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Abstract. In this paper we introduce a broad class of nonlinear mappings
which contains the class of contractive mappings and the class of generalized

hybrid mappings in a Hilbert space. Then we prove an attractive point the-
orem for such mappings in a Hilbert space. Furthermore, we prove a mean
convergence theorem of Baillon’s type without convexity in a Hilbert space.
Finally, we prove a weak convergence theorem of Mann’s type [12] without

closedness. These results generalize attractive point, mean convergence and
weak convergence theorems proved by Takahashi and Takeuchi [18], and Ko-
courek, Takahashi and Yao [8].

1. Introduction

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a real Hilbert space and let C be a nonempty subset
of H. Let T be a mapping of C into H. Then we denote by F (T ) the set of fixed
points of T and by A(T ) the set of attractive points [18] of T , i.e.,

(i) F (T ) = {z ∈ C : Tz = z};
(ii) A(T ) = {z ∈ H : ∥Tx − z∥ ≤ ∥x − z∥, ∀x ∈ C}.

We know from [18] that A(T ) is closed and convex; see Lemma 2.3 in Section 2.
This property is important. A mapping T of C into H is said to be contractive if
there exists a real number α with 0 < α < 1 such that

∥Tx − Ty∥ ≤ α∥x − y∥
for all x, y ∈ C. From Banach [2] it is known that any contractive mapping of a
closed subset C of H into itself has a unique fixed point. Let C be a nonempty
subset of H. A mapping T of C into H is said to be nonexpansive if

∥Tx − Ty∥ ≤ ∥x − y∥
for all x, y ∈ C. From Baillon [1] we know the following mean convergence theorem
in a Hilbert space.

Theorem 1.1. Let H be a Hilbert space, let C be a nonempty closed convex subset
of H and let T be a nonexpansive mapping of C into C with a fixed point. Then
for any x ∈ C,

Snx =
1
n

n−1∑
k=0

T kx
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is weakly convergent to a fixed point of T .

Kohsaka and Takahashi [10], and Takahashi [17] introduced the following non-
linear mappings. A mapping T : C → H is called nonspreading [10] if

2∥Tx − Ty∥2 ≤ ∥Tx − y∥2 + ∥Ty − x∥2

for all x, y ∈ C. A mapping T : C → H is called hybrid [17] if

3∥Tx − Ty∥2 ≤ ∥x − y∥2 + ∥Tx − y∥2 + ∥Ty − x∥2

for all x, y ∈ C; see also Iemoto and Takahashi [5] and Kohsaka and Takahashi [9].
Kocourek, Takahashi and Yao [8] introduced a wide class of nonlinear mappings
which contains the classes of nonexpansive mappings, nonspreading mappings, and
hybrid mappings in a Hilbert space. A mapping T : C → H is called generalized
hybrid [8] if there exist α, β ∈ R such that

α∥Tx − Ty∥2 + (1 − α)∥x − Ty∥2 ≤ β∥Tx − y∥2 + (1 − β)∥x − y∥2

for all x, y ∈ C. We call such a mapping an (α, β)-generalized hybrid mapping.
We know that (1,0), (2,1) and (3

2 , 1
2 )-generalized hybrid mappings are nonexpan-

sive, nonspreading and hybrid mappings, respectively. Kocourek, Takahashi and
Yao [8] proved a mean convergence theorem which generalizes the Baillon’s theorem
(Theorem 1.1); see also Takahashi and Yao [20]. Recently, Takahashi and Takeuchi
[18] proved the Kocourek, Takahashi and Yao’s mean convergence theorem without
convexity.

In this paper, motivated by Kocourek, Takahashi and Yao [8], and Takahashi
and Takeuchi [18], we introduce a broad class of nonlinear mappings of C into
H which contains the class of contractive mappings and the class of generalized
hybrid mappings. Then we prove an attractive point theorem for such mappings in
a Hilbert space. Furthermore, we prove a mean convergence theorem of Baillon’s
type without convexity in a Hilbert space. Finally, we prove a weak convergence
theorem of Mann’s type [12] without closedness. These results generalize attractive
point, mean convergence and weak convergence theorems proved by Takahashi and
Takeuchi [18], and Kocourek, Takahashi and Yao [8].

