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Abstract. In this paper, we introduce a broad class of nonlinear mappings
in a Hilbert space which contains the classes of nonexpansive mappings, non-

spreading mappings, hybrid mappings and contractive mappings. Then we
prove fixed point theorems for the class of such mappings. Using these results,
we prove well-known and new fixed point theorems in a Hilbert space. We

finally give an open problem which is related to nonspreading mappings and
hybrid mappings.

1. Introduction

Let H be a real Hilbert space and let C be a nonempty subset of H. A mapping
T : C → H is said to be nonexpansive [18], nonspreading [13], and hybrid [19] if

∥Tx − Ty∥ ≤ ∥x − y∥ ,

2∥Tx − Ty∥2 ≤ ∥Tx − y∥2 + ∥Ty − x∥2

and
3∥Tx − Ty∥2 ≤ ∥x − y∥2 + ∥Tx − y∥2 + ∥Ty − x∥2

for all x, y ∈ C, respectively; see also [7], [8] and [20]. These mappings are indepen-
dent and they are deduced from a firmly nonexpansive mapping in a Hilbert space;
see [19]. A mapping F : C → H is said to be firmly nonexpansive if

∥Fx − Fy∥2 ≤ ⟨x − y, Fx − Fy⟩

for all x, y ∈ C; see, for instance, Browder [2], Goebel and Kirk [5], and Kohsaka
and Takahashi [12]. A mapping T : C → H is said to be contractive, contractively
nonspreading, and contractively hybrid if there exist r ∈ [0, 1), t ∈ [0, 1

2 ) and s ∈
[0, 1

3 ) such that
∥Tx − Ty∥ ≤ r ∥x − y∥ ,

2∥Tx − Ty∥2 ≤ t{∥Tx − y∥2 + ∥Ty − x∥2}
and

3∥Tx − Ty∥2 ≤ s{∥x − y∥2 + ∥Tx − y∥2 + ∥Ty − x∥2}
for all x, y ∈ C, respectively; see [6]. Recently Kawasaki and Takahashi [10] intro-
duced the following nonlinear mapping in a Hilbert space. A mapping T from C
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into H is said to be widely generalized hybrid if there exist α, β, γ, δ, ε, ζ ∈ R such
that

α∥Tx − Ty∥2 + β∥x−Ty∥2 + γ∥Tx − y∥2 + δ∥x − y∥2

+ max{ε∥x − Tx∥2, ζ∥y − Ty∥2} ≤ 0

for any x, y ∈ C; see also [11].
In this paper, motivated by these mappings, we introduce a broad class of non-

linear mappings in a Hilbert space which contains the classes of nonexpansive map-
pings, nonspreading mappings, hybrid mappings, contractive mappings, contrac-
tively nonspreading mappings and contractively hybrid mappings. Then we prove
fixed point theorems for the class of such mappings. Using these results, we prove
well-known and new fixed point theorems in a Hilbert space. We finally give an
open problem which is related to nonspreading mappings and hybrid mappings.

2. Preliminaries

Let H be a real Hilbert space with inner product ⟨·, ·⟩ and norm ∥·∥, respectively.
We denote the strong convergence and the weak convergence of {xn} to x ∈ H by
xn → x and xn ⇀ x, respectively. Let A be a nonempty subset of H. We denote
by coA the closure of the convex hull of A. In a Hilbert space, it is known that

(2.1) ∥αx + (1 − α)y∥2 = α∥x∥2 + (1 − α)∥y∥2 − α(1 − α)∥x − y∥2

for all x, y ∈ H and α ∈ R; see [18]. Furthermore, in a Hilbert space, we have that

(2.2) 2⟨x − y, z − w⟩ = ∥x − w∥2 + ∥y − z∥2 − ∥x − z∥2 − ∥y − w∥2

for all x, y, z, w ∈ H. Let C be a nonempty subset of H and let T be a mapping
from C into H. We denote by F (T ) the set of fixed points of T . A mapping T
from C into H with F (T ) ̸= ∅ is called quasi-nonexpansive if ∥Tx − u∥ ≤ ∥x − u∥
for any x ∈ C and u ∈ F (T ). A nonexpansive mapping with a fixed point is quasi-
nonexpansive. We also know that a nonspreading mapping and a hybrid mapping
which have fixed points are quasi-nonexpansive; see [8] and [19]. It is well-known
that if T : C → H is quasi-nonexpansive and C is closed and convex, then F (T )
is closed and convex; see Ito and Takahashi [9]. It is not difficult to prove such a
result in a Hilbert space. In fact, for proving that F (T ) is closed, take a sequence
{zn} ⊂ F (T ) with zn → z. Since C is weakly closed, we have z ∈ C. Furthermore,
from

