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Abstract. Let X, Y be realcompact spaces or completely regular spaces con-
sisting of Gδ-points. Let φ be a linear bijective map from C(X) (resp. Cb(X))
onto C(Y ) (resp. Cb(Y )). We show that if φ preserves nonvanishing functions,
that is,

f(x) 6= 0,∀x ∈ X, ⇐⇒ φ(f)(y) 6= 0,∀ y ∈ Y,

then φ is a weighted composition operator

φ(f) = φ(1) · f ◦ τ,

arising from a homeomorphism τ : Y → X. This result is applied also to
other nice function spaces, e.g., uniformly or Lipschitz continuous functions on
metric spaces.

1. Introduction

The problem here is how to recover a topological space X from the set C(X)

(resp. Cb(X)) of continuous (resp. bounded continuous) (real- or complex-valued)

functions on X. We say that a net {xλ} ⊂ X converges to x in the weak topology

σ(X,C(X)) if f(xλ) → f(x) for all f in C(X). It is easy to see that the weak

topology σ(X,Cb(X)) coincides with σ(X,C(X)). A well-known fact states that

X carries the weak topology σ(X,C(X)) if and only if X is completely regular

(see, e.g., [9, Theorem 3.6]). In this sense, a completely regular topological space

is determined by all its continuous functions.

Assume X is completely regular throughout this paper. The set C(X) and

Cb(X) carry the natural algebraic, lattice, and Banach space (for Cb(X)), struc-

tures. It is plausible that the algebra, the vector lattice, or the Banach space

structures of C(X) or Cb(X) can also determine the topology of X.

Question 1.1. Suppose that there is an algebra (or lattice, or isometrically linear)

isomorphism φ : C(X) → C(Y ) or φ : Cb(X) → Cb(Y ), can we conclude that the

completely regular spaces X and Y are homeomorphic?
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In the literature, there are several well-known results in this line. For example,

every ring isomorphism φ : C(X) → C(Y ) (resp. φ : Cb(X) → Cb(Y )) gives

rise to a homeomorphism τυ : υY → υX (resp. τβ : βY → βX) between the

Hewitt-Nachbin realcompactifications υX and υY (resp. Stone-C̆ech compacti-

fications βX and βY ) of the completely regular spaces X and Y , respectively.

However, X and Y might be non-homeomorphic in both cases, unless they are

both realcompact or compact to start with (see Example 1.2 below).

Let us sketch a proof here. Recall that every f in C(X) gives rise to a zero set

z(f) = {x ∈ X : f(x) = 0},

and denote by

Z(A(X)) = {z(f) : f ∈ A(X)}
for any subset A(X) of C(X). In particular, Z(C(X)) = Z(Cb(X)), and denote

it by Z(X) for simplicity. A z-filter F on X is a filter of zero sets in Z(X).

Call F a z-ultrafilter if it is a maximal z-filter; and call F prime if A ∈ F or

B ∈ F whenever X = A ∪ B and A,B ∈ Z(X). Associated to each z-ultrafilter

F a maximal ideal I of C(X) consisting of all continuous functions f such that

z(f) ∈ F . Call F fixed if
⋂
F is a singleton, and call F real if the quotient

field C(X)/I is isomorphic to R (assuming the underlying field is R). The Stone-

C̆ech compactification βX can be identified with the set of all z-ultrafilters on

X. In this setting, X consists of all fixed z-ultrafilters. The Hewitt-Nachbin

realcompactification υX consists of all real z-ultrafiliters. Clearly, X is compact

if and only if X = βX. Call X a realcompact space if X = υX. In fact, X

is realcompact if and only if every prime z-filter with the countable intersection

property is fixed. For instance, the Linderlöf (and thus separable metric) spaces

are realcompact, and discrete spaces of non-measurable cardinality are another

examples. Especially, all subspaces of the Euclidean spaces Rn (and Cn as well)

are realcompact. In general, X is realcompact if and only ifX is homeomorphic to

a closed subspace of a product of real lines. However, the order interval [0, ω1) is

not realcompact, where ω1 is the first uncountable ordinal. As ring isomorphisms

preserve z-ultrafilters and real z-ultrafilters, the above results follow. We refer to

the books [9] and [18] for more information about z-ultrafilters and realcompact

spaces.