2. Preliminaries

Let H be a real Hilbert space with inner product ⟨·, ·⟩ and norm ∥·∥, respectively.
We denote the strong convergence and the weak convergence of {xn} to x ∈ H by
xn → x and xn ⇀ x, respectively. Let A be a nonempty subset of H. We denote
by coA the closure of the convex hull of A. In a Hilbert space, it is known that

(2.1) ∥αx + (1 − α)y∥2 = α∥x∥2 + (1 − α)∥y∥2 − α(1 − α)∥x − y∥2

for all x, y ∈ H and α ∈ R; see [16]. Furthermore, in a Hilbert space, we have that

(2.2) 2⟨x − y, z − w⟩ = ∥x − w∥2 + ∥y − z∥2 − ∥x − z∥2 − ∥y − w∥2

for all x, y, z, w ∈ H. Let C be a nonempty subset of H and let T be a mapping
from C into H. We denote by F (T ) the set of fixed points of T . A mapping T from
C into H with F (T ) ̸= ∅ is called quasi-nonexpansive if ∥Tx−u∥ ≤ ∥x−u∥ for any
x ∈ C and u ∈ F (T ). It is well-known that if T : C → H is quasi-nonexpansive
and C is closed and convex, then F (T ) is closed and convex; see Ito and Takahashi
[6]. It is not difficult to prove such a result in a Hilbert space. In fact, for proving
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that F (T ) is closed, take a sequence {zn} ⊂ F (T ) with zn → z. Since C is weakly
closed, we have z ∈ C. Furthermore, from

∥z − Tz∥ ≤ ∥z − zn∥ + ∥zn − Tz∥ ≤ 2∥z − zn∥ → 0,

we have that z is a fixed point of T and so F (T ) is closed. Let us show that F (T )
is convex. For x, y ∈ F (T ) and α ∈ [0, 1], put z = αx + (1 − α)y. Then we have
from (2.1) that

∥z − Tz∥2 = ∥αx + (1 − α)y − Tz∥2

= α∥x − Tz∥2 + (1 − α)∥y − Tz∥2 − α(1 − α)∥x − y∥2

≤ α∥x − z∥2 + (1 − α)∥y − z∥2 − α(1 − α)∥x − y∥2

= α(1 − α)2∥x − y∥2 + (1 − α)α2∥x − y∥2 − α(1 − α)∥x − y∥2

= α(1 − α)(1 − α + α − 1)∥x − y∥2

= 0.

This implies Tz = z. Thus F (T ) is convex. Let D be a nonempty closed convex
subset of H and x ∈ H. We know that there exists a unique nearest point z ∈ D
such that ∥x− z∥ = infy∈D ∥x−y∥. We denote such a correspondence by z = PDx.
The mapping PD is called the metric projection of H onto D. It is known that PD

is nonexpansive and
⟨x − PDx, PDx − u⟩ ≥ 0

for all x ∈ H and u ∈ D; see [16] for more details. For proving main results in this
paper, we also need the following lemma proved by Takahashi and Toyoda [19].

Lemma 2.1. Let D be a nonempty closed convex subset of H. Let P be the metric
projection from H onto D. Let {un} be a sequence in H. If ∥un+1 −u∥ ≤ ∥un −u∥
for all u ∈ D and n ∈ N, then {Pun} converges strongly to some u0 ∈ D.

Let l∞ be the Banach space of bounded sequences with supremum norm. Let
µ be an element of (l∞)∗ (the dual space of l∞). Then, we denote by µ(f) the
value of µ at f = (x1, x2, x3, . . . ) ∈ l∞. Sometimes, we denote by µn(xn) the
value µ(f). A linear functional µ on l∞ is called a mean if µ(e) = ∥µ∥ = 1, where
e = (1, 1, 1, . . . ). A mean µ is called a Banach limit on l∞ if µn(xn+1) = µn(xn).
We know that there exists a Banach limit on l∞. If µ is a Banach limit on l∞, then
for f = (x1, x2, x3, . . . ) ∈ l∞,

lim inf
n→∞

xn ≤ µn(xn) ≤ lim sup
n→∞

xn.