∥z − Tz∥ ≤ ∥z − zn∥ + ∥zn − Tz∥ ≤ 2∥z − zn∥ → 0,

we have that z is a fixed point of T and so F (T ) is closed. Let us show that F (T )
is convex. For x, y ∈ F (T ) and α ∈ [0, 1], put z = αx + (1 − α)y. Then we have
from (2.1) that

∥z − Tz∥2 = ∥αx + (1 − α)y − Tz∥2

= α∥x − Tz∥2 + (1 − α)∥y − Tz∥2 − α(1 − α)∥x − y∥2

≤ α∥x − z∥2 + (1 − α)∥y − z∥2 − α(1 − α)∥x − y∥2

= α(1 − α)2∥x − y∥2 + (1 − α)α2∥x − y∥2 − α(1 − α)∥x − y∥2

= α(1 − α)(1 − α + α − 1)∥x − y∥2

= 0.
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This implies Tz = z. Thus F (T ) is convex. Let D be a nonempty closed convex
subset of H and x ∈ H. We know that there exists a unique nearest point z ∈ D
such that ∥x− z∥ = infy∈D ∥x−y∥. We denote such a correspondence by z = PDx.
The mapping PD is called the metric projection of H onto D. It is known that PD

is nonexpansive and

⟨x − PDx, PDx − u⟩ ≥ 0

for all x ∈ H and u ∈ D; see [18] for more details.
Let l∞ be the Banach space of bounded sequences with supremum norm. Let

µ be an element of (l∞)∗ (the dual space of l∞). Then, we denote by µ(f) the
value of µ at f = (x1, x2, x3, . . . ) ∈ l∞. Sometimes, we denote by µn(xn) the
value µ(f). A linear functional µ on l∞ is called a mean if µ(e) = ∥µ∥ = 1, where
e = (1, 1, 1, . . . ). A mean µ is called a Banach limit on l∞ if µn(xn+1) = µn(xn).
We know that there exists a Banach limit on l∞. If µ is a Banach limit on l∞, then
for f = (x1, x2, x3, . . . ) ∈ l∞,

lim inf
n→∞

xn ≤ µn(xn) ≤ lim sup
n→∞

xn.

In particular, if f = (x1, x2, x3, . . . ) ∈ l∞ and xn → a ∈ R, then we have µ(f) =
µn(xn) = a. See [17] for the proof of existence of a Banach limit and its other
elementary properties. Using means and the Riesz theorem, we can obtain the
following result; see [14], [15], [16] and [17].

Lemma 2.1. Let H be a Hilbert space, let {xn} be a bounded sequence in H and
let µ be a mean on l∞. Then there exists a unique point z0 ∈ co{xn | n ∈ N} such
that

µn⟨xn, y⟩ = ⟨z0, y⟩, ∀y ∈ H.

3. Fixed point theorems

Let H be a real Hilbert space and let C be a nonempty subset of H. A mapping
T from C into H is called symmetric generalized hybrid if there exist α, β, γ, δ ∈ R
such that

α∥Tx − Ty∥2 + β(∥x − Ty∥2+∥Tx − y∥2) + γ∥x − y∥2(3.1)

+ δ(∥x − Tx∥2 + ∥y − Ty∥2) ≤ 0

for all x, y ∈ C. Such a mapping T is also called (α, β, γ, δ)-symmetric generalized
hybrid. If α = 1, β = δ = 0 and γ = −1 in (3.1), then the mapping T is nonexpan-
sive. If α = 2, β = −1 and γ = δ = 0 in (3.1), then the mapping T is nonspreading.
Furthermore, if α = 3, β = γ = −1 and δ = 0 in (3.1), then the mapping T is
hybrid. Recently Kawasaki and Takahashi [10] introduced the following nonlinear
mapping in a Hilbert space and they proved a fixed point theorem and a mean
convergence theorem for the mappings. Let H be a real Hilbert space and let C
be a nonempty subset of H. A mapping T from C into H is said to be widely
generalized hybrid if there exist α, β, γ, δ, ε, ζ ∈ R such that

α∥Tx − Ty∥2 + β∥x−Ty∥2 + γ∥Tx − y∥2 + δ∥x − y∥2(3.2)

+ max{ε∥x − Tx∥2, ζ∥y − Ty∥2} ≤ 0
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for any x, y ∈ C. Such a mapping T is called (α, β, γ, δ, ε, ζ)-widely generalized
hybrid. Replacing the variables x and y in (3.2), we have that

α∥Ty − Tx∥2 + β∥y−Tx∥2 + γ∥Ty − x∥2 + δ∥y − x∥2(3.3)

+ max{ε∥y − Ty∥2, ζ∥x − Tx∥2} ≤ 0.

