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Abstract. Let A be a C*-algebra. Let z be the maximal atomic projection and p a closed
projection in A∗∗. It is known that x in A∗∗ has a continuous atomic part, i.e. zx = za for some
a in A, whenever x is uniformly continuous on the set of pure states of A. Under some additional
conditions, we shall show that if x is uniformly continuous on the set of pure states of A supported
by p, or its weak* closure, then pxp has a continuous atomic part, i.e. zpxp = zpap for some a in
A.

1. Introduction

Let A be a C*-algebra with Banach dual A∗ and double dual A∗∗. Let

Q(A) = {ϕ ∈ A∗ : ϕ ≥ 0 and ‖ϕ‖ ≤ 1}

be the quasi-state space of A. When A = C0(X) for some locally compact Hausdorff space X,
the weak* compact convex set Q(C0(X)) consists of all positive regular Borel measures µ on
X with ‖µ‖ = µ(X) ≤ 1. In this case, the extreme boundary of Q(C0(X)) ∼= X ∪ {∞}. The
point ∞ at infinity is isolated if and only if X is compact. For a non-abelian C*-algebra A, the
extreme boundary of Q(A) is the pure state space P (A) ∪ {0}, in which P (A) consists of pure
states of A and the zero functional 0 is isolated if and only if A is unital. In the Kadison function
representation (see e.g. [16]), the self-adjoint part A∗∗sa of the W*-algebra A∗∗ is isometrically and
order isomorphic to the ordered Banach space of all bounded affine real-valued functionals on
Q(A) vanishing at 0. Moreover, x is in Asa if and only if in addition x is weak* continuous on
Q(A).

Let z be the maximal atomic projection in A∗∗. Note that A∗∗ = (1− z)A∗∗ ⊕ zA∗∗; in which
zA∗∗ is the direct sum of type I factors and (1 − z)A∗∗ has no type I factor direct summand of
A∗∗. In particular, z is a central projection in A∗∗ supporting all pure states of A. In other words,
ϕ(x) = ϕ(zx) for all x in A∗∗ and all pure states ϕ of A. For an abelian C*-algebra C0(X), the
enveloping W*-algebra C0(X)∗∗ =

⊕
∞{L∞(µ) : µ ∈ C} ⊕∞ `∞(X), where C is a maximal family

of mutually singular continuous measures on X. In this way, every x in C0(X)∗∗ can be written as
a direct sum x = xd+xa of the diffuse part xd and the atomic part xa, and zx = xa ∈ `∞(X). Note
that a measure µ on X is atomic if 〈x, µ〉 =

∫
xadµ = 〈zx, µ〉, or equivalently, µ is supported by

z. Alternatively, atomic measures are exactly countable linear sums of point masses. In general,
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atomic positive functionals of a non-abelian C*-algebra A are countable linear sums of pure states
of A ([13, 14]).

We call zA∗∗ the atomic part of A∗∗. An element x of A∗∗ is said to have a continuous atomic
part if zx = za for some a in A (cf. [18]). In this case, x and a agree on P (A) ∪ {0} since
ϕ(x) = ϕ(zx) = ϕ(za) = ϕ(a) for all pure states ϕ of A. In particular, ϕ 7−→ ϕ(x) is uniformly
continuous on P (A)∪{0}. Shultz [18] showed that x in A∗∗ has a continuous atomic part whenever
x, x∗x and xx∗ are uniformly continuous on P (A) ∪ {0}. Later, Brown [7] proved:

Theorem 1 ([7]). Let x be an element of A∗∗. Then x has a continuous atomic part (i.e. zx ∈
zA) if and only if x is uniformly continuous on P (A) ∪ {0}.

The Stone-Weierstrass problem for C*-algebras conjectures that if B is a C*-subalgebra of a
C*-algebra A separating points in P (A) ∪ {0} then A = B (see e.g. [11]). The facial structure
of the compact convex set Q(A) sheds some light on solving the Stone-Weierstrass problem. The
classical papers of Tomita [19, 20], Effros [12], Prosser [17], and Akemann, Andersen and Pedersen
[5], among others, have been exploring the interrelationship among weak* closed faces of Q(A),
closed projections in A∗∗ and norm closed left ideals of A, in the hope that this will help to solve
the Stone-Weierstrass problem.

