Journal of Nonlinear and Convex Analysis Volume 12, Number 3, 2011, 553–575

WEAK AND STRONG CONVERGENCE THEOREMS FOR EXTENDED HYBRID MAPPINGS IN HILBERT SPACES

WATARU TAKAHASHI, NGAI-CHING WONG, AND JEN-CHIH YAO

ABSTRACT. Let C be a closed convex subset of a real Hilbert space H. A mapping $U: C \to H$ is called extended hybrid if there are $\alpha, \beta, \gamma \in \mathbb{R}$ such that

$$\begin{aligned} \alpha(1+\gamma) \|Ux - Uy\|^2 + (1 - \alpha(1+\gamma)) \|x - Uy\|^2 \\ &\leq (\beta + \alpha\gamma) \|Ux - y\|^2 + (1 - (\beta + \alpha\gamma)) \|x - y\|^2 \\ &- (\alpha - \beta)\gamma \|x - Ux\|^2 - \gamma \|y - Uy\|^2 \end{aligned}$$

for all $x, y \in C$. In this paper, we first show that the class of extended hybrid mappings contains the class of strict pseudo-contractions defined by Browder and Petryshyn [6]. We also obtain some important properties for extended hybrid mappings and strict pseudo-contractions in a Hilbert space. Using these results, we prove weak convergence theorems of Baillon's type [3] and of Mann's type [19] for extended hybrid mappings in a Hilbert space. Finally, we get strong convergence theorems of Halpern's type [9] and of the hybrid methods [22] and [30] for these mappings.

1. INTRODUCTION

Throughout this paper, we denote by \mathbb{N} the set of positive integers and by \mathbb{R} the set of real numbers. Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. A mapping $T: C \to H$ is said to be *nonexpansive* if

$$||Tx - Ty|| \le ||x - y||$$

for all $x, y \in C$. A mapping $T : C \to H$ is said to be a strict pseudo-contraction [6] if there exists a real number k with $0 \le k < 1$ such that

(1.1)
$$||Tx - Ty||^2 \le ||x - y||^2 + k||(I - T)x - (I - T)y||^2$$

for all $x, y \in C$. We also call such a mapping T a k-strict pseudo-contraction. A k-strict pseudo-contraction $T: C \to H$ is nonexpansive if k = 0. A mapping $T: C \to H$ is said to be nonspreading [17] and hybrid [28] if

(1.2)
$$2\|Tx - Ty\|^2 \le \|Tx - y\|^2 + \|Ty - x\|^2$$

and

(1.3)
$$3\|Tx - Ty\|^2 \le \|x - y\|^2 + \|Tx - y\|^2 + \|Ty - x\|^2$$

²⁰¹⁰ Mathematics Subject Classification. Primary 47H10; Secondary 47H05.

Key words and phrases. Hilbert space, nonexpansive mapping, nonspreading mapping, hybrid mapping, fixed point, mean convergence.

The first author was partially supported by Grant-in-Aid for Scientific Research No.23540188 from Japan Society for the Promotion of Science. The second and the third authors were partially supported by the grant NSC 99-2115-M-110-007-MY3 and the grant NSC 99-2115-M-110-004-MY3, respectively.

for all $x, y \in C$, respectively; see also [11], [12], [13] and [16]. We know from [28] that a nonexpansive mapping, a nonspreading mapping and a hybrid mapping are deduced from a firmly nonexpansive mapping. A mapping $T: C \to H$ is said to be *firmly nonexpansive* [5], [8] if

$$||Tx - Ty||^2 \le \langle x - y, Tx - Ty \rangle$$

for all $x, y \in C$. A firmly nonexpansive mapping F can be deduced from an equilibrium problem in a Hilbert space; see, for instance, [4] and [7]. Recently, Kocourek, Takahashi and Yao [15] considered a broad class of nonlinear mappings in a Hilbert space which contains the classes of nonexpansive mappings, nonspreading mappings and hybrid mappings: A mapping $T: C \to H$ is called *generalized hybrid* [15] if there are $\alpha, \beta \in \mathbb{R}$ such that

(1.4)
$$\alpha \|Tx - Ty\|^2 + (1 - \alpha)\|x - Ty\|^2 \le \beta \|Tx - y\|^2 + (1 - \beta)\|x - y\|^2$$

for all $x, y \in C$. We call such a mapping an (α, β) -generalized hybrid mapping. For example, an (α, β) -generalized hybrid mapping is nonexpansive for $\alpha = 1$ and $\beta = 0$, nonspreading for $\alpha = 2$ and $\beta = 1$, and hybrid for $\alpha = \frac{3}{2}$ and $\beta = \frac{1}{2}$. Hojo, Takahashi and Yao [10] also introduced a class of nonlinear mappings in a Hilbert space which contains the class of generalized hybrid mappings: A mapping $U: C \to H$ is called *extended hybrid* if there are $\alpha, \beta, \gamma \in \mathbb{R}$ such that

