
2-LOCAL AUTOMORPHISMS OF OPERATOR ALGEBRAS

JUNG-HUI LIU AND NGAI-CHING WONG

Abstract. A not necessarily continuous, linear or multiplicative function θ from

an algebra A into itself is called a 2-local automorphism if θ agrees with an au-

tomorphism of A at each pair of points in A. In this paper, we study when a

2-local automorphism of a C*-algebra, or a standard operator algebra on a locally

convex space, is an automorphism. In particular, if X is a Fréchet space with a

Schauder basis and A contains all locally compact operators on X, every 2-local

automorphism θ on A is an automorphism.

1. Introduction

Let A be an algebra and θ be a function from A into A. We call θ an automorphism

if θ is bijective, linear, and multiplicative. We call θ a 2-local automorphism if θ agrees

at each pair of points a, b in A with an automorphism θa,b of A, i.e., θ(a) = θa,b(a)

and θ(b) = θa,b(b). Note that θa,b may depend on a, b.

In [16], Šemrl proves that if H is a separable real or complex Hilbert space then

every 2-local automorphism of the algebra L(H) of all continuous linear operators of

H is an automorphism. In [14], Molnár extends this to the following. Let E be a

Banach space with a Schauder basis, and let A be a subalgebra of L(E) containing all

compact operators. Then every 2-local automorphism of A is an automorphism. Note

that in both versions, linearity, surjectivity and continuity are part of the conclusion.
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We are going to extend these results to the case of standard operator algebras on

general locally convex spaces.

Recall that a standard operator algebra on a locally convex space X contains the

algebra F(X) of all continuous finite rank operators. We show, without assuming

linearity, surjectivity or continuity, that every 2-local automorphism θ of F(X) is

an algebra homomorphism. In case X is a Fréchet space with a Schauder basis

and A contains all locally compact operators, we can conclude that every 2-local

automorphism θ on A is an automorphism. This extends recent results of Šemrl [16]

and Molnár [14]. On the other hand, a 2-local automorphism θ of a standard operator

algebra A on a locally convex space X is an algebra homomorphism provided that

the range of θ contains F(X), or θ is continuous in the weak operator topology.

We also study the question when a 2-local automorphism of a C*-algebra is an

automorphism.

We are grateful to Matej Brešar and Peter Šemrl for many helpful suggestions.

Special thanks are due to Lajos Molnár for reading through a preliminary version

of this paper and providing useful advice. We also deeply appreciate the valuable

comments from the Referee.

2. 2-local automorphisms of standard operator algebras on locally

convex spaces

In this paper, the underlying field can be either the real or the complex. We state

some elementary properties of 2-local automorphisms without proofs.

Lemma 2.1. Let θ : A → A be a 2-local automorphism of an algebra A.

(1) θ is homogeneous, that is, θ(λa) = λθ(a) for all a in A and scalar λ.

(2) θ preserves zero products, that is, ab = 0 in A if and only if θ(a)θ(b) = 0.

(3) θ preserves polynomials, that is, θ(p(a)) = p(θ(a)) for all polynomials p.

(4) θ is a Jordan homomorphism in case θ is linear.
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The following is more or less well known, and the proof is rather straightforward

and thus omitted. Note that unless θ below is zero on F(X), those u and g stated

in the statement exist. Here, z ⊗ g with an z in X and a g in X ′ defines the rank at

most one operator (z ⊗ g)(x) = g(x)z, ∀x ∈ X.

Lemma 2.2. Let A(X) and A(Y ) be standard operator algebras on locally convex

spaces X and Y , respectively. Let θ : A(X) → A(Y ) be an algebra homomorphism.

Suppose u ∈ Y and g ∈ X ′ exist such that θ(z ⊗ g)u 6= 0 for some z in X. Define a

linear map T : X → Y by

Tx = θ(x⊗ g)u, for all x in X.

Then T is injective and

θ(A)T = TA, for all A in A.

T is onto in case the range of θ contains F(Y ).

Theorem 2.3. Let A(X) and A(Y ) be standard operator algebras on locally convex

spaces X and Y , respectively. Let θ be an algebra isomorphism from A(X) onto

A(Y ). Then there is a linear σ(X, X ′)–σ(Y, Y ′) homeomorphism T from X onto Y

such that

θ(A) = TAT−1, for all A in A(X).

In case X and Y are Mackey spaces, T is a homeomorphism in the original topologies

of X and Y .