Recall that a projection p in A∗∗ is closed if the face

F (p) = {ϕ ∈ Q(A) : ϕ(1− p) = 0}
of Q(A) supported by p is weak* closed (and thus weak* compact). In the abelian case A = C0(X),
closed projections arise exactly from characteristic functions of closed subsets of X. Closed
projections p in A∗∗ are also in one-to-one correspondence with norm closed left ideals L of A via

L = A∗∗(1− p) ∩A.

Note also that the Banach double dual L∗∗ of L, identified with the weak* closure of L in A∗∗,
is a weak* closed left ideal of the W*-algebra A∗∗. More precisely, we have L∗∗ = A∗∗(1 − p).
Moreover, we have isometrical isomorphisms a + L 7−→ ap and x + L∗∗ 7−→ xp under which

A/L ∼= Ap and (A/L)∗∗ ∼= A∗∗/L∗∗ ∼= A∗∗p

as Banach spaces, respectively [12, 17, 1]. Similarly, we have Banach space isomorphisms between
A/(L + L′) and pAp, and A∗∗/(L∗∗ + L∗∗′) and pA∗∗p, respectively, where B′ denotes the set
{b∗ : b ∈ B}. The significance of these objects arises from the following local versions of the
Kadison function representation for pAp and Ap.

Theorem 2 ([6, 3.5],[21]). 1. pAsap (resp. pA∗∗sap) is isometrically order isomorphic to the Ba-
nach space of all continuous (resp. bounded) affine functions on F (p) which vanish at zero.

2. Let xp be an element of A∗∗p. Then xp ∈ Ap if and only if the affine functions ϕ 7−→ ϕ(x∗x)
and ϕ 7−→ ϕ(a∗x) are continuous on F (p), ∀a ∈ A. Consequently,

xp ∈ Ap ⇔ px∗xp ∈ pAp and pa∗xp ∈ pAp, ∀a ∈ A.
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Denote the extreme boundary of F (p) by X0 = (P (A)∪ {0})∩F (p), which consists of all pure
states of A supported by p together with the zero functional. Motivated by Theorem 1, we shall
attack the following

Problem 3. Suppose that pxp in pA∗∗p is uniformly continuous on X0, or continuous on its
weak* closure, when we consider pxp as an affine functional on F (p) (Theorem 2). Can we infer
that pxp has a continuous atomic part as a member of pA∗∗p, i.e. , zpxp = zpap for some a in
A?

A quite satisfactory and affirmative answer for a similar question for elements xp of the left
quotient A∗∗p was obtained in [10]. Utilizing the technique and repeating parts of the argument
provided in [10], we will achieve positive results here as well. We will impose conditions on the
closed projection p (or equivalently, geometric conditions on F (p)) to ensure an affirmative answer
to Problem 3. We note that the counter examples in [10] indicate that our results are sharp and
Problem 3 does not always have an appropriate solution in general. For the convenience of the
readers, we borrow an example from [10] and present it at the end of this note.

2. The results

Let A be a C*-algebra and p a closed projection in A∗∗. Recall that Am
sa consists of all limits

in A∗∗sa of monotone increasing nets in Asa and (Asa)m = −Am
sa. While Asa consists of continuous

affine real-valued functions of Q(A) vanishing at 0 (the Kadison function representation), the norm
closure (Am

sa)
− of Am

sa consists of lower semicontinuous elements and the norm closure (Asa)m of
(Asa)m consists of upper semicontinuous elements in A∗∗. An element x of A∗∗sa is said to be
universally measurable if for each ϕ in Q(A) and ε > 0 there exist a lower semicontinuous element
l and an upper semicontinuous element u in A∗∗ such that u ≤ x ≤ l and ϕ(l − u) < ε [15].

We note that pAsap consists of continuous affine real-valued functions on F (p). It was shown
in [9] that every lower (resp. upper) semicontinuous bounded affine real-valued function on F (p)
vanishing at 0 is the restriction of a lower (resp. upper) semicontinuous element in A∗∗sa to F (p);
namely it is of the form pxp for some x in (Am

sa)
− or (Asa)m. Analogously, pxp in pA∗∗sap is said

to be universally measurable on F (p) if for each ϕ in F (p) and ε > 0, there exist an l in (Am
sa)

−

and a u in (Asa)m such that pup ≤ pxp ≤ plp and ϕ(l − u) < ε. And pxp in pA∗∗p is said to be
universally measurable on F (p) if both the real and imaginary parts of pxp are.