In particular, if f = (x1, x2, x3, . . . ) ∈ l∞ and xn → a ∈ R, then we have µ(f) =
µn(xn) = a. See [15] for the proof of existence of a Banach limit and its other
elementary properties. Using means and the Riesz theorem, we can obtain the
following result; see [11], [13] and [15].

Lemma 2.2. Let H be a Hilbert space, let {xn} be a bounded sequence in H and
let µ be a mean on l∞. Then there exists a unique point z0 ∈ co{xn | n ∈ N} such
that

µn⟨xn, y⟩ = ⟨z0, y⟩, ∀y ∈ H.

The following result obtained by Takahashi and Takeuchi [18] is important in
this paper.



4 WATARU TAKAHASHI, NGAI-CHING WONG, AND JEN-CHIH YAO

Lemma 2.3. Let H be a Hilbert space, let C be a nonempty subset of H and let T
be a mapping from C into H. Then A(T ) is a closed and convex subset of H.

We also have the following result.

Lemma 2.4. Let H be a Hilbert space, let C be a nonempty subset of H and let T
be a quasi-nonexpansive mapping from C into H. Then A(T ) ∩ C = F (T ).

Proof. Let z ∈ A(T ) ∩ C. From z ∈ A(T ) we have that

∥Tx − z∥ ≤ ∥x − z∥, ∀x ∈ C.

From z ∈ C we have that ∥Tz− z∥ ≤ ∥z− z∥ = 0 and hence z ∈ F (T ). Conversely,
let z ∈ F (T ). Since T : C → H is quasi-nonexpansive, we have that

∥Tx − z∥ ≤ ∥x − z∥, ∀x ∈ C.

This implies z ∈ A(T ). It is obvious that z ∈ C. Thus z ∈ A(T ) ∩ C. This
completes the proof. ¤

3. Attractive point theorems

Let H be a real Hilbert space and let C be a nonempty subset of H. A mapping
T from C into H is called normally generalized hybrid if there exist α, β, γ, δ ∈ R
such that

(1) α + β + γ + δ ≥ 0;
(2) α + γ > 0, or α + β > 0;
(3) α∥Tx − Ty∥2 + β∥x − Ty∥2 + γ∥Tx − y∥2 + δ∥x − y∥2 ≤ 0, ∀x, y ∈ C.

Such a mapping T is called (α, β, γ, δ)-normally generalized hybrid. If α + β =
−γ−δ = 1, then an (α, β, γ, δ)-normally generalized hybrid mapping is a generalized
hybrid mapping in the sense of Kocourek, Takahashi and Yao [8]. A normally
generalized hybrid mapping T : C → H with a fixed point is quasi-nonexpansive.
In fact, if y is a fixed point of T in (3), then we have that

α∥Tx − y∥2 + β∥x − y∥2 + γ∥Tx − y∥2 + δ∥x − y∥2 ≤ 0

and hence

(3.1) (α + γ)∥Tx − y∥2 ≤ (−β − δ)∥x − y∥2.

Since α + γ ≥ −β − δ and α + γ > 0, we have that

∥Tx − y∥2 ≤ −β − δ

α + γ
∥x − y∥2 ≤ ∥x − y∥2.

This implies that T is quasi-nonexpansive. Similarly, we have the desired result in
the case of α+β > 0. We first prove an attractive fixed point theorem for normally
generalized hybrid mappings in a Hilbert space.

Theorem 3.1. Let H be a real Hilbert space, let C be a nonempty subset of H
and let T be an (α, β, γ, δ)-normally generalized hybrid mapping from C into itself.
Then T has an attractive point if and only if there exists z ∈ C such that {Tnz |
n = 0, 1, . . .} is bounded. Additionally, if C is closed and convex, then T has a fixed
point if and only if there exists z ∈ C such that {Tnz | n = 0, 1, . . .} is bounded.
In particular, a fixed point of T is unique in the case of α + β + γ + δ > 0 on the
condition (1).
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Proof. Suppose that T has an attractive point z. Then ∥Tx − z∥ ≤ ∥x − z∥ for
all x ∈ C. Therefore {Tnz | n = 0, 1, . . .} is bounded. Conversely, suppose that
there exists z ∈ C such that {Tnz | n = 0, 1, . . .} is bounded. Since T is an
(α, β, γ, δ)-normally generalized hybrid mapping of C into itself, we have that

α∥Tx − Tn+1z∥2 + β∥x − Tn+1z∥2 + γ∥Tx − Tnz∥2 + δ∥x − Tnz∥2 ≤ 0

for all n ∈ N ∪ {0} and x ∈ C. Since {Tnz} is bounded, we can apply a Banach
limit µ to both sides of the inequality. Thus we have that

(α + γ)µn∥Tx − Tnz∥2 + (β + δ)µn∥x − Tnz∥2 ≤ 0.