Proof. There is a bijective linear map T satisfying θ(A)T = TA by Lemma 2.2. To

see the weak continuity of T , let {xλ}λ be a weakly null net in X. Note that the

algebra isomorphism θ sends exactly minimal idempotents to minimal idempotents,

that is, sends exactly rank one idempotents x⊗ f to rank one idempotents y ⊗ g in
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this case. Here, f(x) = g(y) = 1. Observe

g(Txλ)y = (y ⊗ g)(Txλ) = θ(x⊗ f)Txλ

= T (x⊗ f)(xλ) = f(xλ)Tx −→ 0.

We thus see that g(Txλ) → 0 for all g in Y ′. Similarly, T−1 is also weakly continuous.

Since weakly continuous linear maps are continuous in Mackey spaces (see, e.g., [15,

p. 158]), the other assertion follows. �

Remark 2.4. When X, Y are Banach spaces, A(X) = L(X), and A(Y ) = L(Y ),

Theorem 2.3 is due to Eidelheit [5]. With a different approach, Mackey [13] shows

this when X, Y are normed linear spaces. In [17], Vukman proves this when X and Y

are bornological locally convex spaces. In an other direction, Šemrl [16] extends this

to arbitrary standard operator algebras on normed spaces. Since normed spaces and

bornological locally convex spaces are Mackey, Theorem 2.3 generalizes all above. On

the other hand, it is possible to extend Theorem 2.3 to ring isomorphisms as in [13].

However, we do not need this generality in this paper.

Some arguments in the proof of following results in this section are borrowed from

Šemrl [16] and Molnár [14]. Indeed, they should know of some statements, too.

However, we usually provide here shorter and more direct approaches.

Theorem 2.5. Every 2-local automorphism θ of the algebra F(X) of continuous

finite rank linear operators on a locally convex space X is an algebra homomorphism.

Proof. First observe that θ preserves the trace of the product of any two elements

a, b in F(X). Indeed,

(2.1) tr θ(a)θ(b) = tr θa,b(a)θa,b(b) = tr θa,b(ab) = tr ab,

where θa,b is the automorphism of F(X) agreeing with θ at both a and b.
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Suppose dim X = n < ∞, and {Eij : 1 ≤ i, j ≤ n} is a set of matrix units. Let∑
i,j λijθ(Eij) = 0. Multiplying both sides by θ(Ers) and making use of (2.1), we see

that λsr = 0 for every pair of r and s. In other words, {θ(Eij) : 1 ≤ i, j ≤ n} is

linearly independent, and thus spans L(X) ∼= Mn. Again from (2.1), one has

tr θ(a + b)θ(c) = tr(a + b)c = tr ac + tr bc = tr(θ(a) + θ(b))θ(c),

or

(2.2) tr(θ(a + b)− θ(a)− θ(b))θ(c) = 0,

for all a, b, c in F(X). While c runs through all matrix units Eij, one concludes that

θ(a + b) = θ(a) + θ(b), and thus θ is a surjective linear Jordan isomorphism from

F(X) ∼= Mn onto F(X) ∼= Mn. Thus it is either multiplicative or anti-multiplicative

(see, e.g., [7]). But the zero product preserving property of θ rules out the second

possibility, and thus θ is an automorphism.

In general, let p be an idempotent in F(X) of rank n. It follows from the local

property that p̃ = θ(p) is also an idempotent of rank n. Denote

pF(X)p = {a ∈ F(X) : a = pap},

p̃F(X)p̃ = {b ∈ F(X) : b = p̃bp̃}.

It is clear that θ gives rise to a 2-local automorphism from pF(X)p ∼= Mn onto

p̃F(X)p̃ ∼= Mn. By above discussion, θ is linear and multiplicative on pF(X)p.

Finally, let a, b ∈ F(X). Let p be the projection in F(X) onto a finite dimensional

subspace of X containing all the initial and range spaces of a and b, respectively.

Therefore, a = pap, b = pbp, and a, b ∈ pF(X)p. Consequently, θ(a+ b) = θ(a)+θ(b)

and θ(ab) = θ(a)θ(b). This implies that θ is an algebra homomorphism of F(X). �

Corollary 2.6. Let θ be a 2-local automorphism of a standard operator algebra A

on a locally convex space X. If θ is continuous with respect to the weak operator

topology, then θ is an algebra homomorphism.
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Proof. Note that every automorphism of a standard operator algebra sends exactly

finite rank operators to finite rank operators. Thus θ induces a 2-local automorphism,

and thus an algebra homomorphism, of F(X) by Theorem 2.5. Since linear sums and

products are separately continuous in the weak operator topology, we see that θ also

preserves linear sums and products of elements in A. �

Theorem 2.7. Let θ be a 2-local automorphism of a standard operator algebra A on

a locally convex space X such that its range contains all finite rank operators. Then

θ is an algebra homomorphism. More precisely, there is a linear σ(X, X ′)−σ(X, X ′)

homeomorphism U on X such that

θ(T ) = UTU−1, for all T in A.