A Borel measure on F (p) is a boundary measure if it is supported by the closure of the extreme
boundary X0 of F (p). A boundary measure m of F (p) with ‖m‖ = m(F (p)) = 1 represents a
unique point φ in F (p), where φ(a) =

∫
ψ(a)dm(ψ),∀a ∈ A. An element pxp of pA∗∗sap is said to

satisfy the barycenter formula if φ(x) =
∫

ψ(x)dm(ψ) whenever m is a boundary measure of F (p)
representing φ. Semicontinuous affine elements in pA∗∗sap satisfy the barycenter formula, and so
do universally measurable elements.

Lemma 4. Let x be an element of A∗∗sa and let X be the weak* closure of X = F (p) ∩ P (A) in
F (p). If pxp satisfies the barycenter formula and is continuous on X then pxp ∈ pAp.
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Proof. We give a sketch of the proof here, and refer the readers to [10] in which a similar result is
given in full detail. In view of Theorem 2, we need only verify that ϕ 7→ ϕ(x) is weak* continuous
on F (p). Suppose ϕλ and ϕ are in F (p) and ϕλ −→ ϕ weak*. Since the norm of an element of
pAsap is determined by the pure states supported by p, we can embed pAsap as a closed subspace
of the Banach space CR(X) of continuous real-valued functions defined on X. Let mλ be any
positive extension of ϕλ from pAsap to CR(X) with ‖mλ‖ = ‖ϕλ‖ ≤ 1. Hence, (mλ)λ is a bounded
net in M(X), the Banach dual space of CR(X), consisting of regular finite Borel measures on the
compact Hausdorff space X. Then, by passing to a subnet if necessary, we have mλ → m in the
weak* topology of M(X). Clearly, m ≥ 0 and m|pAsap = ϕ. Since pxp satisfies the barycenter
formula and is continuous on X, we have

ϕλ(x) =
∫

X
ψ(x) dmλ(ψ) =

∫

X
ψ(pxp) dmλ(ψ) −→

∫

X
ψ(pxp) dm(ψ) =

∫

X
ψ(x) dm(ψ) = ϕ(x).

2.1. The case where p has MSQC. Let A be a C*-algebra. Recall that a projection p in A∗∗

is closed if the face F (p) = {ϕ ∈ Q(A) : ϕ(1− p) = 0} is weak* closed. Analogously, p is said to
be compact [2] (see also [6]) if F (p) ∩ S(A) is weak* closed, where S(A) = {ϕ ∈ Q(A) : ‖ϕ‖ = 1}
is the state space of A. Let p be a closed projection in A∗∗. Then h in pA∗∗sap is said to be
q–continuous [3] on p if the spectral projection EF (h) (computed in pA∗∗p) is closed for every
closed subset F of R. Moreover, h is said to be strongly q–continuous [6] on p if, in addition,
EF (h) is compact whenever F is closed and 0 /∈ F . It is known from [6, 3.43] that h is strongly
q–continuous on p if and only if h = pa = ap for some a in Asa. In general, h in pA∗∗p is said to
be strongly q–continuous on p if both Reh and Imh are.

Denote by SQC(p) the C*-algebra of all strongly q–continuous elements on p. We say that
p has MSQC (“many strongly q–continuous elements”) if SQC(p) is σ–weakly dense in pA∗∗p.
Brown [8] showed that p has MSQC if and only if pAp = SQC(p) if and only if pAp is an algebra.
In particular, every central projection p (especially, p = 1) has MSQC. We provide a partial
answer to Problem 3 by the following:

Theorem 5. Let p have MSQC and x be in A∗∗. Let X0 = (F (p) ∩ P (A)) ∪ {0} be the extreme
boundary of F (p). Then zpxp ∈ zpAp if and only if pxp is uniformly continuous on X0.

Proof. The necessities are obvious and we check the sufficiency. Note that pAp is now a C*-
algebra with the pure state space P (pAp) = F (p)∩P (A). The maximal atomic projection of pAp

is zp. By Theorem 1, zpxp belongs to zpAp whenever it is uniformly continuous on X0.

Corollary 6. Let p have MSQC and x be in A∗∗. If pxp is continuous on X = F (p) ∩ P (A) then
zpxp ∈ zpAp.

