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Abstract. We show in this paper that the module structure and the orthogo-
nality structure of a Hilbert C∗-module determine its inner product structure.

Let A be a C∗-algebra, and E and F be Hilbert A-modules. Assume Φ :
E → F is an A-module map satisfying

〈Φ(x),Φ(y)〉A = 0 whenever 〈x, y〉A = 0.

Then Φ is automatically bounded. In case Φ is bijective, E is isomorphic to F .
More precisely, let JE be the closed two-sided ideal of A generated by

{〈x, y〉A : x, y ∈ E}. We show that there exists a unique central positive
multiplier u ∈ M(JE)+ such that

〈Φ(x),Φ(y)〉A = u〈x, y〉A (x, y ∈ E).

As a consequence, the induced map Φ0 : E → Φ(E) is adjointable, and Eu1/2

is isomorphic to Φ(E) as Hilbert A-modules.

1. Introduction

It is well known that the norm and the inner product of a (complex) Hilbert

space H determine each other, through a polarization formula. By the Uhlhorn

theorem (which generalized the famous Wigner theorem; see, e.g., [18]), the or-

thogonality structure of the projective space of H also determines its Hilbert

space structure up to unitary or anti-unitary if dim H ≥ 3 (see, e.g., [19, Corol-

lary 2.2.2]). In the case when the (complex) linear structure of the Hilbert space

is also considered, one can relax the two-way orthogonality preserving assumption

in the Uhlhorn theorem and obtain the following result.

If θ is a bijective C-linear map between Hilbert spaces satisfying

〈θ(x), θ(x)〉 = 0 whenever 〈x, y〉 = 0,

then θ is a scalar multiple of a unitary.
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It is interesting to ask whether it is possible to generalize the above to the

case of Hilbert C∗-modules. Recall that a (right) Hilbert A-module E (where

A is a complex C∗-algebra) is a right A-module equipped with an “A-valued

inner product” 〈·, ·〉A such that E is complete under the norm defined by ‖x‖ =√
‖〈x, x〉A‖ (see e.g. [11] for the precise definition). It is well-known that every

surjective A-linear isometry T : E → F between Hilbert A-modules is a unitary

(see e.g. [11]), i.e.,

〈T (x), T (y)〉A = 〈x, y〉A (x, y ∈ E).

In this paper, we will verify that every bijective A-linear orthogonality preserver

is an ‘A-scalar’ multiple of a unitary. More precisely, let E and F be Hilbert

A-modules. Suppose that JE is the closed two-sided ideal of A generated by

{〈x, y〉A : x, y ∈ E} and M(JE) is its multiplier algebra. Our main results in

Section 3 can be formulated as follows.

Suppose that Φ : E → F is an A-module map, which is not assumed

to be bounded. The following are all equivalent.

(a) Φ is orthogonality preserving, in the sense that

〈Φ(x), Φ(y)〉A = 0 whenever 〈x, y〉A = 0 (x, y ∈ E).(1.1)

(b) There exists a (unique) positive central element u ∈ M(JE)

such that

〈Φ(x), Φ(y)〉A = u〈x, y〉A (x, y ∈ E).(1.2)

(c) There exist a (unique) positive central element w ∈ M(JE) and

a Hilbert A-module isomorphism Θ : Ew → Φ(E) such that

Φ(x) = Θ(xw) (x ∈ E).

In particular, every orthogonality preserving module map Φ between

Hilbert A-modules is automatically continuous. In the case when Φ

is bijective, w = u1/2 is invertible and x 7→ Φ(x)w−1 is a Hilbert

A-module isomorphism from E onto F .

The last statement implies that the A-module structure and the orthogonality

structure of E determine the Hilbert A-module E up to a Hilbert A-module

automorphism.
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The above can be considered as a generalization of the Uhlhorn theorem to

Hilbert A-modules, where only one-way orthogonality preserving property is as-

sumed but the A-linear structure is also considered. We would like to emphasize

that, to line up with Uhlhorn and Wigner theorems, it is better not to assume

any boundedness condition on the map Φ (but expect the boundedness in the

conclusion). On the other hand, we are almost forced to take into account the

A-module structure. Indeed, Example 1.1 below tells us that the above results

will not be true if Φ is only a C-linear map instead of an A-linear map.

Example 1.1. The conjugate Hilbert space H̄ of a complex Hilbert space H can

be regarded as a Hilbert K(H)-module (where K(H) is the C∗-algebra of all

compact operators on H), and for any x̄, ȳ ∈ H̄, one has 〈x̄, ȳ〉K(H) = 0 if and

only if either x̄ = 0 or ȳ = 0 (recall that 〈x̄, ȳ〉K(H)(z) = y〈x, z〉 for any z ∈ H).