On the other hand, the classical Banach-Stone theorem tells us that the geomet-

ric structure of the Banach space Cb(X) determines the topology of its Stone-

C̆ech compactification βX. In the special case when X,Y are compact, if φ :

C(X) → C(Y ) is a surjective linear isometry then there is a homeomorphism

τ : Y → X and a unimodular continuous weight function h in C(Y ) such that φ

is the weighted composition operator φ(f) = h · f ◦ τ . In general, when X, Y are

completely regular spaces, since Cb(X) ∼= C(βX) and Cb(Y ) ∼= C(βY ) as Banach

spaces, there exists a surjective linear isometry between Cb(X) and Cb(Y ) if and

only if βX and βY are homeomorphic (see, e.g., [9]).
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When X, Y are compact Hausdorff spaces, Kaplansky obtained in [14] yet an-

other criterion: every lattice isomorphism φ : C(X) → C(Y ) also gives rise to a

homeomorphism τ : Y → X; and he also showed in [15] that if φ is, in addition,

additive then φ(f) = h · f ◦ τ with a strictly positive weight function h in C(Y ).

Moreover, he showed that a positive linear map φ : C(X) → C(Y ) is a lattice

isomorphism if and only if φ preserves nonvanishing functions (in two directions),

that is,

z(f) = ∅ ⇔ z(φ(f)) = ∅, ∀ f ∈ C(X).

This starts a popular research subject of studying invertibility or spectrum pre-

serving linear maps of Banach algebras (see, e.g., [4, 5]).

Nevertheless, the following example tells us that the algebraic, geometic and

lattice structures of the Banach algebra Cb(X) altogether are still not enough to

determine the topology of a realcompact space.

Example 1.2 (see [9, 4M]). Let Σ be N ∪ {σ} (where σ ∈ βN\N). Clearly,

N is dense in Σ, and every function f in Cb(N) can be extended uniquely to a

function fσ in Cb(Σ). Although the bijective linear map φ from Cb(N) onto Cb(Σ)

defined by f 7→ fσ provides an isometric, algebraic and lattice isomorphism, the

realcompact spaces N and Σ are not homeomorphic.

Notice that the map φ in Example 1.2 does not preserve nonvanishing func-

tions. In Theorems 2.2 and 2.9 below, we will show that every bijective linear

nonvanishing preserver between some nice subspaces of continuous functions is a

weighted composition operator f 7→ h ·f ◦ τ arising from a homeomorphism τ be-

tween the realcompactifications of the underlying completely regular spaces. This

in particular tells us that the property of a linear map preserving nonvanishing

functions is stronger than those being multiplicative, lattice isomorphic, and iso-

metric, and thus supplements many results in literatures, e.g., [1, 2, 7, 11, 12, 17].

2. Main Results

The underlying scalar field K is either R or C, and we will assume thatA(X) is a

vector sublattice (self-adjoint if K = C) of C(X) containing all constant functions

in the following. Denote byAb(X) := A(X)∩Cb(X) the vector sublattice ofA(X)

consisting of bounded functions, and by A(X)+ the subset of A(X) consisting

of non-negative real-valued functions. For any f in A(X), we can decompose

f = f1 − f2 + i(f3 − f4) in a unique way such that f1, f2, f3, f4 ∈ A(X)+ and

f1f2 = f3f4 = 0. Write |f | := f1 +f2 +f3 +f4. Clearly, |f | ≥ 0 and z(|f |) = z(f).

Definition 2.1. We say that a subspace A(X) of C(X) is

(1) completely regular if for every point x and closed subset F of X with

x /∈ F , there is an f in A(X) such that x0 /∈ z(f) and F ⊆ z(f);

(2) full if Z(A(X)) = Z(X);
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(3) nice if for any sequence {fn} in Ab(X)+, there exists a sequence of strictly

positive numbers {λn} such that
∑∞

n=1 λnfn converges pointwisely to a

function f in A(X).

Note that a full subspace of C(X) is completely regular, but might not be

normal, i.e., separating disjoint closed sets. For instance, the space Lip(X) of all

Lipschitz continuous functions on the metric space X = (−1, 0)∪ (0, 1) is full but

not normal.

The following Kaplansky type theorem can be considered as a generalization

of the Gleason-Kahane-Zelazko Theorem [10, 13].

Theorem 2.2. Suppose that X and Y are realcompact spaces. Let A(X) and

A(Y ) be vector sublattices of C(X) and C(Y ) containing all constant functions,

respectively. Assume A(X) is nice and completely regular, and A(Y ) is full. Let

φ : A(X) → A(Y ) be a bijective linear map preserving nonvanishing functions.