From ∥Tx− Tnz∥2 = ∥Tx− x∥2 + 2⟨Tx− x, x− Tnz⟩+ ∥x− Tnz∥2, We also have
that

(α + γ)µn∥Tx − x∥2 + 2(α + γ)µn⟨Tx − x, x − Tnz⟩
+ (α + γ + β + δ)µn∥x − Tnz∥2 ≤ 0.

From (1) α + γ + β + δ ≥ 0, we have that

(3.2) (α + γ)∥Tx − x∥2 + 2(α + γ)µn⟨Tx − x, x − Tnz⟩ ≤ 0.

Since there exists p ∈ C from Lemma 2.2 such that

µn⟨y, Tnz⟩ = ⟨y, p⟩
for all y ∈ H, we have from (3.2) that

(3.3) (α + γ)∥Tx − x∥2 + 2(α + γ)⟨Tx − x, x − p⟩ ≤ 0.

From (3.3) and (2.2) we obtain that

(α + γ)∥Tx − x∥2

+ (α + γ)(∥Tx − p∥2 − ∥Tx − x∥2 − ∥x − p∥2) ≤ 0

and hence
(α + γ)(∥Tx − p∥2 − ∥x − p∥2) ≤ 0.

Since α + γ > 0, we have that

∥Tx − p∥2 ≤ ∥x − p∥2

for all x ∈ C. This implies p ∈ A(T ). In the case of α + β > 0, we can obtain the
result by replacing the variables x and y. Additionally, if C is closed and convex,
then we have from {Tnx} ⊂ C that

p ∈ co{Tnx : n ∈ N} ⊂ C.

Since p ∈ A(T ) and p ⊂ C, we have that

∥Tp − p∥ ≤ ∥p − p∥ = 0

and hence p ∈ F (T ). Conversely, if z ∈ F (T ), then it is obvious that {Tnz} = {z}
is bounded.

Next suppose that α + β + γ + δ > 0. Let p1 and p2 be fixed points of T . Then
we have that

α∥Tp1 − Tp2∥2 + β∥p1 − Tp2∥2 + γ∥Tp1 − p2∥2 + δ∥p1 − p2∥2

= (α + β + γ + δ)∥p1 − p2∥2 ≤ 0

and hence p1 = p2. Therefore a fixed point of T is unique. This completes the
proof. ¤
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Remark 3.1. We can also prove Theorem 3.1 by using the following condition instead
of the condition (2):

(2)′ β + δ < 0, or γ + δ < 0.
In the case of the condition β + δ < 0, we obtain from (1) that

β + δ ≥ −α − γ.

Thus we obtain the desired result by Theorem 3.1. Similary, for the case of γ+δ < 0,
we can obtain the result by using the case of α + β > 0.

As a direct consequence of Theorem 3.1, we obtain the following theorem.

Theorem 3.2. Let H be a Hilbert space, let C be a nonempty bounded subset of
H and let T be an (α, β, γ, δ)-normally generalized hybrid mapping from C into
itself. Then T has an attractive point. Additionally, if C is closed and convex,
then T has a fixed point. In particular, a fixed point of T is unique in the case of
α + β + γ + δ > 0 on the condition (1).

Note that an (α, β, γ, δ)-normally generalized hybrid mapping T above with α =
1, β = γ = 0 and −1 < δ < 0 is a contractive mapping. Using Theorem 3.1, we can
show an attractive point theorem for contractive mappings in a Hilbert space.

