{**} . More precisely, we have $L^{**} = A^{**}(1-p)$. Moreover, we have isometrical isomorphisms $a + L \longmapsto ap$ and $x + L^{**} \longmapsto xp$ under which

$$A/L \cong Ap$$
 and $(A/L)^{**} \cong A^{**}/L^{**} \cong A^{**}p$

as Banach spaces, respectively [12, 17, 1]. Similarly, we have Banach space isomorphisms between A/(L + L') and pAp, and $A^{**}/(L^{**} + L^{**'})$ and $pA^{**}p$, respectively, where B' denotes the set $\{b^* : b \in B\}$. The significance of these objects arises from the following local versions of the Kadison function representation for pAp and Ap.

- **Theorem 2** ([6, 3.5],[21]). 1. $pA_{sa}p$ (resp. $pA_{sa}^{**}p$) is isometrically order isomorphic to the Banach space of all continuous (resp. bounded) affine functions on F(p) which vanish at zero.
 - 2. Let xp be an element of $A^{**}p$. Then $xp \in Ap$ if and only if the affine functions $\varphi \longmapsto \varphi(x^*x)$ and $\varphi \longmapsto \varphi(a^*x)$ are continuous on F(p), $\forall a \in A$. Consequently,

$$xp \in Ap \Leftrightarrow px^*xp \in pAp \text{ and } pa^*xp \in pAp, \quad \forall a \in A.$$

Denote the extreme boundary of F(p) by $X_0 = (P(A) \cup \{0\}) \cap F(p)$, which consists of all pure states of A supported by p together with the zero functional. Motivated by Theorem 1, we shall attack the following

Problem 3. Suppose that pxp in $pA^{**}p$ is uniformly continuous on X_0 , or continuous on its weak* closure, when we consider pxp as an affine functional on F(p) (Theorem 2). Can we infer that pxp has a continuous atomic part as a member of $pA^{**}p$, i.e., zpxp = zpap for some a in A?

A quite satisfactory and affirmative answer for a similar question for elements xp of the left quotient $A^{**}p$ was obtained in [10]. Utilizing the technique and repeating parts of the argument provided in [10], we will achieve positive results here as well. We will impose conditions on the closed projection p (or equivalently, geometric conditions on F(p)) to ensure an affirmative answer to Problem 3. We note that the counter examples in [10] indicate that our results are sharp and Problem 3 does not always have an appropriate solution in general. For the convenience of the readers, we borrow an example from [10] and present it at the end of this note.

2. The results

Let A be a C*-algebra and p a closed projection in A^{**} . Recall that A_{sa}^m consists of all limits in A_{sa}^{**} of monotone increasing nets in A_{sa} and $(A_{sa})_m = -A_{sa}^m$. While A_{sa} consists of continuous affine real-valued functions of Q(A) vanishing at 0 (the Kadison function representation), the norm closure $(A_{sa}^m)^-$ of A_{sa}^m consists of *lower semicontinuous elements* and the norm closure $(\overline{A_{sa}})_m$ of $(A_{sa})_m$ consists of *upper semicontinuous elements* in A^{**} . An element x of A_{sa}^{**} is said to be *universally measurable* if for each φ in Q(A) and $\varepsilon > 0$ there exist a lower semicontinuous element l and an upper semicontinuous element u in A^{**} such that $u \leq x \leq l$ and $\varphi(l-u) < \varepsilon$ [15].

We note that $pA_{sa}p$ consists of continuous affine real-valued functions on F(p). It was shown in [9] that every lower (resp. upper) semicontinuous bounded affine real-valued function on F(p)vanishing at 0 is the restriction of a lower (resp. upper) semicontinuous element in A_{sa}^{**} to F(p); namely it is of the form pxp for some x in $(A_{sa}^m)^-$ or $\overline{(A_{sa})_m}$. Analogously, pxp in $pA_{sa}^{**}p$ is said to be universally measurable on F(p) if for each φ in F(p) and $\varepsilon > 0$, there exist an l in $(A_{sa}^m)^$ and a u in $\overline{(A_{sa})_m}$ such that $pup \leq pxp \leq plp$ and $\varphi(l-u) < \varepsilon$. And pxp in $pA^{**}p$ is said to be universally measurable on F(p) if both the real and imaginary parts of pxp are.