Then there is a dense subset Y1 of Y , containing all Gδ points in Y , and a

homeomorphism τ : Y1 → X such that

φ(f)(y) = φ(1)(y)f(τ(y)), ∀ f ∈ A(X),∀ y ∈ Y1.(2.1)

In case all points of Y are Gδ, or in case A(X) is full and A(Y ) is nice, we have

Y1 = Y .

We will establish the proof of Theorem 2.2 in several lemmas.

Lemma 2.3. φ is biseparating, i.e.,

fg = 0 on X ⇔ φ(f)φ(g) = 0 on Y.

Proof. Suppose that f and g belong to A(X) with fg = 0, but φ(f)φ(g) 6= 0.

Without loss of generality, we can assume that there exists a y0 in Y such that

φ(f)(y0) = φ(g)(y0) = 1.

Define h in A(Y ) by

h(y) = max

{
0,

1

2
− Reφ(f)(y),

1

2
− Reφ(g)(y)

}
, ∀ y ∈ Y ;

and put

k = φ−1(h).

Claim: z(φ(f) + φ(k)) = ∅.
Indeed, assume on the contrary that y belongs to z(φ(f) + φ(k)), that is,

φ(f)(y) + φ(k)(y) = φ(f)(y) + h(y) = 0.

This provides a contradiction

h(y) ≥ 1

2
− Reφ(f)(y) =

1

2
+ h(y).
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It follows from z(φ(f) + φ(k)) = ∅ that z(f + k) = ∅. In a similar way, we also

have z(g+ k) = ∅. Notice that z(f)∩ z(k) ⊆ z(f + k) and z(g)∩ z(k) ⊆ z(g+ k).

We thus have z(f)∩ z(k) = z(g)∩ z(k) = ∅. By the assumption z(f)∪ z(g) = X,

one can conclude z(k) = ∅. This is a contradiction since (φk)(y0) = h(y0) = 0

and φ is nonvanishing preserving. Hence, φ(f)φ(g) = 0, as asserted.

Similarly, we can derive that φ−1 is also separating, and hence φ is a bisepa-

rating map. �

We note that a biseparating mapping might not be nonvanishing preserving as

shown in Example 1.2. The following lemma is motivated by the results in [6, 17].

Lemma 2.4. φ sends functions without common zeros to functions without com-

mon zeros. That is, for any m in N and f1, . . . , fm in A(X), we have
m⋂

k=1

z(fk) = ∅ ⇐⇒
m⋂

k=1

z(φ(fk)) = ∅.

Proof. Note first that φ(1) is nonvanishing on Y . Define ψ(f) := φ(f)/φ(1)−1.

It is easy to see that ψ is an injective linear map from A(X) into C(Y ), and

z(ψ(f)) = z(φ(f)) for all f in A(X).

Claim. ψ sends non-negative real functions to non-negative real functions.

Let f ≥ 0 be in A(X), that is, f(x) ≥ 0 for all x in X, and let λ be a non-

positive scalar in K \ [0,+∞). As f − λ is nonvanishing on X, we can see that

φ(f)− λφ(1) is nonvanishing on Y . Therefore, ψ(f)− λ is also nonvanishing on

Y . Since λ is an arbitrary non-positive real number, we see that ψ(f) assumes

values from [0,+∞).

Inherited from φ, the new map ψ is also biseparating. It follows that ψ(|f |) =

|ψ(f)| for all f in A(X). Now, suppose that f1, . . . , fm belong to A(X) with

∅ =
m⋂

i=1

z(fi) =
m⋂

i=1

z(|fi|) = z(
m∑

i=1

|fi|).

Observe that
m⋂

k=1

z(φ(fk)) =
m⋂

k=1

z(ψ(fk)) =
m⋂

k=1

z(|ψ(fk)|)

=
m⋂

k=1

z(ψ(|fk|)) = z(
m∑

k=1

ψ(|fk|))

= z(ψ(
m∑

k=1

|fk|)) = z(φ(
m∑

k=1

|fk|)) = ∅.