Orthogonality preservers of C∗-modules have been studied by many authors,

e.g., [10, 1, 23, 3, 6]. In the case when A is a standard C∗-algebra, the equivalence

of (1.1) and (1.2) was established by D. Ilǐsević and A. Turnšek [8]. When A is

commutative and E is full (i.e. JE = A), this equivalence was established by the

authors of this paper in [12]. In [13], we proved this result in the case when A

has real rank zero and E is full. Moreover, with the extra assumption on the

boundedness of Φ, this was obtained by M. Frank, A. S. Mishchenko and A. A.

Pavlov in [7]. Note that the first version of this paper (namely, [14]) was finished

and circulated at almost the same time as [7] and the two works are independent.

Note also that this version is merely the same as in [14] except that the materials

concerning the linking algebras in section 4 there is removed (see Remark 3.6). It

happens that the ideas of the proofs in these papers are very different, and none

of them seem to be suitable for the general case.

We also note that J. Schweizer also studied bounded orthogonality preserving

map in [21, Theorem 9.6]. However, there seems to be no overlap between his

work and the current paper. For instance, even in the very simple case when

X = H̄ as in Example 1.1, the result [21, Theorem 9.6] gives us merely the trivial

conclusion that a bounded orthogonality preserving C-linear map T : X → X is

C-linear. Our main theorem, however, implies that any orthogonality preserving

K(H)-module map T : X → X is a scalar multiple of an isometry. Therefore,

Schweizer’s result does not seem to shed too much light on the proof of the main

theorems in this paper.
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2. Notation and Preliminaries

Let us first set some notations. Throughout this article, A is a C∗-algebra and

A∗∗ is the bidual of A (which is a von Neumann algebra). Write Asa and A+ for

the self-adjoint and positive parts of A, and Z(A) and M(A) for the center and

the space of multipliers of A, respectively. Moreover, Proj1(A) is the collection

of all non-zero projections in A.

If a ∈ A+, we consider C∗(a) to be the C∗-subalgebra generated by a, and let

c(a) be the central cover of a in A∗∗ (see e.g. [20, 2.6.2]). If α, β ∈ R+, we set

ea(α, β) and ea(α, β] to be the spectral projections (in A∗∗) of a corresponding

respectively, to the sets (α, β)∩σ(a) and (α, β]∩σ(a). When (aλ)λ∈Λ is an increas-

ing net (respectively, a decreasing net) in A∗∗
sa, the notation aλ ↑ a (respectively,

aγ ↓ a) means that aλ → a in the weak-*-topology. Note that p ∈ Proj1(A
∗∗) is

an open projection exactly when there is an increasing net (aλ)λ∈Λ from A+ such

that aλ ↑ p. In this case, the C∗-subalgebra A ∩ pA∗∗p is weak-*-dense in pA∗∗p

(see e.g. [2] or [20, Proposition 3.11.9]).

On the other hand, throughout this article, E and F are non-zero Hilbert A-

modules. It is well-known that E is an essential right A-module. Thus, E is

unital whenever A is. If A is not unital and A1 denotes the C∗-algebra obtained

by adjoining an identity 1 to A then E becomes a unital Hilbert A1-module if

(and only if) we define x1 = x (cf. [11, page 5]). On the other hand, for any

C∗-subalgebra B ⊆ A, we put EB := {xb : x ∈ E; b ∈ B}. By the Cohen

Factorisation theorem, EB coincides with its norm closed linear span.

For simplicity, we write 〈x, y〉 instead of 〈x, y〉A when both x and y are in E (or

F ). Recall that E is said to be full if JE = A, where JE is the closed two-sided

ideal of A generated by all the A-valued inner products of elements in E.

Unless specified otherwise, Φ : E → F is an orthogonality preserving A-module

map (i.e. satisfying (1.1)), but Φ is not assumed to be bounded. When A is

unital, Φ is an orthogonality preserving A-module map between unital essential

Hilbert A-modules, otherwise Φ can be regarded as an orthogonality preserving

A1-module map between unital essential Hilbert A1-modules.

We now recall the following elementary result (see e.g. [13]).
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Lemma 2.1. Suppose that p ∈ Proj1(A
∗∗). If b ∈ Z(pA∗∗p)+, then ‖c(b)‖ = ‖b‖,

c(b)p = b and c(b)c(p) = c(b).