Theorem 3.3. Let H be a Hilbert space, let C be a nonempty subset of H and let
T be a contractive mapping from C into C, that is, there exists a real number α
with 0 < α < 1 such that

∥Tx − Ty∥ ≤ α∥x − y∥

for all x, y ∈ C. Then T has an attractive point.

Proof. Let x ∈ C. We have that

∥Tnx − x∥ ≤ ∥Tnx − Tn−1x∥ + ∥Tn−1x − Tn−2x∥ + · · · + ∥Tx − x∥
≤ (αn−1 + αn−2 + · · · + 1)∥Tx − x∥

≤ 1
1 − α

∥Tx − x∥.

Then {Tnx | n = 0, 1, . . .} is bounded. By Theorem 3.1 T has an attractive
point. ¤

Using Theorem 3.1, we can show the following attractive point theorem for gen-
eralized hybrid mappings in a Hilbert space.

Theorem 3.4 (Takahashi and Takeuchi [18]). Let H be a Hilbert space, let C be
a nonempty subset of H and let T be a generalized hybrid mapping from C into C,
that is, there exist real numbers α and β such that

α∥Tx − Ty∥2 + (1 − α)∥x − Ty∥2 ≤ β∥Tx − y∥2 + (1 − β)∥x − y∥2

for all x, y ∈ C. Then T has an attractive point if and only if there exists z ∈ C
such that {Tnz | n = 0, 1, . . .} is bounded.

Proof. An (α, β)-generalized hybrid mapping T is an (α, 1 − α,−β,−(1 − β))-
normally generalized hybrid mapping such that α + (1 − α) − β − (1 − β) = 0 ≥ 0
and α + (1 − α) = 1 > 0. Then we have the desired result from Theorem 3.1. ¤
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4. Mean convergence theorems

In this section, using the technique developed by Takahashi [13], we prove a mean
convergence theorem of Baillon’s type without convexity for normally generalized
hybrid mappings in a Hilbert space.

Theorem 4.1. Let H be a Hilbert space, let C be a nonempty subset of H and let
T be an (α, β, γ, δ)-normally generalized hybrid mapping from C into C which has
an attractive point. Let P be the metric projection from H onto A(T ). Then for
any x ∈ C,

Snx =
1
n

n−1∑
k=0

T kx

is weakly convergent to an attractive point p of T , where p = limn→∞ PTnx.

Proof. Since A(T ) is nonempty, we have that {Tnx} is bounded for all x ∈ C. Since

∥Snx − y∥ ≤ 1
n

n−1∑
k=0

∥T kx − y∥ ≤ ∥x − y∥

for all n ∈ N ∪ {0} and y ∈ A(T ), we have that {Snx | n = 0, 1, . . .} is bounded.
Then there exists a strictly increasing sequence {ni} and p ∈ H such that {Snix |
i = 0, 1, . . .} is weakly convergent to p. We first show that p ∈ A(T ). Indeed, since
T is an (α, β, γ, δ)-normally generalized hybrid mapping of C into itself, we have
that

α∥Tz − T k+1x∥2 + β∥z − T k+1x∥2 + γ∥Tz − T kx∥2 + δ∥z − T kx∥2 ≤ 0

for all k ∈ N ∪ {0} and z ∈ C. We also have that

γ∥Tz − T kx∥2 = (α + γ)(∥Tz − z∥2 + ∥z − T kx∥2 + 2⟨Tz − z, z − T kx⟩)

− α∥Tz − T kx∥2.

Since −α − β − γ ≤ δ from (1), we obtain that

α(∥Tz − T k+1x∥2 − ∥Tz − T kx∥2) + β(∥z − T k+1x∥2 − ∥z − T kx∥2)

+ 2(α + γ)⟨Tz − z, z − T kx⟩ + (α + γ)∥z − Tz∥2 ≤ 0.

Summing up these inequalities with respect to k = 0, 1, . . . , n − 1 and dividing by
n, we obtain that

α

n
(∥Tz − Tnx∥2 − ∥Tz − x∥2) +

β

n
(∥z − Tnx∥2 − ∥z − x∥2)

+ 2(α + γ)⟨Tz − z, z − Snx⟩ + (α + γ)∥z − Tz∥2 ≤ 0.