Proof. We simply note that either 0 belongs to X or 0 is isolated from X = F (p) ∩ P (A)
in X0 = (F (p) ∩ P (A)) ∪ {0}. Consequently, continuity on the compact set X ensures uniform
continuity on X0.
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2.2. The case where p is semiatomic . Let A be a C*-algebra and p a closed projection in
A∗∗. Recall that A is said to be scattered [13, 14] if Q(A) ⊆ zQ(A) and p is said to be atomic [8]
if F (p) ⊆ zF (p). If A is scattered then every closed projection in A∗∗ is atomic. Moreover, A is
said to be semiscattered [4] if P (A) ⊆ zQ(A). Analogously, we say that a closed projection p is
semiatomic if the weak* closure of F (p) ∩ P (A) contains only atomic positive linear functionals
of A, i.e. F (p) ∩ P (A) ⊆ zF (p). It is easy to see that if A is semiscattered then every closed
projection in A∗∗ is semiatomic.

The following is a generalization of [7, Theorem 6] in which p = 1.

Lemma 7 ([10]). Let x in zpA∗∗p be uniformly continuous on X0 = (F (p)∩P (A))∪{0}. Then x

is in the C*-algebra B generated by zpAp. In particular, x = zy for some universally measurable
element y of pA∗∗p.

We provide another partial answer to Problem 3 by the following

Theorem 8. Let p be semiatomic and x be in A∗∗. Let X = F (p) ∩ P (A). Then zpxp ∈ zpAp if
and only if pxp is continuous on X.

Proof. We prove the sufficiency only. Let x in A∗∗ satisfy the stated condition. Since zpxp is
uniformly continuous on X0 = (P (A)∩F (p))∪{0}, by Lemma 7, there is a universally measurable
element y of pA∗∗p such that zpxp = zy. Since p is assumed to be semiatomic, each ϕ in
X = P (A) ∩ F (p) is atomic and thus ϕ(x) = ϕ(zpxp) = ϕ(zy) = ϕ(y). In particular, the
universally measurable element y is continuous on X. It follows from Lemma 4 that y ∈ pAp. As
a consequence, zpxp ∈ zpAp.

Example 9 (The full version appeared in [10]). This example tells us that p having MSQC is
necessary in Theorem 5 and continuity on X is necessary in Theorem 8.

Let A be the scattered C*-algebra of sequences of 2× 2 matrices x = (xn)∞n=1 such that

xn =
(

an bn

cn dn

)
−→ x∞ =

(
a 0
0 d

)
entrywise,

and equipped with the `∞–norm. Note that the maximal atomic projection z = 1 in this case.
Let

pn =
1
2

(
1 1
1 1

)
, n = 1, 2, . . . , and p∞ =

(
1 0
0 1

)
.

Then p = (pn)∞n=1 is a closed projection in A∗∗. We claim that p does not have MSQC. In fact,
suppose x = (xn)∞n=1 in A is given by

xn =
(

an bn

cn dn

)
, n = 1, 2, . . . , and x∞ =

(
a 0
0 d

)

such that xn → x∞. Then (pxp)n = λnpn, n = 1, 2, . . . , and (pxp)∞ =
(

a 0
0 d

)
where λn =

an+bn+cn+dn
2 → a+d

2 . Consequently, (pxp)2n = λ2
npn, n = 1, 2, . . . , and (pxp)2∞ =

(
a2 0
0 d2

)
. If
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(pxp)2 ∈ pAp, we must have λ2
n → a2+d2

2 . This occurs exactly when a = d. In particular, pAp is
not an algebra and thus p does not have MSQC.

On the other hand, the set X = P (A) ∩ F (p) of all pure states in F (p) consists exactly of ϕn,
ψ1 and ψ2 which are given by

ϕn(x) = tr(xnpn), n = 1, 2, . . . ,

and
ψ1(x) = a, ψ2(x) = d,

where x = (xn)∞n=1 ∈ A and x∞ =
(

a 0
0 d

)
. Since ϕn → 1

2(ψ1 +ψ2) 6= 0, X0 = X∪{0} is discrete.

Consider y = (yn)∞n=1 in A∗∗ given by

yn =
(

0 0
0 0

)
, n = 1, 2, . . . , and y∞ =

(
1 0
0 1

)
.

Now, the universally measurable element pyp is uniformly continuous on X0 but pyp /∈ pAp.
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