In the following lemma, we collect some simple useful facts concerning Hilbert

C∗-modules (which are probably known). Recall that E∗∗ is a Hilbert A∗∗-module

with the module action and the inner product extending the ones in E.

Lemma 2.2. Let p ∈ Proj1(A
∗∗), δ ∈ [0, 1) and x ∈ E \ {0}. Set a := 〈x,x〉

‖x‖2 ,

qδ := ea(δ, 1], qx := ea(0, 1] and FΦ := Φ(E).

(a) If p is open and y ∈ E satisfying 〈x, y〉 p = 0, then 〈Φ(x), Φ(y)〉 p = 0.

(b) If v ∈ A∗∗ such that 〈x, x〉v ∈ A, then xv ∈ E.

(c) If u, v ∈ A∗∗ with au = av, then qδu = qδv. Thus, ap = a will imply that

qx ≤ p.

(d) xp = x if and only if a ∈ pAp, which is also equivalent to x ∈ E · (A∩pA∗∗p).

(e) xqx = x and Φ(x)qx = Φ(x).

(f) FΦ · JE = FΦ and JFΦ
⊆ JE.

Proof. In the following, let (en)n∈N be an approximate unit in C∗(a). Notice that

‖xen − x‖ → 0 since ‖x− xen‖2 = ‖x‖2‖a− ena− aen + enaen‖.

(a) Pick any increasing net (aλ)λ∈Λ in A+ ∩ pA∗∗p with aλ ↑ p (note that p is

open). As aλ = paλ, one has 〈x, yaλ〉 = 0 (for any λ). Thus, 〈Φ(x), Φ(y)〉 aλ = 0

(for any λ), and hence 〈Φ(x), Φ(y)〉 p = 0.

(b) As env ∈ A (by the hypothesis) and ‖xv − xenv‖2
E∗∗ = ‖x‖2‖v∗(1− en)a(1−

en)v‖, we see that xv ∈ E.

(c) Let (bn)n∈N be a sequence in C∗(a)+ such that bn ↑ qδ. As bn(u − v) = 0

(n ∈ N), we see that qδu = qδv. By taking δ = 0, we obtain also the second

statement.

(d) If xp = x, then a = pap. If a ∈ pAp, then en ∈ pAp and x ∈ E · (A ∩ pA∗∗p)

(as ‖xen − x‖ → 0). Finally, if x ∈ E · (A ∩ pA∗∗p), then clearly xp = x.

(e) As xen = xenqx → xqx in norm, one has x = xqx. Now, part (d) implies

that x = zb for some z ∈ E and b ∈ A ∩ qxA
∗∗qx. Thus, Φ(x) = Φ(z)b ∈

F · (A ∩ qxA
∗∗qx), which gives Φ(x)qx = Φ(x).
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(f) As E is a Hilbert JE-module, any z ∈ E is of the form z = yb for some y ∈ E

and b ∈ JE. Thus, Φ(E) ⊆ FΦ · JE. The second statement follows from the first

one (as JE is a closed two-sided ideal of A). �

3. The main results

We may now start proving our main theorem. We use open projections in our

proof. Notice that this proof is not a translation of the one for the real rank zero

case in [13] (because most of the techniques used there cannot be carried over to

the general case) and it is much more difficult and technical. On the other hand,

none of the approaches in [7, 8, 12] seems to work in the general case neither.

Lemma 3.1. Suppose that x ∈ E \ {0}. If a := 〈x,x〉
‖x‖2 and qx := ea(0, 1], there is

ux ∈ Z(qxA
∗∗qx)+ such that

〈Φ(y), Φ(x)〉 = 〈y, x〉ux (y ∈ E).

Proof. Without loss of generality we assume that ‖x‖ = 1 and A is unital. If

ε ∈ (0, 1) and qε := ea(ε, 1], pick any b ∈ C∗(a)+ satisfying qε ≤ ab ≤ 1 and set

xε := xb1/2 ∈ E. Then we have 〈xεqε, xε〉A∗∗ = 〈xε, xεqε〉A∗∗ = 〈xεqε, xεqε〉A∗∗ = qε.

Moreover,

(3.1) b1/2qε(b
1/2 + qε/n)−1 ↑ qε when n →∞.