Replacing n by ni, we have that
α

ni
(∥Tz − Tnix∥2 − ∥Tz − x∥2) +

β

ni
(∥z − Tnix∥2 − ∥z − x∥2)

+ 2(α + γ)⟨Tz − z, z − Snix⟩ + (α + γ)∥z − Tz∥2 ≤ 0.

Letting i → ∞, we obtain that

2(α + γ)⟨Tz − z, z − p⟩ + (α + γ)∥z − Tz∥2 ≤ 0.

As in the proof of Theorem 3.1, we obtain that

(α + γ)(∥Tz − p∥2 − ∥z − Tz∥2 + ∥z − p∥2) + (α + γ)∥z − Tz∥2 ≤ 0.
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From α + γ > 0 we have that for all z ∈ C,

∥p − Tz∥2 ≤ ∥p − z∥2.

This implies p ∈ A(T ). Similarly, we can obtain the desired result for the case of
α + β > 0.

Since A(T ) is nonempty, closed and convex from Lemma 2.3, the metric projec-
tion P from H onto A(T ) is well-defined. We also obtain that

∥Tn+1x − y∥ ≤ ∥Tnx − y∥

for all n ∈ N ∪ {0} and y ∈ A(T ). By Lemma 2.1, there exists q ∈ A(T ) such that
{PTnx | n = 0, 1, . . .} is convergent to q. To complete the proof, we show that
q = p. Note that the metric projection P satisfies

⟨z − Pz, Pz − u⟩ ≥ 0

for all z ∈ H and u ∈ A(T ); see [15]. Therefore

⟨T kx − PT kx, PT kx − y⟩ ≥ 0

for all k ∈ N ∪ {0} and y ∈ A(T ). Since P is the metric projection from H onto
A(T ), we obtain that

∥Tnx − PTnx∥ ≤ ∥Tnx − PTn−1x∥
≤ ∥Tn−1x − PTn−1x∥,

that is, {∥Tnx − PTnx∥ | n = 0, 1, . . .} is non-increasing. Therefore we obtain

⟨T kx − PT kx, y − q⟩ ≤ ⟨T kx − PT kx, PT kx − q⟩

≤ ∥T kx − PT kx∥ · ∥PT kx − q∥

≤ ∥x − Px∥ · ∥PT kx − q∥.

Summing up these inequalities with respect to k = 0, 1, . . . , n − 1 and dividing by
n, we obtain⟨

Snx − 1
n

n−1∑
k=0

PT kx, y − q

⟩
≤ ∥x − Px∥

n

n−1∑
k=0

∥PT kx − q∥.

Since {Snix | i = 0, 1, . . .} is weakly convergent to p and {PTnx | n = 0, 1, . . .} is
convergent to q, we obtain that

⟨p − q, y − q⟩ ≤ 0.

Putting y = p, we obtain

∥p − q∥2 ≤ 0

and hence q = p. This completes the proof. ¤

As in the proof of Theorem 3.4, from Theorem 4.1 we can prove the following
mean convergence theorem for generalized hybrid mappings in a Hilbert space.

Theorem 4.2 (Takahashi and Takeuchi [18]). Let H be a Hilbert space, let C be
a nonempty subset of H and let T be a generalized hybrid mapping from C into C,
that is, there exist α, β ∈ R such that

α∥Tx − Ty∥2 + (1 − α)∥x − Ty∥2 ≤ β∥Tx − y∥2 + (1 − β)∥x − y∥2
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for all x, y ∈ C. Suppose A(T ) ̸= ∅ and let P be the metric projection from H onto
A(T ). Then for any x ∈ C,

Snx =
1
n

n−1∑
k=0

T kx

is weakly convergent to an attractive point p of T , where p = limn→∞ PTnx.

5. Weak convergence theorems of Mann’s type

In this section, we prove a weak convergence theorem of Mann’s type [12] for
normally generalized hybrid mappings in a Hilbert space. Before proving the result,
we need the following lemma.

Lemma 5.1. Let H be a Hilbert space and let C be a nonempty subset of H. Let
T : C → H be a normally generalized hybrid mapping. If xn ⇀ z and xn−Txn → 0,
then z ∈ A(T ).