The proof for the other direction is similar. �

Lemma 2.5. φ preserves zero-set containments, i.e.,

z(f) ⊆ z(g) ⇐⇒ z(φ(f)) ⊆ z(φ(g)), ∀ f, g ∈ A(X).
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Proof. Assume z(f) ⊆ z(g). Let y in Y be such that φ(g)(y) 6= 0. As in the proof

of Lemma 2.3, we can find a function k in A(X) such that

z(φ(g) + φ(k)) = ∅ and φ(k)(y) = 0.

By the assumption,

z(f) ∩ z(k) ⊆ z(g) ∩ z(k) ⊆ z(g + k) = ∅.

It follows from Lemma 2.4 that

z(φ(f)) ∩ z(φ(k)) = ∅.

In particular, φ(f)(y) 6= 0, as asserted. The other direction is similar. �

For any x0 in X, let

Kx0 = {f ∈ A(X) : f(x0) = 0},

and

Zx0 = Z(φ(Kx0)) = {z(φf) : f ∈ Kx0}.

Lemma 2.6. Zx0 is a prime z-filter on Y with the countable intersection property.

Proof. We first note that by the fullness of A(Y ) = φ(A(X)), every zero set A in

Z(Y ) can be written as A = z(φ(f)) for some f in A(X).

Because φ is nonvanishing preserving, the empty set is not in Zx0 . Let f ∈ Kx0

and C = z(φ(g)) ∈ Z(Y ) such that z(φ(f)) ⊆ C. Then z(f) ⊆ z(g) since φ

preserves zero-set containments by Lemma 2.5, and hence g ∈ Kx0 . This means

that C ∈ Zx0 . Let {fn} be a sequence of functions in Kx0 . Set gn = min{1, |fn|}
in Ab(X), Clearly, z(gn) = z(fn). Since A(X) is nice, we can find a strictly

positive sequence {λn} such that the pointwise limit g0 =
∑∞

n=1 λngn is in A(X).

Obviously,

x0 ∈ z(g0) =
∞⋂

n=1

z(gn) =
∞⋂

n=1

z(fn).

It follows from Lemma 2.5 that

∅ 6= z(φg0) ⊆
∞⋂

n=1

z(φ(fn)).

This establishes that Zx0 is a z-filter with the countable intersection property.

Finally, we check the primeness of the z-filter Zx0 . Let f, g in A(X) be such

that z(φf)∪ z(φg) = Y . Then z(f)∪ z(g) = X since φ is biseparating by Lemma

2.3. As a result, x0 must be in z(f) or z(g). This means that f or g belongs to

Kx0 , and thus proves Zx0 is prime. �

Since Y is realcompact, by Lemma 2.6 we see that the intersection of Zx0 is a

singleton, and denote it by {σ(x0)}. In other words,

f(x0) = 0 =⇒ φ(f)(σ(x0)) = 0, ∀f ∈ A(X).
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Lemma 2.7. For any f in A(X), we have

(2.2) (φf)(σ(x)) = (φ1)(σ(x))f(x), ∀x ∈ X.

Proof. For any f in A(X) and x in X, the function f − f(x) is in Kx. It follows

φ(f − f(x))(σ(x)) = 0,

and thus (φf)(σ(x)) = φ(1)(σ(x)) · f(x). �

Proof of Theorem 2.2. Firstly, we shall see that σ : X → Y is one-to-one. Sup-

pose that x 6= x′ ∈ X and σ(x) = σ(x′). Choose a function f from A(X) such

that f(x) = 0 and f(x′) 6= 0. By (2.2), we have the following contradiction. Note

that φ1 is non-vanishing.

(φf)(σ(x)) = (φ1)(σ(x))f(x) = 0

and

(φf)(σ(x′)) = (φ1)(σ(x′))f(x′) 6= 0.

Secondly, we claim that σ(X) is dense in Y . Indeed, if there exists a y in

Y \σ(X), then we can choose a function f1 from A(X) such that (φf1)(y) = 1

and φ(f1) ≡ 0 on σ(X) by the fullness of A(Y ) = φ(A(X)). For any x in X, we

have

(φf1)(σ(x)) = (φ1)(σ(x))f1(x) = 0.

This forces f1 = 0. In turn, (φf1)(y) = 0, which is impossible.