Put uε := 〈Φ(xε), Φ(xε)〉 qε ∈ Aqε. Consider c ∈ qεA
∗∗qε ∩A+ to be a norm one

element, and set p := ec(α, β) ∈ qεA
∗∗qε for some α < β in R+. Let bn ∈ C∗(c) ⊆

A ∩ qεA
∗∗qε such that 0 ≤ bn ↑ p and bnbn+1 = bn (n ∈ N). Set cn := 1− bn, and

observe that 1 ≥ cn ↓ (1 − p), bncn+k = 0, bnp = bn, and cn+k(1 − p) = 1 − p

(n, k ∈ N). Since

〈xεbn, xεcn+k〉 = bnqε 〈xε, xε〉 cn+k = bnqεcn+k = bncn+k = 0,

we have bnuεcn+k = 〈Φ(xεbn), Φ(xεcn+k)〉 qε = 0 (by Lemma 2.2(a)). By letting

k →∞ and then n →∞, we see that puε(1− p) = 0, i.e., puε = puεp. Similarly,

we have puεp = uεp and so, puε = uεp. As c can be approximated in norm by linear

combinations of projections of the form ec(α, β), one concludes that uε commutes

with an arbitrary element in A ∩ qεA
∗∗qε. Thus, uε commutes with elements in

qεA
∗∗qε (as qε is open). In particular, uε = uεqε = qεuεqε = qε 〈Φ(xε), Φ(xε)〉 qε ∈

qεAqε, which means that uε ∈ Z(qεA
∗∗qε)+.
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For any y ∈ E, the element y − xε 〈xε, y〉 ∈ E is orthogonal to xεqε ∈ E∗∗. By

Lemma 2.2(a), we have

〈Φ(y), Φ(xε)〉 qε = 〈y, xε〉 〈Φ(xε), Φ(xε)〉 qε = 〈y, xε〉uε,

which implies that 〈Φ(y), Φ(x)〉 b1/2qε = 〈y, x〉uεb
1/2qε (because b1/2qε = qεb

1/2qε ∈
qεA

∗∗qε). Now Relation (3.1) tells us that

〈Φ(y), Φ(x)〉 qε = 〈y, x〉uε (y ∈ E).(3.2)

If 0 < δ ≤ ε < 1, we have qε ≤ qδ and qεA
∗∗qε ⊆ qδA

∗∗qδ. Hence,

auδqε = 〈x, x〉uδqε = 〈Φ(x), Φ(x)〉 qδqε = 〈Φ(x), Φ(x)〉 qε = auε,

and Lemma 2.2(c) tells us that uδqε = qδuδqε = qδuε = qδqεuε = uε. By taking

adjoint, we see that uδ commutes with qε, which gives

(3.3) 0 ≤ uε = u
1/2
δ qεu

1/2
δ ≤ uδ (0 < δ ≤ ε < 1).

Next, we show that (uε)ε∈(0,1) is a bounded set. Suppose on the contrary that

there is a strictly decreasing sequence (εn)n∈N with ‖uεn‖ > ‖uεn−1‖+n5 for every

n ∈ N (see Relation (3.3)). Let bn, dn ∈ C∗(a)+ such that ea(ε4n−1, ε4n−2] ≤ bn ≤
ea(ε4n, ε4n−3] (≤ qε4n) and qε4n ≤ adn ≤ 1. As bn, qε4n−1 , qε4n−2 ∈ qε4nA∗∗qε4n and

uε4n ∈ Z(qε4nA∗∗qε4n)+, we see that

‖uε4nbn‖ ≥ ‖uε4n(qε4n−1 − qε4n−2)‖ = ‖uε4n−1 − uε4n−2‖ ≥ (4n− 1)5.

If xn := xb
1/2
n d

1/2
n , then 〈xn, xn〉 = bnqε4nadn = bn. Moreover, if m 6= n, then

〈xn, xm〉 = d1/2
n b1/2

n ea(ε4n, ε4n−3]aea(ε4m, ε4m−3]b
1/2
m d1/2

m = 0

(as (ε4n, ε4n−3] ∩ (ε4m, ε4m−3] = ∅). Let y :=
∑∞

n=1 xn/n
2 ∈ E (note that ‖xn‖2 =

‖bn‖ ≤ 1). For any m ∈ N, we have 〈Φ(y), Φ(y)〉 ≥ 〈Φ(xm), Φ(xm)〉/m4 (as Φ

preserves orthogonality), and by Relation (3.2),

m4〈Φ(y), Φ(y)〉 ≥ 〈Φ(xm), Φ(xm)〉 = 〈Φ(xm), Φ(x)〉qε4mb1/2
m d1/2

m(3.4)

= 〈xm, x〉uε4mb1/2
m d1/2

m = bmuε4m

(since b
1/2
m d

1/2
m ∈ qε4mA∗∗qε4m and uε4m ∈ Z(qε4mA∗∗qε4m)+). Consequently, ‖Φ(y)‖2 ≥

(4m− 1)5/m4 for all m ∈ N, which is a contradiction.