From (3.2) and (3.3) we have that

2α∥Ty − Tx∥2 + (β + γ)(∥y − Tx∥2 + ∥Ty − x∥2) + 2δ∥y − x∥2(3.4)

+ max{ε∥x − Tx∥2, ζ∥y − Ty∥2} + max{ε∥y − Ty∥2, ζ∥x − Tx∥2} ≤ 0.

From ε∥x − Tx∥2, ζ∥y − Ty∥2 ≤ max{ε∥x − Tx∥2, ζ∥y − Ty∥2}, we have that

(3.5) ε∥x − Tx∥2 + ζ∥y − Ty∥2 ≤ 2max{ε∥x − Tx∥2, ζ∥y − Ty∥2}.
Similarly, we have that

(3.6) ε∥y − Ty∥2 + ζ∥x − Tx∥2 ≤ 2max{ε∥y − Ty∥2, ζ∥x − Tx∥2}.
Consequently, we have from (3.4), (3.5) and (3.6) that

2α∥Ty − Tx∥2+(β + γ)(∥y − Tx∥2 + ∥Ty − x∥2) + 2δ∥y − x∥2(3.7)

+
1
2
(ε + ζ)(∥x − Tx∥2 + ∥y − Ty∥2) ≤ 0.

Such a mapping T is symmetric generalized hybrid. We first prove a fixed point
theorem for symmetric generalized hybrid mappings in a Hilbert space.

Theorem 3.1. Let H be a real Hilbert space, let C be a nonempty closed convex
subset of H and let T be an (α, β, γ, δ)-symmetric generalized hybrid mapping from
C into itself such that the conditions (1) α + 2β + γ ≥ 0, (2) α + β + δ > 0 and
(3) δ ≥ 0 hold. Then T has a fixed point if and only if there exists z ∈ C such that
{Tnz : n = 0, 1, . . .} is bounded. In particular, a fixed point of T is unique in the
case of α + 2β + γ > 0 on the condition (1).

Proof. Suppose that T has a fixed point z. Then {Tnz : n = 0, 1, . . .} = {z} and
hence {Tnz : n = 0, 1, . . .} is bounded. Conversely, suppose that there exists z ∈ C
such that {Tnz : n = 0, 1, . . .} is bounded. Since T is an (α, β, γ, δ)-symmetric
generalized hybrid mapping of C into itself, we have that

α∥Tx − Tn+1z∥2 + β(∥x − Tn+1z∥2 + ∥Tx − Tnz∥2) + γ∥x − Tnz∥2

+ δ(∥x − Tx∥2 + ∥Tnz − Tn+1z∥2) ≤ 0

for all n ∈ N ∪ {0} and x ∈ C. Since {Tnz} is bounded, we can apply a Banach
limit µ to both sides of the inequality. Since µn∥Tx − Tnz∥2 = µn∥Tx − Tn+1z∥2

and µn∥x − Tnz∥2 = µn∥x − Tnz∥2, we have that

(α + β)µn∥Tx − Tnz∥2+(β + γ)µn∥x − Tnz∥2

+ δ(∥x − Tx∥2 + µn∥Tnz − Tn+1z∥2) ≤ 0.

Furthermore, since

µn∥Tx − Tnz∥2 = ∥Tx − x∥2 + 2µn⟨Tx − x, x − Tnz⟩ + µn∥x − Tnz∥2,

we have that

(α + β + δ)∥Tx − x∥2 + 2(α + β)µn⟨Tx − x, x − Tnz⟩
+ (α + 2β + γ)µn∥x − Tnz∥2 + δµn∥Tnz − Tn+1z∥2 ≤ 0.
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From (1) α + 2β + γ ≥ 0 and (3) δ ≥ 0, we have that

(3.8) (α + β + δ)∥Tx − x∥2 + 2(α + β)µn⟨Tx − x, x − Tnz⟩ ≤ 0.