(1.5)
$$\alpha (1+\gamma) \|Ux - Uy\|^2 + (1 - \alpha (1+\gamma)) \|x - Uy\|^2 \\ \leq (\beta + \alpha \gamma) \|Ux - y\|^2 + (1 - (\beta + \alpha \gamma)) \|x - y\|^2 \\ - (\alpha - \beta) \gamma \|x - Ux\|^2 - \gamma \|y - Uy\|^2$$

for all $x, y \in C$.

In this paper, we first show that the class of extended hybrid mappings contains the class of strict pseudo-contractions in a Hilbert space. We also obtain some important properties for extended hybrid mappings and strict pseudo-contractions in a Hilbert space. Using these results, we prove weak convergence theorems of Baillon's type [3] and of Mann's type [19] for extended hybrid mappings in a Hilbert space. Finally, we get strong convergence theorems of Halpern's type [9] and of the hybrid methods [22], [30] for these mappings.

2. Preliminaries

Let H be a (real) Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$. We denote the strong convergence and the weak convergence of $\{x_n\}$ to $x \in H$ by $x_n \to x$ and $x_n \to x$, respectively. From [27], we know the following basic equality: For $x, y \in H$ and $\lambda \in \mathbb{R}$, we have

(2.1)
$$\|\lambda x + (1-\lambda)y\|^2 = \lambda \|x\|^2 + (1-\lambda)\|y\|^2 - \lambda(1-\lambda)\|x-y\|^2.$$

Furthermore, we know that for $x, y, u, v \in H$,

(2.2)
$$2\langle x-y, u-v \rangle = \|x-v\|^2 + \|y-u\|^2 - \|x-u\|^2 - \|y-v\|^2$$

Let C be a nonempty closed convex subset of H and let T be a mapping from C into H. Then, we denote by F(T) the set of fixed points of T. A mapping $T: C \to H$ with $F(T) \neq \emptyset$ is called *quasi-nonexpansive* if $||x - Ty|| \le ||x - y||$ for

all $x \in F(T)$ and $y \in C$. It is well-known that the set F(T) of fixed points of a quasi-nonexpansive mapping T is closed and convex; see Ito and Takahashi [14]. It is not so difficult to show this fact in a Hilbert space. In fact, to show that F(T) is closed, let us take a sequence $\{z_n\} \subset F(T)$ such that $z_n \to z_0$. Since C is closed and convex, C is weakly closed and hence $z_0 \in C$. We also have

$$||z_0 - Tz_0|| \le ||z_0 - z_n|| + ||z_n - Tz_0|| \le 2||z_0 - z_n||$$

for $n \in \mathbb{N}$. Tending $n \to \infty$, we have that $z_0 \in F(T)$ and hence F(T) is closed. To show that F(T) is convex, let us take $z_1, z_2 \in F(T)$ and $\lambda \in [0, 1]$, and put $z_0 = \lambda z_1 + (1 - \lambda) z_2$. Then we have from (2.1) that

$$\begin{aligned} \|z_0 - Tz_0\|^2 &= \|\lambda z_1 + (1 - \lambda)z_2 - Tz_0\|^2 \\ &= \|\lambda(z_1 - Tz_0) + (1 - \lambda)(z_2 - Tz_0)\|^2 \\ &= \lambda \|z_1 - Tz_0\|^2 + (1 - \lambda)\|z_2 - Tz_0\|^2 - \lambda(1 - \lambda)\|z_1 - z_2\|^2 \\ &\leq \lambda \|z_1 - z_0\|^2 + (1 - \lambda)\|z_2 - z_0\|^2 - \lambda(1 - \lambda)\|z_1 - z_2\|^2 \\ &= \lambda(1 - \lambda)^2 \|z_1 - z_2\|^2 + \lambda^2(1 - \lambda)\|z_1 - z_2\|^2 - \lambda(1 - \lambda)\|z_1 - z_2\|^2 \\ &= \lambda(1 - \lambda)(1 - \lambda + \lambda - 1)\|z_1 - z_2\|^2 = 0 \end{aligned}$$

and hence $z_0 \in F(T)$. So, F(T) is convex.