In case X is a Mackey space, U is an invertible element in L(X).

Proof. Note that θ induces a surjective 2-local automorphism, and thus an algebra

isomorphism, of F(X) by Theorem 2.5. It follows from Theorems 2.3 and 2.5 that

there exists a linear σ(X, X ′)− σ(X, X ′) homeomorphism U on X such that θ(S) =

USU−1 for all S in F(X). If X is a Mackey space, U is an invertible element in

L(X). In general, let T ∈ A, x ∈ X and f ∈ X ′. Observe

f(Tx) = tr Tx⊗ f = tr T · x⊗ f

= tr θ(T )θ(x⊗ f) = tr θ(T )(Ux⊗ f ◦ U−1)

= f(U−1θ(T )Ux).

Consequently, θ(T ) = UTU−1 for all T in A. �

The following example shows that the condition the range of θ containing F(X)

is indispensable in last theorem. Moreover, we also see that a bounded linear local

automorphism of a dense subalgebra of a C*-algebra might not be extended to such

one of the whole. Here, we call θ an n-local automorphism of an algebra A if for any

arbitrary n elements a1, . . . , an of A there is an automorphism θa1,...,an of A such that
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θ(ai) = θa1,...,an(ai) for i = 1, . . . , n. Usually, a 1-local automorphism is called a local

automorphism.

Example 2.8. Let R and L be the unilateral shift and the backward unilateral shift

on an infinite dimensional separable Hilbert space H with respect to an orthonormal

basis {en : n = 1, 2, . . .}, respectively. Let θ be defined by

θ(A) = RAL, for all A in F(H).

It is easy to see that θ is a non-surjective linear n-local automorphism of F(H) for

n = 1, 2, . . .. Indeed, θ is an isometric algebra homomorphism of F(H). However,

there is no invertible U in L(H) such that θ(A) = UAU−1 for all A in F(H).

On the other hand, θ cannot be extended to a bounded linear local automorphism

of the algebra K(H) of all compact operators on H, which is the norm closure of

F(H). For else, we had to have

θ(
∞∑

n=1

1

n
en ⊗ en) =

∞∑
n=1

1

n
en+1 ⊗ en+1.

However,
∑∞

n=1
1
n

en ⊗ en is injective and thus not a left zero divisor of K(H), while

the one at the right hand side is. This conflicts with the local property of θ.

3. 2-local automorphisms of operator algebras on a Fréchet space

with a Schauder basis

In case X is a Fréchet space with a Schauder basis, we can drop both the surjectivity

and continuity assumption of θ in previous results. Recall that a sequence {xn}n in

a topological vector space V is called a topological basis if every x in V determines

a unique scalar sequence {ξn}n such that x =
∑

n ξnxn; this is either a finite sum

or a convergent series in the topology of V . By setting fn(x) = ξn, we obtain a

linear functional on V , called the n-th coefficient functional corresponding to {xn}n.

A Schauder basis {xn}n is a topological basis with continuous coefficient functionals
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{fn}n. In the following, X always denotes a Fréchet space with a Schauder basis

{e1, e2, . . .}, and {f1, f2, . . .} is the dual basis of X ′.

Lemma 3.1. For each continuous seminorm q of X, there is a continuous seminorm

p of X such that

|fn(x)|q(en) ≤ p(x), for all x in X and n = 1, 2, . . . .

Proof. For each x in X, we can write

x =
∑

n

fn(x)en.

In particular, fn(x)en converges to zero in X. Let

Xm = {x ∈ X : |fn(x)|q(en) ≤ m, ∀n = 1, 2, . . .}, m = 1, 2, · · · .

By the Baire Category Theorem, the fact that X =
⋃

m Xm ensures at least one of

them has nonempty interior. Thus there is a continuous seminorm p′ of X such that

p′(x) ≤ 1 ⇒ |fn(x)|q(en) ≤ m, for n = 1, 2, · · · .

Consequently,

|fn(x)|q(en) ≤ mp′(x), for all x in X and n = 1, 2, . . . .