A Borel measure on F(p) is a boundary measure if it is supported by the closure of the extreme boundary X_0 of F(p). A boundary measure m of F(p) with ||m|| = m(F(p)) = 1 represents a unique point ϕ in F(p), where $\phi(a) = \int \psi(a) dm(\psi), \forall a \in A$. An element pxp of $pA_{sa}^{**}p$ is said to satisfy the barycenter formula if $\phi(x) = \int \psi(x) dm(\psi)$ whenever m is a boundary measure of F(p)representing ϕ . Semicontinuous affine elements in $pA_{sa}^{**}p$ satisfy the barycenter formula, and so do universally measurable elements.

Lemma 4. Let x be an element of A_{sa}^{**} and let \overline{X} be the weak* closure of $X = F(p) \cap P(A)$ in F(p). If pxp satisfies the barycenter formula and is continuous on \overline{X} then $pxp \in pAp$.

Proof. We give a sketch of the proof here, and refer the readers to [10] in which a similar result is given in full detail. In view of Theorem 2, we need only verify that $\varphi \mapsto \varphi(x)$ is weak^{*} continuous on F(p). Suppose φ_{λ} and φ are in F(p) and $\varphi_{\lambda} \longrightarrow \varphi$ weak^{*}. Since the norm of an element of $pA_{sa}p$ is determined by the pure states supported by p, we can embed $pA_{sa}p$ as a closed subspace of the Banach space $C_{\mathbb{R}}(\overline{X})$ of continuous real-valued functions defined on \overline{X} . Let m_{λ} be any positive extension of φ_{λ} from $pA_{sa}p$ to $C_{\mathbb{R}}(\overline{X})$ with $||m_{\lambda}|| = ||\varphi_{\lambda}|| \leq 1$. Hence, $(m_{\lambda})_{\lambda}$ is a bounded net in $M(\overline{X})$, the Banach dual space of $C_{\mathbb{R}}(\overline{X})$, consisting of regular finite Borel measures on the compact Hausdorff space \overline{X} . Then, by passing to a subnet if necessary, we have $m_{\lambda} \to m$ in the weak^{*} topology of $M(\overline{X})$. Clearly, $m \geq 0$ and $m_{|pA_{sa}p} = \varphi$. Since pxp satisfies the barycenter formula and is continuous on \overline{X} , we have

$$\varphi_{\lambda}(x) = \int_{\overline{X}} \psi(x) \, dm_{\lambda}(\psi) = \int_{\overline{X}} \psi(pxp) \, dm_{\lambda}(\psi) \longrightarrow \int_{\overline{X}} \psi(pxp) \, dm(\psi) = \int_{\overline{X}} \psi(x) \, dm(\psi) = \varphi(x).$$

2.1. The case where p has MSQC. Let A be a C*-algebra. Recall that a projection p in A^{**} is closed if the face $F(p) = \{\varphi \in Q(A) : \varphi(1-p) = 0\}$ is weak* closed. Analogously, p is said to be compact [2] (see also [6]) if $F(p) \cap S(A)$ is weak* closed, where $S(A) = \{\varphi \in Q(A) : ||\varphi|| = 1\}$ is the state space of A. Let p be a closed projection in A^{**} . Then h in $pA_{sa}^{**}p$ is said to be q-continuous [3] on p if the spectral projection $E_F(h)$ (computed in $pA^{**}p$) is closed for every closed subset F of \mathbb{R} . Moreover, h is said to be strongly q-continuous [6] on p if, in addition, $E_F(h)$ is compact whenever F is closed and $0 \notin F$. It is known from [6, 3.43] that h is strongly q-continuous on p if and only if h = pa = ap for some a in A_{sa} . In general, h in $pA^{**}p$ is said to be strongly q-continuous on p if both Reh and Imh are.

Denote by SQC(p) the C*-algebra of all strongly q-continuous elements on p. We say that p has MSQC ("many strongly q-continuous elements") if SQC(p) is σ -weakly dense in $pA^{**}p$. Brown [8] showed that p has MSQC if and only if pAp = SQC(p) if and only if pAp is an algebra. In particular, every central projection p (especially, p = 1) has MSQC. We provide a partial answer to Problem 3 by the following:

Theorem 5. Let p have MSQC and x be in A^{**} . Let $X_0 = (F(p) \cap P(A)) \cup \{0\}$ be the extreme boundary of F(p). Then $zpxp \in zpAp$ if and only if pxp is uniformly continuous on X_0 .