Let C be a nonempty closed convex subset of H and $x \in H$. Then, we know that there exists a unique nearest point $z \in C$ such that $||x - z|| = \inf_{y \in C} ||x - y||$. We denote such a correspondence by $z = P_C x$. P_C is called the *metric projection* of H onto C. It is known that P_C is nonexpansive and

$$\langle x - P_C x, P_C x - u \rangle \ge 0$$

for all $x \in H$ and $u \in C$. Furthermore, we know that

$$||P_C x - P_C y||^2 \le \langle x - y, P_C x - P_C y \rangle$$

for all $x, y \in H$; see [27] for more details. The following lemma was proved by Takahashi and Toyoda [31].

Lemma 2.1. Let D be a nonempty closed convex subset of a real Hilbert space H. Let P be the metric projection of H onto D and let $\{x_n\}$ be a sequence in H. If $||x_{n+1} - u|| \leq ||x_n - u||$ for all $u \in D$ and $n \in \mathbb{N}$, then $\{Px_n\}$ converges strongly.

Let C be a nonempty closed convex subset of H. Then, we know that a mapping $T: C \to H$ is called *generalized hybrid* [15] if there are $\alpha, \beta \in \mathbb{R}$ such that

(2.4)
$$\alpha \|Tx - Ty\|^2 + (1 - \alpha)\|x - Ty\|^2 \le \beta \|Tx - y\|^2 + (1 - \beta)\|x - y\|^2$$

for all $x, y \in C$. We can show that if x = Tx, then for any $y \in C$,

$$\alpha \|x - Ty\|^{2} + (1 - \alpha)\|x - Ty\|^{2} \le \beta \|x - y\|^{2} + (1 - \beta)\|x - y\|^{2}$$

and hence

(2.5)
$$||x - Ty|| \le ||x - y||$$

This means that an (α, β) -generalized hybrid mapping with a fixed point is quasinonexpansive. A mapping $S: C \to H$ is super hybrid [15, 33] if there are $\alpha, \beta, \gamma \in \mathbb{R}$ such that

$$\begin{aligned} \alpha \|Sx - Sy\|^{2} + (1 - \alpha + \gamma)\|x - Sy\|^{2} \\ &\leq \left(\beta + (\beta - \alpha)\gamma\right)\|Sx - y\|^{2} + \left(1 - \beta - (\beta - \alpha - 1)\gamma\right)\|x - y\|^{2} \\ &+ (\alpha - \beta)\gamma\|x - Sx\|^{2} + \gamma\|y - Sy\|^{2} \end{aligned}$$

for all $x, y \in C$. We call such a mapping an (α, β, γ) -super hybrid mapping. An $(\alpha, \beta, 0)$ -super hybrid mapping is (α, β) -generalized hybrid. So, the class of super hybrid mappings contains the class of generalized hybrid mappings. Kocourek, Takahashi and Yao [15] also proved the following fixed point theorem for super hybrid mappings in a Hilbert space.

Theorem 2.2. Let C be a nonempty bounded closed convex subset of a Hilbert space H and let α , β and γ be real numbers with $\gamma \ge 0$. Let $S : C \to C$ be an (α, β, γ) -super hybrid mapping. Then, S has a fixed point in C. In particular, if $S : C \to C$ is an (α, β) -generalized hybrid mapping, then S has a fixed point in C.

We also know a fixed point theorem [10] for generalized hybrid non-self mappings in a Hilbert space.

Theorem 2.3. Let C be a nonempty bounded closed convex subset of a Hilbert space H and let α and β be real numbers. Let T be an (α, β) -generalized hybrid mapping of C into H with $\alpha - \beta \ge 0$. Suppose that there exists m > 1 such that for any $x \in C$, Tx = x + t(y - x) for some $y \in C$ and t with $1 \le t \le m$. Then, T has a fixed point in C.

To prove one of our main results, we need the following lemma [2]:

Lemma 2.4. Let $\{s_n\}$ be a sequence of nonnegative real numbers, let $\{\alpha_n\}$ be a sequence of [0,1] with $\sum_{n=1}^{\infty} \alpha_n = \infty$, let $\{\beta_n\}$ be a sequence of nonnegative real numbers with $\sum_{n=1}^{\infty} \beta_n < \infty$, and let $\{\gamma_n\}$ be a sequence of real numbers with $\limsup_{n\to\infty} \gamma_n \leq 0$. Suppose that

$$s_{n+1} \le (1 - \alpha_n)s_n + \alpha_n\gamma_n + \beta_n$$

for all $n = 1, 2, \dots$ Then $\lim_{n \to \infty} s_n = 0$.