Since there exists p ∈ H from Lemma 2.1 such that

µn⟨y, Tnz⟩ = ⟨y, p⟩
for all y ∈ H, we have from (3.8) that

(3.9) (α + β + δ)∥Tx − x∥2 + 2(α + β)⟨Tx − x, x − p⟩ ≤ 0.

Since C is closed and convex, we have that

p ∈ co{Tnx : n ∈ N} ⊂ C.

Putting x = p, we obtain from (3.9) that

(3.10) (α + β + δ)∥Tp − p∥2 ≤ 0.

We have from (2) α + 2β + δ > 0 that ∥Tp− p∥2 ≤ 0. This implies that p is a fixed
point in T .

Next suppose that α + 2β + γ > 0. Let p1 and p2 be fixed points of T . Then we
have that

α∥Tp1 − Tp2∥2 + β(∥p1 − Tp2∥2 + ∥Tp1 − p2∥2) + γ∥p1 − p2∥2

+ δ(∥p1 − Tp1∥2 + ∥p2 − Tp2∥2) ≤ 0

and hence (α + 2β + γ)∥p1 − p2∥2 ≤ 0. We have from α + 2β + γ > 0 that p1 = p2.
Therefore a fixed point of T is unique. This completes the proof. ¤

As a direct consequence of Theorem 3.1, we obtain the following theorem.

Theorem 3.2. Let H be a Hilbert space, let C be a nonempty bounded closed convex
subset of H and let T be an (α, β, γ, δ)-symmetric generalized hybrid mapping from
C into itself such that the conditions (1) α + 2β + γ ≥ 0, (2) α + β + δ > 0 and (3)
δ ≥ 0 hold. Then T has a fixed point. In particular, a fixed point of T is unique in
the case of α + 2β + γ > 0 on the condition (1).

Using Theorem 3.1, we also obtain the following theorem.

Theorem 3.3. Let H be a real Hilbert space, let C be a nonempty closed convex
subset of H and let T be an (α, β, γ, δ)-symmetric generalized hybrid mapping from
C into itself such that the conditions (1) α + 2β + γ > 0, (2) β ≤ 0, (3) β + γ ≤ 0,
and (4) β + δ ≥ 0 hold. Then

(i) T has a unique fixed point u in C;
(ii) for every z ∈ C, the sequence {Tnz} converges to u.

Proof. Let T be an (α, β, γ, δ)-symmetric generalized hybrid mapping of C into
itself satisfying four conditions (1), (2), (3) and (4) in the theorem. Take x ∈ C.
Replacing x by Tnx and y by Tn+1x in (3.1), we have that

α∥Tn+1x − Tn+2x∥2 + β(∥Tnx − Tn+2x∥2 + ∥Tn+1x − Tn+1x∥2)(3.11)

+ γ∥Tnx − Tn+1x∥2 + δ(∥Tnx − Tn+1x∥2 + ∥Tn+1x − Tn+2x∥2) ≤ 0

for all n ∈ N ∪ {0}. From

∥Tnx − Tn+2x∥2 ≤ ∥Tnx − Tn+1x∥2 + ∥Tn+1x − Tn+2x∥2

+ 2∥Tnx − Tn+1x∥∥Tn+1x − Tn+2x∥
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and (2) β ≤ 0, we have that

β∥Tnx − Tn+2x∥2 ≥ β∥Tnx − Tn+1x∥2 + β∥Tn+1x − Tn+2x∥2(3.12)

+ 2β∥Tnx − Tn+1x∥∥Tn+1x − Tn+2x∥.

From (3.11) and (3.12) we have that

(α + β)∥Tn+1x−Tn+2x∥2 + (β + γ)∥Tnx − Tn+1x∥2

+ 2β∥Tnx − Tn+1x∥∥Tn+1x − Tn+2x∥
+ δ(∥Tnx − Tn+1x∥2 + ∥Tn+1x − Tn+2x∥2) ≤ 0.

From (4) β + δ ≥ 0 we have that

(α + β)∥Tn+1x−Tn+2x∥2 + (β + γ)∥Tnx − Tn+1x∥2

− 2δ∥Tnx − Tn+1x∥∥Tn+1x − Tn+2x∥
+ δ(∥Tnx − Tn+1x∥2 + ∥Tn+1x − Tn+2x∥2) ≤ 0

and hence

(α + β)∥Tn+1x−Tn+2x∥2 + (β + γ)∥Tnx − Tn+1x∥2

+ δ(∥Tnx − Tn+1x∥ − ∥Tn+1x − Tn+2x∥)2 ≤ 0.