Proof. Since T : C → H is a normally generalized hybrid mapping, there exist
α, β, γ, δ ∈ R such that (1) α + β + γ + δ ≥ 0, (2) α + γ > 0, or α + β > 0 and

(5.1) α∥Tx − Ty∥2 + β∥x − Ty∥2 + γ∥Tx − y∥2 + δ∥x − y∥2 ≤ 0

for all x, y ∈ C. Suppose xn ⇀ z and xn − Txn → 0. Replacing x by xn in (5.1),
we have that

(5.2) α∥Txn − Ty∥2 + β∥xn − Ty∥2 + γ∥Txn − y∥2 + δ∥xn − y∥2 ≤ 0.

From this inequality, we have that

α(∥Txn − xn∥2 + ∥xn − Ty∥2 + 2⟨Txn − xn, xn − Ty⟩) + β∥xn − Ty∥2

+ γ(∥Txn − xn∥2 + ∥xn − y∥2 + 2⟨Txn − xn, xn − y⟩) + δ∥xn − y∥2 ≤ 0.

We apply a Banach limit µ to both sides of this inequality. We have that

αµn(∥Txn − xn∥2 + ∥xn − Ty∥2 + 2⟨Txn − xn, xn − Ty⟩) + βµn∥xn − Ty∥2

+ γµn(∥Txn − xn∥2 + ∥xn − y∥2 + 2⟨Txn − xn, xn − y⟩) + δµn∥xn − y∥2 ≤ 0

and hence

αµn∥xn − Ty∥2 + βµn∥xn − Ty∥2

+ γµn∥xn − y∥2 + δµn∥xn − y∥2 ≤ 0.

Thus we have

(α + β)µn∥xn − Ty∥2 + (γ + δ)µn∥xn − y∥2 ≤ 0.

From ∥xn − Ty∥2 = ∥xn − y∥2 + ∥y − Ty∥2 + 2⟨xn − y, y − Ty⟩, we also have

(α + β)(µn∥xn − y∥2 + ∥y −Ty∥2 + 2µn⟨xn − y, y −Ty⟩) + (γ + δ)µn∥xn − y∥2 ≤ 0.

From α + β + γ + δ ≥ 0 we obtain that

(α + β)(∥y − Ty∥2 + 2µn⟨xn − y, y − Ty⟩) ≤ 0.

Since xn ⇀ z, we have that

(α + β)(∥y − Ty∥2 + 2⟨z − y, y − Ty⟩) ≤ 0.

Using (2.2), we have that

(α + β)(∥y − Ty∥2 + ∥z − Ty∥2 − ∥z − y∥2 − ∥y − Ty∥2) ≤ 0.



10 WATARU TAKAHASHI, NGAI-CHING WONG, AND JEN-CHIH YAO

Since α + β > 0, we have that

∥z − Ty∥2 − ∥z − y∥2 ≤ 0

for all y ∈ C. This implies z ∈ A(T ). Similarly, we can obtain the desired result
for the case of α + γ > 0. This completes the proof. ¤

We can prove the following theorem by using Lemma 5.1 and the technique
developed by Ibaraki and Takahashi [3, 4].

Theorem 5.1. Let H be a Hilbert space and let C be a convex subset of H. Let
T : C → C be a normally generalized hybrid mapping with A(T ) ̸= ∅ and let P be
the mertic projection of H onto A(T ). Let {αn} be a sequence of real numbers such
that 0 ≤ αn ≤ 1 and lim infn→∞ αn(1 − αn) > 0. Suppose {xn} is the sequence
generated by x1 = x ∈ C and

xn+1 = αnxn + (1 − αn)Txn, n ∈ N.

Then {xn} converges weakly to an element v ∈ A(T ), where v = limn→∞ Pxn.

Proof. Let z ∈ A(T ). Then we have that

∥xn+1 − z∥2 = ∥αnxn + (1 − αn)Txn − z∥2

≤ αn∥xn − z∥2 + (1 − αn)∥Txn − z∥2

≤ αn∥xn − z∥2 + (1 − αn)∥xn − z∥2

= ∥xn − z∥2

for all n ∈ N. Hence limn→∞ ∥xn − z∥2 exists. Then {xn} is bounded. We also
have from (2.1) that

∥xn+1 − z∥2 = ∥αnxn + (1 − αn)Txn − z∥2

= αn∥xn − z∥2 + (1 − αn)∥Txn − z∥2 − αn(1 − αn)∥Txn − xn∥2

≤ αn∥xn − z∥2 + (1 − αn)∥xn − z∥2 − αn(1 − αn)∥Txn − xn∥2

= ∥xn − z∥2 − αn(1 − αn)∥Txn − xn∥2.