Thirdly, σ induces a homeomorphism from X onto σ(X). Suppose on the

contrary that a net {xλ} converges to x0 in X but {σ(xλ)} does not converge to

σ(x0) in Y . Without loss of generality, we can assume that all σ(xλ) lie outside an

open neighborhood of σ(x). Find a function g in A(X) such that (φg)(σ(xλ)) = 0

for all λ and (φg)(σ(x0)) 6= 0. Since

0 = (φg)(σ(xλ)) = (φ1)(σ(xλ))g(xλ)

and φ1 is nonvanishing, g(xλ) = 0 for all λ and hence g(x0) = 0. This forces

(φg)(σ(x0)) = (φ1)(σ(x0))g(x0) = 0.

This is a contradiction. Similarly, we can prove that σ−1 is continuous from σ(X)

into X. Setting Y1 = σ(X) and τ = σ−1 : σ(X) → X, we get the desired assertion

(2.1).

Now we verify that Y1 contains all Gδ points in Y . Suppose y in Y \ Y1 is a Gδ

point. It follows from the fullness of A(Y ) = φ(A(X)) that there is an f in A(X)

such that z(φ(f)) = {y}. In particular, φ(f) is nonvanishing on Y1. Then, the

representation (2.2) ensures that z(f) = ∅. This contradicts to the non-vanishing

preserving property of φ. Hence, y ∈ Y1. In the case Y consists of Gδ points,

Y = Y1.



8 LEI LI AND NGAI-CHING WONG

Lastly, we show that σ : X → Y is surjective when A(X) is full and A(Y ) is

nice. In this case, we have Z(A(X)) = Z(X). For any y0 in Y , set

Zy0 = {z(f) : (φf)(y0) = 0}.

Arguing as in Lemma 2.6, we see that Zy0 is also a prime z-filter on X with the

countable intersection property. Since X is realcompact,
⋂
Zy0 is a singleton and

denoted it by {x0}. It is then easy to see that σ(x0) = y0. �

Remark 2.8. (1) If A(X) is a uniformly closed unital subalgebra of Cb(X),

then A(X) is a nice sublattice. See, e.g., [9, Lemma 16.2].

(2) When A(X) ⊆ C(X) and A(Y ) ⊆ C(Y ) are endowed with the compact-

open topology, or A(X) ⊆ Cb(X) and A(Y ) ⊆ Cb(Y ) endowed with the

uniform topology, φ is automatically continuous. A proof for these facts

make use of the weighted composition representation (2.1) and is left to

the readers.

Note that every continuous map ψ : X → Y between completely regular spaces

can be lifted uniquely to a continuous map ψυ : υX → υY between their real-

compactifications. In particular, every f in C(X) can be lifted uniquely to an fυ

in C(υX) with the same range fυ(υX) = f(X) (see, e.g., [9, Theorem 8.7 and

8B]). Consequently, f is nonvanishing if and only if fυ is nonvanishing.

Theorem 2.9. Suppose that X, Y are completely regular spaces with realcom-

pactifications υX, υY , respectively. Let A(X),A(Y ) be nice and full vector sub-

lattices of C(X), C(Y ) containing constant functions, respectively. Assume that

φ : A(X) → A(Y ) is a bijective linear nonvanshing preserver. Then, there exists

a homeomorphism τυ : υY → υX such that

(φf)υ(y) = (φ1)υ(y)fυ(τυ(y)), ∀ f ∈ A(X), y ∈ υY.

In case both X and Y consist of Gδ-points, τυ restricts to a homeomorphism

τ : Y → X such that

φ(f)(y) = φ(1)(y)f(τ(y)), ∀f ∈ A(X), y ∈ Y.

Proof. Denote by A(υX) the nice and full vector sublattice of C(υX) consisting

of the unique extensions fυ : υX → K of all f in A(X). Since φ : A(X) → A(Y )

is nonvanishing preserving, φυ : A(υX) → A(υY ) defined by φυ(fυ) = (φf)υ

is also nonvanishing preserving. By Theorem 2.2, there is a homeomorphism

τυ : υY → υX such that

(φυfυ)(y) = (φυ1υ)(y)fυ(τυ(y)), ∀ fυ ∈ A(υX), y ∈ υY.

Finally, since υX\X and υY \Y contain no Gδ-points (see, e.g., [9, p. 132]),

τυ(Y ) = X when both X, Y consists of Gδ-points. �

Recall that a metric space (X, d) is said to be quasi-convex if there is a constant

C > 0 such that for any points x, y in X there is a continuous curve joining x to
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y in X with length not greater than Cd(x, y) (see [8]). The following corollary

demonstrates the applicability of our main results. We do not claim the full

originality, and some content can be seen in other papers, e.g., [3] for Part (c) in

the case X, Y are complete metric spaces.