Since δ ≥ 0 from (2) and (4), we obtain that

(3.13) (α + β)∥Tn+1x − Tn+2x∥2 + (β + γ)∥Tnx − Tn+1x∥2 ≤ 0.

Using (1) α + 2β + γ > 0 and (3) β + γ ≤ 0, we obtain that α + β > −(β + γ) ≥ 0.
Then we have from (3.13) that

(3.14) ∥Tn+1x − Tn+2x∥2 ≤ −(β + γ)
α + β

∥Tnx − Tn+1x∥2

and

(3.15) 0 ≤ −(β + γ)
α + β

< 1.

Putting λ = (−(β+γ)
α+β )

1
2 , we have that for any n ∈ N,

∥x − Tnx∥ ≤ ∥x − Tx∥ + ∥Tx − T 2x∥ + · · · + ∥Tn−1x − Tnx∥
≤ ∥x − Tx∥ + λ∥x − Tx∥ + · · · + λn−1∥x − Tx∥
≤ ∥x − Tx∥ + λ∥x − Tx∥ + · · · + λn−1∥x − Tx∥ + . . .

= ∥x − Tx∥(1 + λ + · · · + λn−1 + . . . )

= ∥x − Tx∥ 1
1 − λ

.

Thus the sequence {Tnx} is bounded. On the other hand, from α+2β +γ > 0 and
β + γ ≤ 0, we have α + β > 0. Furthermore from δ ≥ 0, we have α + β + δ > 0.
Thus we have from Theorem 3.1 that T has a unique fixed point u in X.

Let us prove (ii). We have from (3.1) that for every x, y ∈ C,

α∥Tn+1x − Ty∥2 + β(∥Tnx − Ty∥2 + ∥Tn+1x − y∥2)(3.16)

+ γ∥Tnx − y∥2 + δ(∥Tnx − Tn+1x∥2 + ∥y − Ty∥2) ≤ 0
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for all n ∈ N ∪ {0}. From δ ≥ 0 that

α∥Tn+1x − Ty∥2+β(∥Tnx − Ty∥2 + ∥Tn+1x − y∥2)(3.17)

+ γ∥Tnx − y∥2 ≤ 0.

Since {Tnx} is bounded, we can apply a Banach limit µ to both sides of the in-
equality. Thus we have that

(α + β)µn∥Tnx − Ty∥2 + (β + γ)µn∥Tnx − y∥2 ≤ 0

and hence

(3.18) µn∥Tnx − Ty∥2 ≤ −(β + γ)
α + β

µn∥Tnx − y∥2.

We define a function g : C → R as follows:

g(y) = µn∥Tnx − y∥, ∀y ∈ C.

We know from [17] that g : C → R is a continuous function. For any z ∈ C, we
have from (3.14) that {Tmz}∞m=1 is a Cauchy sequence in C. Since C is complete,
{Tmz} converges. Let Tmz → u. We also have from (3.18) that

g(Tm+1z) = µn∥Tnx − Tm+1z∥2 ≤ rµn∥Tnx − Tmz∥2 = rg(Tmz),

where r = −(β+γ)
α+β . Since g is continuous, we obtain that g(u) ≤ rg(u). Thus we

have that
µn∥Tnx − u∥2 = g(u) ≤ rg(u) = rµn∥Tnx − u∥2.

From 0 ≤ r < 1, we have µn∥Tnx − u∥2 = 0. Since

∥Tu − u∥2 = ∥Tu − Tnx∥2 + ∥Tnx − u∥2 + 2⟨Tu − Tnx, Tnx − u⟩
≤ 2∥Tu − Tnx∥2 + 2∥Tnx − u∥2

for all n ∈ N, we have

∥Tu − u∥2 ≤ 2µn∥Tnx − Tu∥2 + 2µn∥Tnx − u∥2

≤ 2rµn∥Tnx − u∥2 + 2µn∥Tnx − u∥2

= 0.