Set p = mp′. �

We remark that a topological basis of a locally convex space is uniform in the sense

of Lemma 3.1 above if and only if it is a Schauder basis. To make up a proof for the

converse, consult, e.g., [8, Theorem 14.3.6].

Recall that a locally compact (resp. compact) linear operator between locally convex

spaces is the one sending bounded sets (resp. a neighborhood of zero) to relatively

compact sets. It is plain that a compact operator is locally compact. The converse

might not hold unless the underlying space is a normed space.
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Lemma 3.2. The formula

Sx =
∑

n

λnfn(x)en

defines a locally compact linear operator S on X for every scalar sequence (λn) in `1.

Proof. We first show that
∑

n λnfn(x)en converges in X. Indeed, for each continuous

seminorm q of X, by Lemma 3.1 we have a continuous seminorm p of X such that∑
n

|λn||fn(x)|q(en) ≤
∑

n

|λn|p(x) = p(x)
∑

n

|λn| < +∞.

Hence
∑

n λnfn(x)en is absolutely convergent in the Fréchet space X, and thus con-

verges for all x in X. The linearity of S is obvious. To see S is continuous, we suppose

ym → 0 and Sym → z in X. Note

Sym =
∑

n

λnfn(ym)en.

Applying fn to both sides, we get

fn(Sym) = λnfn(ym), m, n = 1, 2, . . . .

Letting n fixed but m to infinity, we have

fn(z) = lim
m

λnfn(ym) = 0.

Consequently,

z =
∑

n

fn(z)en = 0.

The Closed Graph Theorem establishes the continuity of S.

Let B be a bounded subset of X. We claim that SB is relatively compact in X.

Let ym be in B for m = 1, 2, . . .. Observe that

Sym =
∑

n

λnfn(ym)en, for all m = 1, 2, . . . .

Since {fn(ym) : m = 1, 2, . . .} is a bounded set of scalars, it is relatively compact. By

a diagonal argument, we have a subsequence {ymk
}k such that all fn(ymk

) converges
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to some scalars βn as k →∞. By Lemma 3.1, one sees that
∑

n λnβnen converges in

X and the sum is the limit of Symk
. Thus S is locally compact. �

Theorem 3.3. Let X be a real or complex Fréchet space with a Schauder basis, and

A a subalgebra of L(X) containing all locally compact operators on X. Then every 2-

local automorphism θ of A is an automorphism. More precisely, there is an invertible

continuous linear operator T on X such that

θ(A) = TAT−1, for all A in A.

Proof. We follow the plan of Molnár [14], which he uses to deal with the case X is

a Banach space with a Schauder basis. However, some extra efforts are introduced

due to the new generality. The case that X is of finite dimension is established.

Assume now X is infinite dimensional. Let Pn = en ⊗ fn, where {en : n = 1, 2, . . .}

is a Schauder basis of X with continuous coefficient functionals fn’s. Set λn = (1
3
)n

for n = 1, 2, . . .. By Lemma 3.2, the sum
∑

n λnPn converges strongly to a locally

compact operator. By the local property of θ, composing θ with an automorphism

of A if necessary, we can assume for the particular operator
∑

n λnPn that

θ(
∑

n

λnPn) =
∑

n

λnPn.

Claim 1. θ(Pn) = Pn for n = 1, 2, . . ..

Let n0 in N be arbitrary. By the local property of θ and Theorem 2.3, we have an

invertible continuous linear operator U in L(X) such that

θ(
∑

n

λnPn) = U(
∑

n

λnPn)U−1 and θ(Pn0) = UPn0U
−1.

Let Qn = UPnU
−1 for n = 1, 2, . . .. Divide both sides of the equality∑

n

λnPn =
∑

n

λnQn

by λ1 and get

P1 +

∑∞
n=2 λnPn

λ1

= Q1 +

∑∞
n=2 λnQn

λ1

.
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Taking the kth powers, we have

P1 +

∑∞
n=2 λk

nPn

λk
1

= Q1 +

∑∞
n=2 λk

nQn

λk
1

,

since all {Pn}n’s (resp. {Qn}n’s) are disjoint rank one idempotents. By Lemma 3.1,

for each continuous seminorm q of X, there exists a continuous seminorm p of X such

that

q(Pn(x)) = q(fn(x)en) ≤ p(x) for all x in X, for all n = 1, 2, . . ..

So,

q(

∑∞
n=2 λk

nPnx

λk
1

) ≤
∑∞

n=2 λk
nq(Pnx)

λk
1

≤ (
∑∞

n=2 λn)k

λk
1

p(x), for all x in X.