Corollary 2.10. Suppose φ is a bijective linear nonvanishing preserver between

the following function spaces. Then there is a homeomorphism τ : Y → X such

that

φ(f)(y) = φ(1)(y)f(τ(y)), ∀y ∈ Y.(2.3)

(a) φ : C(X) → C(Y ) or φ : Cb(X) → Cb(Y ), where X, Y are both realcompact

spaces, or are both completely regular spaces such that all points of X, Y are

Gδ-points.

(b) φ : UC(X) → UC(Y ) or φ : UCb(X) → UCb(Y ), where UC(X), UC(Y ) con-

sist of uniformly continuous functions on the metric spaces X, Y , respectively.

In this case, τ is a uniform homeomorphsim from Y onto X.

(c) φ : Lip(X) → Lip(Y ) or φ : Lipb(X) → Lipb(Y ), where Lip(X),Lip(Y ) con-

sist of Lipschitz continuous functions on the metric spaces X, Y , respectively.

In the case φ : Lip(X) → Lip(Y ), τ is a Lipschitz homeomorphism from Y

onto X. We get the same conclusion in the other case, provided that X,Y

are quasi-convex.

Proof. Note that all function spaces here are full and nice, and closed in the

lattice operations. So Theorems 2.2 and 2.9 apply.

For (b), it follows from (2.3) that φ(1)(y)φ−1(1)(τ(y)) = 1 for all y in Y . Define

a linear map ψ(f) = φ(φ−1(1)f) = f ◦ τ from UCb(X) into UC(Y ). Using the

arguments in [16, Theorem 2.3], we can show that τ is uniformly continuous.

Similarly, τ−1 is also uniformly continuous.

In a similar manner, the assertion (c) follows from [8, Theorems 3.9 and 3.12].

�

References

1. J. Araujo, Separating maps and linear isometries between some spaces of continuous func-
tions, J. Math. Anal. Appl., 226(1) (1998), 23–39.

2. J. Araujo, Realcompactness and Banach-Stone theorems, Bull. Belg. Math. Soc. Simon
Stevin, 10 (2003), 247–258.

3. J. Araujo and L. Dubarbie1, Biseparating maps between Lipschitz function spaces, J. Math.
Anal. Appl., 357(1) (2009), 191–200.

4. B. Aupetit, A primer on spectral theory, Springer, New York, 1991.
5. B. Aupetit, Spectrum-preserving linear mappings between Banach algebras or Jordan-

Banach algebras, J. London Math. Soc. (2) 62 (2000) 917–924.
6. L. Dubarbie, Maps preserving common zeros between subspaces of vector-valued continuous

functions, Positivity 14 (2010), 695–703.
7. M. I. Garrido and J. A. Jaramillo, A Banach-Stone theorem for uniformly continuous func-

tions, Monatsh. Math., 131(2000), 189–192.



10 LEI LI AND NGAI-CHING WONG

8. M. I. Garrido, J.A. Jaramillo, Homomorphisms on function lattices, Monatsh. Math., 141
(2004) 127–146.

9. L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, 1960.
10. A. M. Gleason, A characterization of maximal ideals, J. Analyse Math., 19 (1967), 171–172.
11. K. Jarosz, Automatic continuity of separating linear isomorphisms, Canad. Math. Bull. 33

(1990), 139–144.
12. J.-S. Jeang and N.-C. Wong, Weighted composition operators of C0(X)’s, J. Math. Anal.

Appl., 201 (1996), 981–993.
13. J. P. Kahane and W. Zelazko, A characterization of maximal ideals in commutative Banach

algebras, Studia Math., 29 (1968), 339–343.
14. I. Kaplansky, Lattices of continuous functions, Bull. Amer. Math. Soc., 53 (1947), 617–623.
15. I. Kaplansky, Lattices of continuous functions II, Amer. J. Math., 70 (1948), 626–634.
16. M. Lacruz and J. G. Llavona, Composition operators between algebras of uniformly contin-

uous functions, Arch. Math. (Basel), 69 (1997), 52–56.
17. D. H. Leung and W. K. Tang, Banach-Stone theorems for maps preserving common zeros,

Positivity, 14(2010), 17–42.
18. M. D. Weir, Hewitt-Nachbin spaces, North-Holland Mathematics Studies, No. 17, Notas de
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