Then Tu = u. We know already that Tmz → u and a fixed point u of T is unique.
This completes the proof. ¤

Using Theorems 3.1 and 3.3, we prove the following fixed point theorems. Before
proving it, we introduce a more broad class of nonlinear mappings which contains
the class of symmetric generalized hybrid mappings. A mapping T from C into H
is called symmetric more generalized hybrid if there exist α, β, γ, δ, ζ ∈ R such that

α∥Tx−Ty∥2 + β(∥x − Ty∥2 + ∥Tx − y∥2) + γ∥x − y∥2(3.19)

+ δ(∥x − Tx∥2 + ∥y − Ty∥2) + ζ∥x − y − (Tx − Ty)∥2 ≤ 0

for all x, y ∈ C. Such a mapping T is called (α, β, γ, δ, ζ)-symmetric more generalized
hybrid.

Theorem 3.4. Let H be a real Hilbert space, let C be a nonempty closed convex sub-
set of H and let T be an (α, β, γ, δ, ζ)-symmetric more generalized hybrid mapping
from C into itself such that the conditions (1) α+2β +γ ≥ 0, (2) α+β + δ + ζ > 0
and (3) δ + ζ ≥ 0 hold. Then T has a fixed point if and only if there exists z ∈ C
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such that {Tnz : n = 0, 1, . . .} is bounded. In particular, a fixed point of T is unique
in the case of α + 2β + γ > 0 on the condition (1).

Proof. Since T : C → C is an (α, β, γ, δ, ζ)-symmetric more generalized hybrid
mapping, there exist α, β, γ, δ, ζ ∈ R satisfying (3.19). We also have that

∥x − y−(Tx − Ty)∥2 = ∥x − Tx∥2 + ∥y − Ty∥2(3.20)

− ∥x − Ty∥2 − ∥y − Tx∥2 + ∥x − y∥2 + ∥Tx − Ty∥2

for all x, y ∈ C. Thus we obtain from (3.19) that

(α + ζ)∥Tx − Ty∥2 + (β − ζ)(∥x − Ty∥2 + ∥Tx − y∥2)(3.21)

+ (γ + ζ)∥x − y∥2 + (δ + ζ)(∥x − Tx∥2 + ∥y − Ty∥2) ≤ 0.

The conditions (1) α + 2β + γ ≥ 0 and (2) α + β + δ + ζ > 0 are equivalent to
(α + ζ) + 2(β − ζ) + (γ + ζ) ≥ 0 and (α + ζ) + (β − ζ) + (δ + ζ) > 0, respectively.
Furthermore, since (3) δ + ζ ≥ 0 holds, we have the desired result from Theorem
3.1. ¤

Theorem 3.5. Let H be a real Hilbert space, let C be a nonempty closed convex
subset of H and let T be an (α, β, γ, δ, ζ)-symmetric more generalized hybrid map-
ping from C into itself such that the conditions (1) α + 2β + γ > 0, (2) β ≤ ζ, (3)
β + γ ≤ 0, and (4) β + δ ≥ 0 hold. Then

(i) T has a unique fixed point u in C;
(ii) for every z ∈ C, the sequence {Tnz} converges to u.

Proof. As in the proof of Theorem 3.4, we have that

(α + ζ)∥Tx − Ty∥2 + (β − ζ)(∥x − Ty∥2 + ∥Tx − y∥2)(3.22)

+ (γ + ζ)∥x − y∥2 + (δ + ζ)(∥x − Tx∥2 + ∥y − Ty∥2) ≤ 0.

The conditions (1) α + 2β + γ > 0 and (2) β ≤ ζ are equivalent to (α + ζ) + 2(β −
ζ) + (γ + ζ) > 0 and β − ζ ≤ 0, respectively. Furthermore, since (3) β + γ ≤ 0 and
(4) β + δ ≥ 0 are equivalent to (β − ζ) + (γ + ζ) ≤ 0 and (β − ζ) + (δ + ζ) ≥ 0
respectively, we have the desired result from Theorem 3.3. ¤

4. Applications

In this section, we prove well-known and new fixed point theorems in a Hilbert
space by using fixed point theorems obtained in Section 3.

Let H be a Hilbert space and let C be a nonempty subset of H. Then U : C → H
is called a widely strict pseudo-contraction if there exists r ∈ R with r < 1 such
that

∥Ux − Uy∥2 ≤ ∥x − y∥2 + r∥(I − U)x − (I − U)y∥2, ∀x, y ∈ C.