Now, the bounded sequence (u1/n)n∈N in (qxA
∗∗qx)+ has a subnet having a

weak-*-limit ux ∈ (qxA
∗∗qx)+. As q1/n ↑ qx, we have

⋃
n∈N q1/nA

∗∗q1/n being

weak-*-dense in
⋃

n∈N q1/nA
∗∗qx and hence also weak-*-dense in qxA

∗∗qx. Thus,
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ux ∈ Z(qxA
∗∗qx)+ (as q1/mux = uxq1/m = u1/m ∈ Z(q1/mA∗∗q1/m) for any m ∈ N).

By Relation (3.2) and Lemma 2.2(e), we have

〈Φ(y), Φ(x)〉 = 〈Φ(y), Φ(x)〉 qx = 〈y, x〉ux (y ∈ E).

�

Recall that JE ⊆ A is the closed two-sided ideal generated by the inner products

of elements in E.

Theorem 3.2. Suppose that Φ : E → F is a C-linear map (not assumed to be

bounded). Then Φ : E → F is an orthogonality preserving A-module map if and

only if there exists u ∈ Z(M(JE))+ such that

〈Φ(x), Φ(y)〉 = u 〈x, y〉 (x, y ∈ E).

In this case, u is unique and Φ is automatically bounded.

Proof. As E is a full Hilbert JE-module, it is easy to see that u is unique if it

exists, and in this case, ‖Φ‖2 ≤ ‖u‖.

The sufficiency is obvious, and we will establish the necessity in the following.

Since JFΦ
⊆ JE (see Lemma 2.2(f)), by replacing Φ with the induced map Φ0 :

E → FΦ := Φ(E), we may assume that JE = A.

Let M be a maximal family of orthogonal norm-one elements in E (whose

existence is ensured by applying Zorn’s Lemma), and F be the collection of all

non-empty finite subsets of M . If {y, z} ∈ F, then by Lemma 3.1,

〈y, y〉uy = 〈Φ(y), Φ(y)〉 = 〈Φ(y), Φ(y + z)〉 = 〈y, y〉uy+z,

which implies that ‖y(uy+z − uy)‖2
E∗∗ ≤ ‖uy+z − uy‖‖〈y, y〉(uy+z − uy)‖ = 0, and

so,

(3.5) yuy = yuy+z.

On the other hand, 〈y, y〉qy+z = 〈y, y + z〉qy+z = 〈y, y〉 (by Lemma 2.2(e)) and

thus qy ≤ qy+z (by Lemma 2.2(c)). On the other hand, if p ∈ Proj1(A
∗∗) such that

qy ≤ p and qz ≤ p, then 〈y + z, y + z〉 p = 〈y, y〉 qyp + 〈z, z〉 qzp = 〈y + z, y + z〉,
which tells us that qy+z ≤ p (again by Lemma 2.2(c)). Thus, qy+z = qy ∨ qz in

Proj1(A
∗∗). Inductively, if S ∈ F and

xS :=
∑
x∈S

x,
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then by Lemma 3.1 and relation (3.5) we have

(3.6) 〈Φ(y), Φ(x)〉 = 〈y, x〉ux = 〈y, x〉uxS
(y ∈ E; x ∈ S),

(3.7) qxS
=

∨
x∈S

qx (as elements in Proj1(A
∗∗)).

If S ′ ∈ F with S ⊆ S ′, then

〈xS, xS〉uxS′
= 〈Φ(xS), Φ(xS)〉 = 〈xS, xS〉uxS

(by Relation (3.6)). Thus, Lemma 2.2(c) tells us that

(3.8) uxS
= qxS

uxS
= qxS

uxS′
.

By taking adjoint, we see that qxS
commutes with uxS′

, and Relation (3.8) implies

that (uxS
)S∈F is an increasing net in A∗∗

+ .

We now show that (uxS
)S∈F is a bounded net. Suppose on the contrary that

there is an increasing sequence ∅ ( S(0) ( S(1) ( ... in F with

‖uxS(n)
‖ ≥ ‖uxS(n−1)

‖+ n5 (n ∈ N)

(notice that ‖uxS
‖ ≤ ‖uxS′

‖ if S ⊆ S ′). Denote by

yn :=
∑

x∈S(n)\S(n−1)

x = xS(n) − xS(n−1) (n ∈ N).