We can also obtain a similar result for
P∞

n=2 λk
nQnx

λk
1

. Letting k tend to infinity, as∑
n≥2 λn < λ1 , we conclude that Q1 = P1, and therefore,

∞∑
n=2

λnPn =
∞∑

n=2

λnQn.

One can proceed in the same way to show that Qn = Pn holds for every n = 1, 2, . . ..

In particular, we have θ(Pn0) = Qn0 = Pn0 . But n0 is arbitrary, we conclude that

θ(Pn) = Pn for all n = 1, 2, . . . .

By Lemma 2.2 and Theorem 2.5, there is an injective linear operator T : X → X

such that

TA = θ(A)T, for all A in F(X).(3.1)

Claim 2. T is continuous and onto.

Let {xn}n be a sequence in X and y in X be such that xn → 0 and Txn → y.

We show that y = 0. For every A in F(X), TA is continuous, and thus we have
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TAxn → 0. By (3.1), it implies θ(A)Txn → 0. Because θ(A) is continuous and

Txn → y, we get θ(A)y = 0. By Claim 1, we have

y =
∑

n

fn(y)en =
∑

n

Pn(y) =
∑

n

θ(Pn)y = 0.

The continuity of T follows by the Closed Graph Theorem.

On the other hand, TPn = PnT by (3.1). Thus

(3.2) Ten = αnen, for some nonzero scalars αn, n = 1, 2, . . . .

This implies T has dense range. For every x in X and f in X ′, we have by the local

property of θ and by (3.1) again that

Tx⊗ f = θ(x⊗ f)T = Wx⊗ T ′(W−1)′f,

where W is an invertible linear operator in L(X) as in Theorem 2.3. Consequently,

f belongs to the range of T ′ for all f in X ′. Now the fact T ′ is onto ensures that T

has closed range (see, e.g., [15, Page 160]), and thus T has a continuous inverse by

the Open Mapping Theorem.

At this point, we have shown that θ(A) = TAT−1 for all A in F(X). As in the

proof of Theorem 2.7, we can show that

θ(A) = TAT−1, for all A in A.

To complete the proof it remains to show that θ is surjective. Let B ∈ A. By the

local property of θ and Theorem 2.3, there is an invertible continuous linear operator

V on X such that∑
n

λnPn = θ(
∑

n

λnPn) = V (
∑

n

λnPn)V −1 =
∑

n

λnV PnV
−1,

and

θ(B) = V BV −1.
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Since A 7→ V AV −1 is an automorphism of A, we have VAV −1 = A or V −1AV = A.

By repeating some arguments above, we have

V PnV
−1 = Pn or V Pn = PnV, for all n = 1, 2, · · · .

It follows that

V en = βnen for some nonzero scalars βn, n = 1, 2, . . . .

Together with (3.2), we have V Ten = TV en for n = 1, 2, . . ., and thus V T = TV

since {en : n = 1, 2, . . .} is a Schauder basis of X. Therefore,

T−1BT = V −1T−1V BV −1TV = V −1T−1θ(B)TV = V −1BV ∈ A.

Consequently,

B = T (T−1BT )T−1 = θ(T−1BT ) ∈ θ(A).

This establishes the surjectivity of θ, and completes the proof. �

4. 2-local automorphisms of C*-algebras

Since automorphisms of abelian C*-algebras C0(X) are linear isometries, every

2-local automorphism θ of C0(X) preserves distance as

‖θ(a)− θ(b)‖ = ‖θa,b(a− b)‖ = ‖a− b‖, for all a, b in C0(X).

It follows from the Mazur-Ulam Theorem that surjective 2-local automorphisms of

abelian C*-algebras are real, and thus complex by Lemma 2.1, linear isometry. It

then follows from the Banach-Stone Theorem that they are automorphisms, and carry

the form θ(f) = f ◦ φ for some homeomorphism φ of X. Indeed, a little more can be

said with the same argument. One can find a generalized version of the Banach-Stone

theorem in [4] to finish a proof of the following

Proposition 4.1. Every surjective 2-local automorphism of a regular uniform real

or complex function algebra is an automorphism.
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The following theorem is a special case of a recent result of Györy. In fact, Györy

proved a seemingly stronger result in [6] for the so-called 2-local isometries, that is the

one agreeing with a surjective linear isometry at each pair of points. A new and short

proof working only for 2-local automorphisms is provided below for completeness.