We call such U a widely r-strict pseudo-contraction. If 0 ≤ r < 1, then U is a
strict pseudo-contraction; see [4]. Furthermore, if r = 0, then U is nonexpansive.
Conversely, let T : C → H be a nonexpansive mapping and define U : C → H by
U = 1

1+nT + n
1+nI for all x ∈ C and n ∈ N. Then U is a widely (−n)-strict pseudo-

contraction. In fact, from the definition of U , it follows that T = (1 + n)U − nI.
Since T is nonexpansive, we have that for any x, y ∈ C,

∥(1 + n)Ux − nx − ((1 + n)Uy − ny)∥2 ≤ ∥x − y∥2
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and hence
∥Ux − Uy∥2 ≤ ∥x − y∥2 − n∥(I − U)x − (I − U)y∥2.

Using Theorem 3.4, we first prove the following fixed point theorem.

Theorem 4.1. Let H be a real Hilbert space, let C be a nonempty bounded closed
convex subset of H and let U be a widely strict pseudo-contraction from C into
itself, i.e., there exists r ∈ R with r < 1 such that

(4.1) ∥Ux − Uy∥2 ≤ ∥x − y∥2 + r∥(I − U)x − (I − U)y∥2, ∀x, y ∈ C.

Then U has a fixed point in C.

Proof. We first assume that r ≤ 0. We have from (4.1) that for any x, y ∈ C,

(4.2) ∥Ux − Uy∥2 − ∥x − y∥2 − r∥(I − U)x − (I − U)y∥2 ≤ 0.

Then U is a (1, 0,−1, 0,−r)-symmetric more generalized hybrid mapping. Further-
more, (1) α+2β+γ = 1−1 ≥ 0, (2) α+β+δ+ζ = 1−r > 0 and (3) δ+ζ = −r ≥ 0
in Theorem 3.4 are satisfied. Thus U has a fixed point from Theorem 3.4. Assume
that 0 ≤ r < 1 and define a mapping T as follows:

Tx = λx + (1 − λ)Ux, ∀x ∈ C,

where r ≤ λ < 1. Then T is a mapping from C into itself and F (T ) = F (U). From
Tx = λx + (1 − λ)Ux, we also have that

Ux =
1

1 − λ
Tx − λ

1 − λ
x.

Thus we obtain from (4.1) and (2.1) that

0 ≥ ∥ 1
1 − λ

Tx − λ

1 − λ
x − (

1
1 − λ

Ty − λ

1 − λ
y)∥2

− ∥x − y∥2 − r∥x − y − { 1
1 − λ

Tx − λ

1 − λ
x − (

1
1 − λ

Ty − λ

1 − λ
y)}∥2

= ∥ 1
1 − λ

(Tx − Ty) − λ

1 − λ
(x − y)∥2

− ∥x − y∥2 − r∥ 1
1 − λ

(x − y) − 1
1 − λ

(Tx − Ty)∥2

=
1

1 − λ
∥Tx − Ty∥2 − λ

1 − λ
∥x − y∥2

+
1

1 − λ
· λ

1 − λ
∥x − y − (Tx − Ty)∥2 − ∥x − y∥2

− r

(1 − λ)2
∥x − y − (Tx − Ty)∥2

=
1

1 − λ
∥Tx − Ty∥2 − 1

1 − λ
∥x − y∥2 +

λ − r

(1 − λ)2
∥x − y − (Tx − Ty)∥2.

Then T is ( 1
1−λ , 0,− 1

1−λ , 0, λ−r
(1−λ)2 )-symmetric more generalized hybrid. From

1
1 − λ

− 1
1 − λ

= 0,
1

1 − λ
+

λ − r

(1 − λ)2
> 0 and

λ − r
(1 − λ)2

≥ 0,

(1) α + 2β + γ ≥ 0, (2) α + β + δ + ζ > 0 and (3) δ + ζ ≥ 0 in Theorem 3.4 are
satisfied. Thus T has a fixed point in C from Theorem 3.4 and hence U has a fixed
point. This completes the proof. ¤
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Using Theorem 3.3, we can also prove the following fixed point theorem.

Theorem 4.2. Let H be a real Hilbert space, let C be a nonempty closed convex
subset of H and let T : C → C be a contractive mapping, i.e., there exists a real
number r with 0 ≤ r < 1 such that

(4.3) ∥Tx − Ty∥ ≤ r∥x − y∥

for all x, y ∈ C. Then the following hold:
(i) T has a unique fixed point u in C;
(ii) for every z ∈ C, the sequence {Tnz} converges to u.