By [22, Proposition V.1.6], one has a partial isometry w ∈ A∗∗ such that

qxS(n)
− qxS(n−1)

= qxS(n−1)
∨ qyn − qxS(n−1)

= w(qyn − qxS(n−1)
∧ qyn)w∗,

which implies

uxS(n)
= u1/2

xS(n)
qxS(n)

u1/2
xS(n)

≤ u1/2
xS(n)

(qxS(n−1)
+ wqynw∗)u1/2

xS(n)

= uxS(n−1)
+ u1/2

xS(n)
wqynw∗u1/2

xS(n)

(see also (3.8)). On the other hand, by (3.7) and Lemma 2.1,

u1/2
xS(n)

wqynw∗u1/2
xS(n)

= c(u1/2
xS(n)

)qxS(n)
wqynw∗qxS(n)

c(u1/2
xS(n)

) = qxS(n)
wqync(u

1/2
xS(n)

)c(u1/2
xS(n)

)w∗qxS(n)

= qxS(n)
wqynqxS(n)

c(u1/2
xS(n)

)c(u1/2
xS(n)

)w∗qxS(n)
= qxS(n)

wqynuxS(n)
w∗qxS(n)

.

Consequently,

uxS(n)
− uxS(n−1)

≤ qxS(n)
wqynuxS(n)

w∗qxS(n)
,

which gives

‖qynuxS(n)
‖ > n5.
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Let an := 〈yn,yn〉
‖yn‖2 . Since {anb : b ∈ C∗(an)} is a norm-dense ideal of C∗(an), there

is bn ∈ C∗(an)+ such that

‖anbn‖ ≤ 1 and ‖anbnuxS(n)
‖ > n5.

Define xn := ynb
1/2
n /‖yn‖. Then clearly (xn)n∈N is an orthogonal sequence with

〈xn, xn〉 = anbn. Let z :=
∑∞

n=1 xn/n
2 ∈ E (notice that ‖xn‖ ≤ 1). As in (3.4),

since Φ preserves orthogonality, for any m ∈ N we have

〈Φ(z), Φ(z)〉 ≥ b1/2
m 〈ym, ym〉uxS(m)

b1/2
m /(m4‖ym‖2) = ambmuxS(m)

/m4

(because of Relation (3.6) as well as the facts that b
1/2
m ∈ qxS(m)

A∗∗qxS(m)
and

uxS(m)
∈ Z(qxS(n)

A∗∗qxS(n)
)+). This gives the contradiction that ‖Φ(z)‖2 > m for

all m ∈ N.

For any x ∈ E, we set vx := c(ux). By Lemmas 3.1, 2.1 and 2.2(e), we have

〈Φ(y), Φ(x)〉 = 〈y, x〉 qxvx = 〈y, x〉 vx (y ∈ E).(3.9)

Moreover, by Lemma 2.1, the net (vxS
)S∈F is also bounded. Let v ∈ Z(A∗∗)+ be

the weak-*-limit of a subnet of (vxS
)S∈F. Note that if S ∈ F and x ∈ S, then by

Lemmas 2.2(e) and 2.1 as well as Relations (3.7) and (3.8), we have

〈y, x〉vxS
= 〈y, x〉qxqxS

vxS
= 〈y, x〉ux = 〈Φ(y), Φ(x)〉 (y ∈ E).

Therefore,

〈Φ(y), Φ(x)〉 = 〈y, x〉 v (y ∈ E, x ∈ M).(3.10)

If I is the closed two-sided ideal of A generated by {〈y, x〉 : y ∈ E, x ∈ M},
then Iv ⊆ A. For any z ∈ E · I \ {0}, one has zv ∈ E. On the other hand, as

〈z, z〉vz ∈ A (see (3.9)), we know that zvz ∈ E (by Lemma 2.2(b)). Furthermore,

one has

〈x, z〉 vz = 〈Φ(x), Φ(z)〉 = v 〈x, z〉 = 〈x, z〉 v (x ∈ M).

This shows that the element z(v − vz) in E is orthogonal to any x ∈ M . This

forces zv = zvz (by the maximality of M). As a consequence,

〈Φ(x), Φ(y)〉 a = 〈x, ya〉 vya = 〈x, y〉 av (x, y ∈ E, a ∈ I).