Here the underlying field is the complex. Interested readers are referred to Jarosz

and Rao [9] for more discussions on local isometries.

Proposition 4.2. Every 2-local automorphism θ of C0(X) is an algebra homomor-

phism. In case the locally compact Hausdorff space X is first countable, θ is an

automorphism.

Proof. First recall the following result of Kowalski and S lodkowski [11]. Let A be a

complex Banach algebra (not necessarily commutative nor unital). Let f : A → C

satisfy that f(0) = 0 and

f(a)− f(b) ∈ σ(a− b), for all a, b in A.

Then f is linear and multiplicative. Here, σ(a− b) denotes the spectrum of a− b.

Let z ∈ X and set

f = δz ◦ θ : C0(X) → C.

Then

f(a)− f(b) = δz ◦ θ(a)− δz ◦ θ(b) = δz ◦ θa,b(a)− δz ◦ θa,b(b)

= θa,b(a− b)(z) ∈ σ(a− b), for all a, b in C0(X).

Consequently, δz ◦ θ is a nonzero multiplicative linear functional of C0(X). Hence,

there is a point φ(z) in X such that δz ◦ θ = δφ(z). In other words,

θ(a)(z) = a(φ(z)), for all a in C0(X).

Therefore, θ is an isometric algebra homomorphism. It follows from [10, Theorem 1]

that the map φ : X → X is continuous, open and onto.
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Assume now that X is first countable. We show that φ is one-to-one. Suppose

φ(x) = φ(y) = z. Let a be a continuous function in C0(X) peak at z; namely,

0 ≤ a ≤ 1 and a assumes value 1 exactly at the point z. Since θ(a) = a ◦ φa for some

homeomorphism φa of X, we see that θ(a) = a ◦ φ peaks at exactly one point. This

forces x = y. Therefore, φ is a homeomorphism and θ is an automorphism. �

We note that not every 2-local automorphism of C0(X) is surjective. In fact,

one can see that the map θ in [12, Example 3.3] is a non-surjective linear n-local

automorphism of C[0, β], where n = 1, 2, . . . , ω, and ω (resp. β) is the first countably

infinite (resp. uncountably) ordinal number. Here, [0, β] is not first countable as β

is not a Gδ-point. On the other hand, there is an example of Crist [3] for a 2-local

automorphism of a subalgebra of the algebra M3 of 3×3 matrices, which is not linear.

But for linear 2-local automorphisms of C*-algebras, we have a positive result. Let

us recall the following

Theorem 4.3 ([2]). Let θ be a surjective bounded linear map from a C*-algebra A

onto a C*-algebra B preserving zero products. Then θ(a) = θ(1)ϕ(a) = ϕ(a)θ(1) for

all a in A, where ϕ is an algebra isomorphism from A onto B.

Theorem 4.4. Let θ be a linear 2-local automorphism of a C*-algebra. If the range

of θ is a C*-algebra then θ is an algebra homomorphism.

Proof. Note that θ is bounded since it preserves spectra (see, e.g., [1]). The assertion

is now a consequence of Lemma 2.1 and Theorem 4.3. �
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[6] M. Györy, “2-local isometries of C0(X)”, Acta Sci. Math. (Szeged), 67 (2001), no. 3-4, 735–746.

[7] I. N. Herstien, “Topics in ring theory”, The University of Chicago Press, Chicago, 1969.

[8] H. Jarchow, Locally convex spaces, Teubner, Stuttgart, 1981.

[9] K. Jarosz and T. S. S. R. K. Rao, “Local isometries of function spaces”, Math. Z., 243 (2003),

no. 3, 449–469.

[10] J.-S. Jeang and N.-C. Wong, Weighted composition operators of C0(X)’s, J. Math. Anal. Appl.

201 (1996), 981–993.

[11] S. Kowalski and Z. S lodkowski, “A characterization of multiplicative linear functionals in Ba-

nach algebras”, Studia Math., 67 (1980), no. 3, 215–223.

[12] J.-H. Liu, N.-C. Wong and J.-C. Yao, “Local automorphisms of operator algebras”, preprint.

[13] G. W. Mackey, “Isomorphisms of normed linear spaces”, Ann. of Math. (2), 43 (1942), 244–260.

[14] L. Molnár, “Local automorphisms of operator algebras on Banach spaces”, Proc. Amer. Math.

Soc., 131 (2003), no. 6, 1867–1874.

[15] H. H. Schaefer and M. P. Wolff, “Topological vector spaces”, 2nd edition, Springer-Verlag, New

York, 1999.
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