Proof. We have from (4.3) that

∥Tx − Ty∥2 − r2∥x − y∥2 ≤ 0

for all x, y ∈ C. This implies that T is (1, 0,−r2, 0)-symmetric generalized hybrid.
For α, β, γ, δ in Theorem 3.3, we also have that

α + 2β + γ = 1 − r2 > 0, β = 0 ≤ 0, β + γ = −r2 ≤ 0 and β + δ = 0 ≥ 0.

From Theorem 3.3, we have the desired result. ¤

Using Theorem 3.1, we can prove the following fixed point theorems.

Theorem 4.3. Let H be a real Hilbert space, let C be a nonempty bounded closed
convex subset of H and let T : C → C be contractively nonspreading, i.e., there
exists a real number s with 0 ≤ s < 1

2 such that

∥Tx − Ty∥2 ≤ s{∥Tx − y∥2 + ∥Ty − x∥2}

for all x, y ∈ C. Then T has a unique fixed point u in C.

Proof. Setting r = s
1−s , we have r − rs = s and hence s = r

1+r . From 0 ≤ s < 1
2 ,

we have 0 ≤ r and

r < 1 ⇔ r

1 + r
= s <

1
2
.

Thus we have 0 ≤ r < 1. Furthermore, we have

(1 + r)∥Tx − Ty∥2 ≤ r{∥Tx − y∥2 + ∥Ty − x∥2}

for all x, y ∈ C. This implies that

(1 + r)∥Tx − Ty∥2 − r(∥x − Ty∥2 + ∥Tx − y∥2) ≤ 0

for all x, y ∈ C. That is, T is a (1 + r,−r, 0, 0)-symmetric generalized hybrid
mapping. For α, β, γ, δ in Theorem 3.1, we also have that

α + 2β + γ = 1 − r > 0 , α + β + δ = 1 − r > 0 and δ = 0 ≥ 0.

From Theorem 3.1, we have the desired result. ¤

Theorem 4.4. Let H be a real Hilbert space, let C be a nonempty bounded closed
convex subset of H and let T : C → C be contractively hybrid, i.e., there exists a
real number s with 0 ≤ s < 1

3 and

∥Tx − Ty∥2 ≤ s{∥Tx − y∥2 + ∥Ty − x∥2 + ∥x − y∥2}

for all x, y ∈ C. Then T has a unique fixed point u in C.
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Proof. Setting r = 2s
1−s , we have r − rs = 2s and hence s = r

2+r . From 0 ≤ s < 1
3 ,

we have 0 ≤ r and

r < 1 ⇔ r

2 + r
= s <

1
3
.

Thus we have 0 ≤ r < 1. Furthermore, we have

(2 + r)∥Tx − Ty∥2 ≤ r{∥Tx − y∥2 + ∥Ty − x∥2 + ∥x − y∥2}
for all x, y ∈ C. This implies that

(2 + r)∥Tx − Ty∥2 − r(∥x − Ty∥2 + ∥Tx − y∥2) − r∥x − y∥2 ≤ 0

for all x, y ∈ C. Thus T is a (2+r,−r,−r, 0)-symmetric generalized hybrid mapping.
For α, β, γ, δ in Theorem 3.1, we also have that

α + 2β + γ = 2 − 2r > 0 , α + β + δ = 2 > 0 and δ = 0 ≥ 0.

From Theorem 3.1, we have the desired result. ¤

5. An open problem

In 1967, Browder [3] proved the famous strong convergence theorem with implicit
iteration for nonexpansive mappings in a Hilbert space.

Theorem 5.1 ([3]). Let H be a Hilbert space, let C be a bounded closed convex
subset of H and let T be a nonexpansive mapping of C into C. Fixed u ∈ C and
define a net {yα} in C by

yα = αu + (1 − α)Tyα, ∀α ∈ (0, 1).

Then {yα} converges strongly to Pu as α → +0, where P is the metric projection
of H onto F (T ).

We have not known whether such a theorem for nonspreading mappings and
hybrid mappings holds or not. Putting

Tαx = αu + (1 − α)Tx, ∀x ∈ C

in Browder’s theorem, we can show easily that Tα is a contractive mapping of C
into itself and Tα has a unique fixed point yα in C by Banach [1]. However, it is
difficult to use the above methods for nonspreading mappings and hybrid mappings.
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