Let l^{∞} be the Banach space of bounded sequences with supremum norm. Let μ be an element of $(l^{\infty})^*$ (the dual space of l^{∞}). Then, we denote by $\mu(f)$ the value of μ at $f = (x_1, x_2, x_3, \ldots) \in l^{\infty}$. Sometimes, we denote by $\mu_n(x_n)$ the value $\mu(f)$. A linear functional μ on l^{∞} is called a *mean* if $\mu(e) = \|\mu\| = 1$, where $e = (1, 1, 1, \ldots)$. A mean μ is called a *Banach limit* on l^{∞} if $\mu_n(x_{n+1}) = \mu_n(x_n)$. We know that there exists a Banach limit on l^{∞} . If μ is a Banach limit on l^{∞} , then for $f = (x_1, x_2, x_3, \ldots) \in l^{\infty}$,

$$\liminf_{n \to \infty} x_n \le \mu_n(x_n) \le \limsup_{n \to \infty} x_n.$$

In particular, if $f = (x_1, x_2, x_3, ...) \in l^{\infty}$ and $x_n \to a \in \mathbb{R}$, then we have $\mu(f) = \mu_n(x_n) = a$. For the proof of existence of a Banach limit and its other elementary properties, see [25].

For a sequence $\{C_n\}$ of nonempty closed convex subsets of a Hilbert space H, define s-Li_n C_n and w-Ls_n C_n as follows: $x \in$ s-Li_n C_n if and only if there exists $\{x_n\} \subset H$ such that $\{x_n\}$ converges strongly to x and $x_n \in C_n$ for all $n \in \mathbb{N}$. Similarly, $y \in$ w-Ls_n C_n if and only if there exist a subsequence $\{C_{n_i}\}$ of $\{C_n\}$ and a sequence $\{y_i\} \subset H$ such that $\{y_i\}$ converges weakly to y and $y_i \in C_{n_i}$ for all $i \in \mathbb{N}$. If C_0 satisfies that

(2.6)
$$C_0 = \operatorname{s-Li}_n C_n = \operatorname{w-Ls}_n C_n,$$

we say that $\{C_n\}$ converges to C_0 in the sense of Mosco [21] and we write $C_0 = M$ - $\lim_{n\to\infty} C_n$. It is easy to show that if $\{C_n\}$ is nonincreasing with respect to inclusion, then $\{C_n\}$ converges to $\bigcap_{n=1}^{\infty} C_n$ in the sense of Mosco. For more details, see [21]. We know the following theorem [34].

Theorem 2.5. Let H be a Hilbert space. Let $\{C_n\}$ be a sequence of nonempty closed convex subsets of H. If $C_0 = M$ -lim $_{n\to\infty} C_n$ exists and nonempty, then for each $x \in H$, $P_{C_n}x$ converges strongly to $P_{C_0}x$, where P_{C_n} and P_{C_0} are the mertic projections of H onto C_n and C_0 , respectively.

3. Extended hybrid mappings

Let H be a Hilbert space and let C be a nonempty closed convex subset of H. We recall that a mapping $U : C \to H$ is called *extended hybrid* [10] if there are $\alpha, \beta, \gamma \in \mathbb{R}$ such that

(3.1)
$$\alpha (1+\gamma) \|Ux - Uy\|^{2} + (1 - \alpha (1+\gamma)) \|x - Uy\|^{2} \\ \leq (\beta + \alpha \gamma) \|Ux - y\|^{2} + (1 - (\beta + \alpha \gamma)) \|x - y\|^{2} \\ - (\alpha - \beta) \gamma \|x - Ux\|^{2} - \gamma \|y - Uy\|^{2}$$

for all $x, y \in C$ and such a mapping U is called (α, β, γ) -extended hybrid. In [10], the authors derived a relation between the class of generalized hybrid mappings and the class of extended hybrid mappings in a Hilbert space.

Theorem 3.1. Let C be a nonempty closed convex subset of a Hilbert space H and let α , β and γ be real numbers with $\gamma \neq -1$. Let T and U be mappings of C into H such that $U = \frac{1}{1+\gamma}T + \frac{\gamma}{1+\gamma}I$, where Ix = x for all $x \in H$. Then, for $1 + \gamma > 0$, $T: C \to H$ is an (α, β) -generalized hybrid mapping if and only if $U: C \to H$ is an (α, β, γ) -extended hybrid mapping. In this case, F(T) = F(U).

In this section, we first prove a fixed point theorem for strict pseudo-contractions in a Hilbert space.