PROOF. The necessities are obvious and we check the sufficiency. Note that pAp is now a C*algebra with the pure state space $P(pAp) = F(p) \cap P(A)$. The maximal atomic projection of pApis zp. By Theorem 1, zpxp belongs to zpAp whenever it is uniformly continuous on X_0 .

Corollary 6. Let p have MSQC and x be in A^{**} . If pxp is continuous on $\overline{X} = \overline{F(p) \cap P(A)}$ then $zpxp \in zpAp$.

PROOF. We simply note that either 0 belongs to \overline{X} or 0 is isolated from $X = F(p) \cap P(A)$ in $X_0 = (F(p) \cap P(A)) \cup \{0\}$. Consequently, continuity on the compact set \overline{X} ensures uniform continuity on X_0 . 2.2. The case where p is semiatomic. Let A be a C*-algebra and p a closed projection in A^{**} . Recall that A is said to be scattered [13, 14] if $Q(A) \subseteq zQ(A)$ and p is said to be atomic [8] if $F(p) \subseteq zF(p)$. If A is scattered then every closed projection in A^{**} is atomic. Moreover, A is said to be semiscattered [4] if $\overline{P(A)} \subseteq zQ(A)$. Analogously, we say that a closed projection p is semiatomic if the weak* closure of $F(p) \cap P(A)$ contains only atomic positive linear functionals of A, *i.e.* $\overline{F(p) \cap P(A)} \subseteq zF(p)$. It is easy to see that if A is semiscattered then every closed projection in A^{**} is semiatomic.

The following is a generalization of [7, Theorem 6] in which p = 1.

Lemma 7 ([10]). Let x in $zpA^{**}p$ be uniformly continuous on $X_0 = (F(p) \cap P(A)) \cup \{0\}$. Then x is in the C*-algebra B generated by zpAp. In particular, x = zy for some universally measurable element y of $pA^{**}p$.

We provide another partial answer to Problem 3 by the following

Theorem 8. Let p be semiatomic and x be in A^{**} . Let $\overline{X} = \overline{F(p) \cap P(A)}$. Then $zpxp \in zpAp$ if and only if pxp is continuous on \overline{X} .

PROOF. We prove the sufficiency only. Let x in A^{**} satisfy the stated condition. Since zpxp is uniformly continuous on $X_0 = (P(A) \cap F(p)) \cup \{0\}$, by Lemma 7, there is a universally measurable element y of $pA^{**}p$ such that zpxp = zy. Since p is assumed to be semiatomic, each φ in $\overline{X} = \overline{P(A) \cap F(p)}$ is atomic and thus $\varphi(x) = \varphi(zpxp) = \varphi(zy) = \varphi(y)$. In particular, the universally measurable element y is continuous on \overline{X} . It follows from Lemma 4 that $y \in pAp$. As a consequence, $zpxp \in zpAp$.

Example 9 (The full version appeared in [10]). This example tells us that p having MSQC is necessary in Theorem 5 and continuity on \overline{X} is necessary in Theorem 8.

Let A be the scattered C*-algebra of sequences of 2×2 matrices $x = (x_n)_{n=1}^{\infty}$ such that

$$x_n = \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix} \longrightarrow x_\infty = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$$
 entrywise,

and equipped with the ℓ^{∞} -norm. Note that the maximal atomic projection z = 1 in this case. Let

$$p_n = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, n = 1, 2, \dots, \text{ and } p_\infty = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Then $p = (p_n)_{n=1}^{\infty}$ is a closed projection in A^{**} . We claim that p does not have MSQC. In fact, suppose $x = (x_n)_{n=1}^{\infty}$ in A is given by

$$x_n = \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix}, n = 1, 2, \dots, \text{ and } x_\infty = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$$

such that $x_n \to x_\infty$. Then $(pxp)_n = \lambda_n p_n$, n = 1, 2, ..., and $(pxp)_\infty = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$ where $\lambda_n = \frac{a_n + b_n + c_n + d_n}{2} \to \frac{a + d}{2}$. Consequently, $(pxp)_n^2 = \lambda_n^2 p_n$, n = 1, 2, ..., and $(pxp)_\infty^2 = \begin{pmatrix} a^2 & 0 \\ 0 & d^2 \end{pmatrix}$. If

 $(pxp)^2 \in pAp$, we must have $\lambda_n^2 \to \frac{a^2+d^2}{2}$. This occurs exactly when a = d. In particular, pAp is not an algebra and thus p does *not* have MSQC.