If q is the central open projection in A∗∗ with I = A∩ qA∗∗q (see e.g. [20, §3.11]),

then q is the weak-*-limit of a net in I, and we have

〈Φ(x), Φ(y)〉 q = v 〈x, y〉 q (x, y ∈ E).(3.11)

We now claim that φ : a 7→ qa is an injection from A onto qA (which is a

C∗-subalgebra of A∗∗ as φ is a ∗-homomorphism). Indeed, if a ∈ ker φ, then
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〈x, ya〉 = 〈x, y〉qa = 0 (for every x ∈ M and y ∈ E), and the maximality of M

as well as the fullness of E will imply that a = 0. Consequently, φ induces a

∗-isomorphism φ̃ : M(A) → M(qA).

By Equation (3.11) and the fullness of E, we see that v induces an element

m ∈ Z(M(qA))+ such that

q 〈Φ(x), Φ(y)〉 = m(q 〈x, y〉) (x, y ∈ E).

If u := (φ̃)−1(m), then u ∈ Z(M(A))+ and the injectivity of φ gives the required

relation

〈Φ(x), Φ(y)〉 = u 〈x, y〉 (x, y ∈ E).

�

Suppose that v ∈ M(JE). Since E is a Hilbert JE-module, it becomes a unital

right Banach M(JE)-module in a canonical way. We denote by Rv : E → E the

right multiplication of v, i.e., Rv(x) = xv (x ∈ E).

Corollary 3.3. Suppose that Φ is an orthogonality preserving A-module map.

Denote by uΦ the unique element in Z(M(JE))+ associated with Φ as in Theorem

3.2. Set wΦ := u
1/2
Φ .

(a) JFΦ
= uΦJE and ker Φ = ker RwΦ

. Moreover, there is a Hilbert A-module

isomorphism Θ : EwΦ → FΦ such that Φ = Θ ◦ RwΦ
. Consequently, the induced

map Φ0 : E → FΦ is adjointable with Φ∗
0 being orthogonality preserving.

(b) If Φ is injective, then Φ−1 : Φ(E) → E is also orthogonality preserving.

(c) If JFΦ
= JE, then EwΦ is dense in E and Φ is injective.

Proof. (a) The first equality follows directly from Theorem 3.2. As ‖Φ(x)‖ =

‖RwΦ
(x)‖ (x ∈ E), we see that ker Φ = ker RwΦ

. Thus, we can define Θ : EwΦ →
F by Θ(RwΦ

(x)) := Φ(x). Since Θ preserves the A-valued inner products, it

extends to a Hilbert A-module isomorphism from EwΦ onto FΦ that satisfies the

required condition. Furthermore, it is easy to see that both RwΦ
: E → EwΦ and

Θ are adjointable, and so is Φ0. Finally, as Φ∗
0 = RwΦ

◦Θ−1, we see that Φ∗
0 also

preserves orthogonality.

(b) Suppose that a ∈ JE with auΦ = 0. Then awΦ = 0 as wΦ ∈ C∗(uΦ) and so,

xa ∈ ker Φ for any x ∈ E (by part (a)). As Φ is injective and E is a full Hilbert
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JE-module, we have a = 0. Consequently, if x, y ∈ E satisfying 〈Φ(x), Φ(y)〉 = 0,

then by Theorem 3.2, 〈x, y〉 = 0.

(c) Part (a) tells us that uΦJE is dense in JFΦ
= JE, and so, wΦJE ⊇ wΦ(wΦJE)

is dense in JE. Consequently, EwΦ = (E ·JE)wΦ is dense in E. By part (a) again,

we see that E is isomorphic to FΦ. Moreover, if x ∈ ker RwΦ
, then 〈x, ywΦ〉 =

〈xwΦ, y〉 = 0 for any y ∈ E, which implies that x = 0. Consequently, part (a)

tells us that ker Φ = {0}. �

By Corollary 3.3(a), if Φ : E → F is an orthogonality preserving A-module

map with dense range, then F and Φ can be represented by an element wΦ ∈
Z(M(JE))+, up to an isomorphism. On the other hand, Φ might not have closed

range even if it is injective (see Example 3.5(b) below), and Corollary 3.3(b) does

not give us any good information about Φ−1. Furthermore, it is not true that

all orthogonality preserving A-module maps are adjointable (see Example 3.5(c)

below), and it is only true if we restrict the range of the map.

Theorem 3.4. Let Φ : E → F be an orthogonality preserving A-module map

(not assumed to be bounded), FΦ := Φ(E), and JE be the closed two-sided ideal

generated by the inner products of elements in E.

(a) If JFΦ
= JE, there is a Hilbert A-module isomorphism Θ : E → FΦ such that

Φ(x) = Θ(xwΦ) (x ∈ E).