Thus we have

αn(1 − αn)∥Txn − xn∥2 ≤ ∥xn − z∥2 − ∥xn+1 − z∥2.

Since limn→∞ ∥xn − z∥2 exists and lim infn→∞ αn(1 − αn) > 0, we have that

(5.3) ∥Txn − xn∥ → 0.

Since {xn} is bounded, there exists a subsequence {xni} of {xn} such that xni ⇀ v.
By Lemma 5.1 and (5.3), we obtain that v ∈ A(T ). Let {xni} and {xnj} be two
subsequences of {xn} such that xni ⇀ v1 and xnj ⇀ v2. To complete the proof,
we show v1 = v2. We know v1, v2 ∈ A(T ) and hence limn→∞ ∥xn − v1∥2 and
limn→∞ ∥xn − v2∥2 exist. Put

a = lim
n→∞

(∥xn − v1∥2 − ∥xn − v2∥2).

Note that for n = 1, 2, . . . ,

∥xn − v1∥2 − ∥xn − v2∥2 = 2⟨xn, v2 − v1⟩ + ∥v1∥2 − ∥v2∥2.

From xni ⇀ v1 and xnj ⇀ v2, we have

(5.4) a = 2⟨v1, v2 − v1⟩ + ∥v1∥2 − ∥v2∥2
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and

(5.5) a = 2⟨v2, v2 − v1⟩ + ∥v1∥2 − ∥v2∥2.

Combining (5.4) and (5.5), we obtain 0 = 2⟨v2 − v1, v2 − v1⟩. Thus we obtain
v2 = v1. This implies that {xn} converges weakly to an element v ∈ A(T ). Since
∥xn+1 − z∥ ≤ ∥xn − z∥ for all z ∈ A(T ) and n ∈ N, we obtain from Lemma 2.1 that
{Pxn} converges strongly to an element p ∈ A(T ). On the other hand, we have
from the property of P that

⟨xn − Pxn, Pxn − u⟩ ≥ 0

for all u ∈ A(T ) and n ∈ N. Since xn ⇀ v and Pxn → p, we obtain

⟨v − p, p − u⟩ ≥ 0

for all u ∈ A(T ). Putting u = v, we obtain p = v. This means v = limn→∞ Pxn.
This completes the proof. ¤

Using Theorem 5.1, we can show the following weak convergence theorem of
Mann’s type for generalized hybrid mappings in a Hilbert space.

Theorem 5.2 (Kocourek, Takahashi and Yao [8]). Let H be a Hilbert space and let
C be a closed convex subset of H. Let T : C → C be a generalized hybrid mapping
with F (T ) ̸= ∅. Let {αn} be a sequence of real numbers such that 0 ≤ αn ≤ 1 and
lim infn→∞ αn(1−αn) > 0. Suppose {xn} is the sequence generated by x1 = x ∈ C
and

xn+1 = αnxn + (1 − αn)Txn, n ∈ N.

Then the sequence {xn} converges weakly to an element v ∈ F (T ).

Proof. As in the proof of Theorem 3.4, a generalized hybrid mapping is a normally
generalized hybrid mapping. Since {xn} ⊂ C and C is closed and convex, we have
from Theorem 5.1 that v ∈ A(T )∩C. A normally generalized hybrid mapping with
F (T ) ̸= ∅ is quasi-nonexpansive, we have from Lemma 2.4 that A(T ) ∩ C = F (T ).
Thus {xn} converges weakly to an element v ∈ F (T ). ¤

Acknowledgements. The first author was partially supported by Grant-in-Aid for
Scientific Research No. 23540188 from Japan Society for the Promotion of Science.
The second and the third authors were partially supported by the grant NSC 99-
2115-M-110-007-MY3 and the grant NSC 99-2115-M-037-002-MY3, respectively.

References
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