On the other hand, the set $X = P(A) \cap F(p)$ of all pure states in F(p) consists exactly of φ_n , ψ_1 and ψ_2 which are given by

$$\varphi_n(x) = \operatorname{tr}(x_n p_n), \quad n = 1, 2, \dots,$$

and

$$\psi_1(x) = a, \quad \psi_2(x) = d$$

where $x = (x_n)_{n=1}^{\infty} \in A$ and $x_{\infty} = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$. Since $\varphi_n \to \frac{1}{2}(\psi_1 + \psi_2) \neq 0$, $X_0 = X \cup \{0\}$ is discrete. Consider $y = (y_n)_{n=1}^{\infty}$ in A^{**} given by

$$y_n = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, n = 1, 2, \dots, \text{ and } y_\infty = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Now, the universally measurable element pyp is uniformly continuous on X_0 but $pyp \notin pAp$.

References

- [1] C. A. Akemann, Left ideal structure of C*-algebras, J. Funct. Anal. 6 (1970), 305–317.
- [2] _____, A Gelfand representation theory for C*-algebras, Pac. J. Math. **39** (1971), 1-11.
- [3] _____, G. K. Pedersen and J. Tomiyama, Multipliers of C*-algebras, J. Funct. Anal. 13 (1973), 277-301.
- [4] _____ and F. Shultz, Perfect C*-algebras, Memoirs A. M. S. 326, 1985.
- [5] _____, J. Andersen and G. K. Pedersen, Approaching to infinity in C*-algebras, J. Operator Theory 21 (1989), 252 - 271.
- [6] L. G. Brown, Semicontinuity and multipliers of C*-algebras, Can. J. Math. XL (1988), no. 4, 865–988.
- [7] _____, Complements to various Stone-Weierstrass theorems for C*-algebras and a theorem of Shultz, Commun. Math. Phys. 143 (1992), 405–413.
- _____, MASA's and certain type I closed faces of C*-algebras, preprint. 8
- [9] _____, Semicontinuity and closed faces of C*-algebras, unpublished notes.
 [10] _____ and Ngai-Ching Wong, Left quotients of a C*-algebra, II: Atomic parts of left quotients, J. Operator Theory 44 (2000), 207–222.
- [11] J. Diximier, C*-algebras, North-Holland publishing company, Amsterdam–New York–Oxford, 1977.
- [12] E. G. Effros, Order ideals in C*-algebras and its dual, Duke Math. 30 (1963), 391–412.
- [13] H. E. Jensen, Scattered C*-algebras, Math. Scand. 41 (1977), 308–314.
- [14] _ _, Scattered C*-algebras, II, Math. Scand. 43 (1978), 308–310.
- [15] G. K. Pedersen, Applications of weak* semicontinuity in C*-algebra theory, Duke Math. J. 39 (1972), 431–450.
- [16] _ __, C^{*}-algebras and their automorphism groups, Academic Press, London, 1979.
- [17] R. T. Prosser, On the ideal structure of operator algebras, Memoirs A. M. S. 45, 1963.
- [18] F. W. Shultz, Pure states as a dual object for C*-algebras, Commun. Math. Phys. 82 (1982), 497–509.
- [19] M. Tomita, "Spectral theory of operator algebras, I", Math. J. Okayama Univ. 9 (1959), 63-98.
- ____, "Spectral theory of operator algebras, II", Math. J. Okayama Univ. 10 (1960), 19–60. [20]
- [21] Ngai-Ching Wong, Left quotients of a C*-algebra, I: Representation via vector sections, J. Operator Theory **32**, 1994, 185–201.

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, WEST LAFAYETTE, INDIANA 47907, U. S. A.

E-mail address: lgb@math.purdue.edu

DEPARTMENT OF APPLIED MATHEMATICS, NATIONAL SUN YAT-SEN UNIVERSITY, KAOHSIUNG, 80424, TAIWAN, R.O.C.

E-mail address: wong@math.nsysu.edu.tw