(b) If Φ is bijective, then JF = JE and there is a unique invertible w ∈ Z(M(JE))+

such that x 7→ Φ(x)w−1 is a Hilbert A-module isomorphism from E onto F .

Proof. (a) This follows directly from Corollary 3.3.

(b) By Lemma 2.2(f), we have JF ⊆ JE and we might assume that E is full.

Notice that Φ−1 : F → E is an orthogonality preserving A-module map because

of Corollary 3.3(b). Thus, Theorem 3.2 gives uΦ−1 ∈ Z(M(JF ))+ such that

〈x, y〉 = 〈Φ−1(Φ(x)), Φ−1(Φ(y))〉 = uΦ−1uΦ〈x, y〉 (x, y ∈ E).

As E is full, the above implies that for any a ∈ A, one has a = uΦ−1uΦa ∈
uΦ−1JF ⊆ JF (by Corollary 3.3(a)). This shows that JF = A and uΦ is invertible

(and so is wΦ). Now, part (b) follows directly from part (a) (note that the

uniqueness of w follows from the uniqueness of uΦ). �
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We remark that in the case of complex Hilbert spaces (i.e., A = C), the con-

dition that JΦ(E) = JE is the same as Φ being nonzero. However, in the general

case, one cannot even replace the requirement JΦ(E) = JE in Theorem 3.4(a) to

Φ being either injective or surjective (see Example 3.5(a)&(d) below; note that

a Hilbert A-module isomorphism is isometric). We remark also that even in the

situation of Theorem 3.4(a), the submodule Φ(E) need not be closed in F and

wΦ need not be invertible (see Example 3.5(b) below).

Example 3.5. (a) Let A := C[0, 1], E := C[0, 1] and F := C0(0, 1]. If a ∈ A+

is given by a(t) := t (t ∈ [0, 1]) and Φ : E → F is defined by Φ(x) := xa,

then Φ is an injective orthogonality preserving A-module map. However, there

is no isometric A-module map from E into F . Suppose on the contrary that

Θ : E → F is such a map. Then Θ(b) = Θ(1)b (b ∈ A). Since f := Θ(1) is in

C0(0, 1], one can find t0 ∈ (0, 1) such that |f(t)| < 1/2 for t ≤ t0. Now, if b ∈ A

such that ‖b‖ = 1 and b vanishes on [t0, 1], then ‖Θ(b)‖ ≤ 1/2 < 1 = ‖b‖ which

is a contradiction.

(b) Let A := C0(0, 1] and a ∈ A+ be the function defined by a(t) := t (t ∈ (0, 1]).

If we set E := A and F := A, and define Φ : E → F by Φ(x) := xa, then Φ is

an orthogonality preserving A-module map with dense range and JFΦ
= A = JE,

but Φ is not surjective, and a = wΦ is not invertible in M(A).

(c) Let A := C0(0, 1), E := {f ∈ A : f(1/2) = 0}, F := A and Φ : E → F be

the canonical injection. Then Φ is an orthogonality preserving A-module map

with closed range and JFΦ
= JE, but Φ is not an adjointable map from E into

F . Indeed, suppose that Φ is adjointable, and g ∈ F with g(1/2) 6= 0. Then

〈Φ∗(g), f〉E − 〈g, f〉F = 0 for any f ∈ E ⊆ F , which implies that Φ∗(g) − g = 0

(because 0 is the only element in F being orthogonal to E). Thus, we have a

contradiction g = Φ∗(g) ∈ E.

(d) Let A = C ⊕ C, E = A and F = C ⊕ {0} ⊆ E. Define Φ(x) := x(1, 0) (for

any x ∈ E). Then Φ is a surjective orthogonality preserving A-module map, but

E � F .

Remark 3.6. Since E and F can be embedded into their respective linking al-

gebras, some readers may consider the possibility of extending the orthogonality

preserving map Φ to a disjointness preserver between the linking algebras, and
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then use the corresponding results for disjointness preservers in the literature

(e.g., [24, 5, 9, 3, 17, 25, 16, 4, 15]) to obtain Theorem 3.2. However, in order to

extend Φ to a disjointness preserver on the linking algebra, one needs a canonical

map from K(E) into K(F ) which is compatible with Φ. It seems difficult to

obtain such a map because Φ is not even assumed to be bounded. Nevertheless,

after obtaining Theorem 3.2, we can use it to show that such an extension is

possible, but we do not see any easy way to obtain it without our main theorems.

Readers are referred to [14, §4] for the details.
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