Theorem 3.2. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let k be a real number with $0 \le k < 1$ and let $U : C \to H$ be a k-strict pseudo-contraction. Then, U is a (1,0,-k)-extended hybrid mapping and F(U) is closed and convex. If, in addition, C is bounded and U is a mapping of C into itself, then F(U) is nonempty.

Proof. Let $U: C \to H$ be a k-strict pseudo-contraction. Then, $0 \le k < 1$ and (3.2) $||Ux - Uy||^2 \le ||x - y||^2 + k||(I - U)x - (I - U)y||^2$ for all $x, y \in C$. So, we have from (2.2) that for all $x, y \in C$,

$$\begin{aligned} \|Ux - Uy\|^2 &\leq \|x - y\|^2 + k\|(I - U)x - (I - U)y\|^2 \\ &= \|x - y\|^2 + k\|x - y - (Ux - Uy)\|^2 \\ &= \|x - y\|^2 + k(\|x - y\|^2 + \|Ux - Uy\|^2 - 2\langle x - y, Ux - Uy\rangle) \\ &= \|x - y\|^2 + k(\|x - y\|^2 + \|Ux - Uy\|^2 \\ &- \|x - Uy\|^2 - \|y - Ux\|^2 + \|x - Ux\|^2 + \|y - Uy\|^2) \end{aligned}$$

and hence

(3.3)
$$(1-k)\|Ux - Uy\|^{2} + k\|x - Uy\|^{2} \le -k\|Ux - y\|^{2} + (1+k)\|x - y\|^{2} + k\|x - Ux\|^{2} + k\|y - Uy\|^{2}.$$

Putting $\alpha = 1$, $\beta = 0$ and $\gamma = -k$ in (3.1), we get (3.3). Then, U is a (1,0,-k)-extended hybrid mapping. Furthermore, putting T = (1-k)U + kI, where Ix = x for all $x \in H$, we have that

$$U = \frac{1}{1-k}T + \frac{-k}{1-k}I.$$

Using $1 + \gamma = 1 - k > 0$ and Theorem 3.1, we have that T is a (1,0)-generalized hybrid mapping, i.e., a nonexpansive mapping. So, F(T) is closed and convex. From F(T) = F(U), F(U) is also closed and convex. Since C is a bounded closed convex set and T is a nonexpansive mapping of C into itself, F(T) is nonempty; see [27]. Hence F(U) is nonempty.

In general, we have the following fixed point theorem for extended hybrid mappings in a Hilbert space.

Theorem 3.3. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let α, β, γ be real numbers. Let $U : C \to H$ be an (α, β, γ) -extended hybrid mapping with $1 + \gamma > 0$. Then F(U) is closed and convex. If, in addition, C is bounded, $0 \leq -\gamma < 1$ and U is a mapping of C into itself, then $F(U) \neq \emptyset$.

Proof. Let $U: C \to H$ be an (α, β, γ) -extended hybrid mapping with $1 + \gamma > 0$. Putting $T = (1 + \gamma)U - \gamma I$, we have

$$U = \frac{1}{1+\gamma}T + \frac{\gamma}{1+\gamma}I.$$

From Theorem 3.1, we have that T is an (α, β) -generalized hybrid mapping of C into H. If $F(U) \neq \emptyset$, then $F(T) \neq \emptyset$ from F(U) = F(T). Then we have from (2.5) that $T: C \to H$ is quasi-nonexpansive. So, we have that F(T) is closed and convex and hence F(U) is closed and convex. If $F(U) = \emptyset$, it is obvious that F(U) is closed and convex. If $F(U) = \emptyset$, it is obvious that F(U) is closed and convex. Let $U: C \to C$ be an (α, β, γ) -extended hybrid mapping with $0 \leq -\gamma < 1$. We note that if $0 \leq -\gamma < 1$, then $1 + \gamma > 0$. Since $0 \leq -\gamma < 1$ and $T = (1+\gamma)U - \gamma I$, we have from Theorem 3.1 that T is an (α, β) -generalized hybrid mapping of C into itself. Using Theorem 2.2, we have $F(T) \neq \emptyset$. So, $F(U) \neq \emptyset$.

Using Theorem 3.3, we have the following fixed point theorem.

Theorem 3.4. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let k be a real number with $0 \le k < 1$. Let $U : C \to H$ be a mapping such that

(3.4)
$$2\|Ux - Uy\|^{2} \le \|x - Uy\|^{2} + \|Ux - y\|^{2} + k(\|(I - U)x - (I - U)y\|^{2} - 2\langle x - Ux, y - Uy \rangle)$$

for all $x, y \in C$. Then, F(U) is closed and convex. In addition, if C is bounded and U is a mapping C into itself, then $F(U) \neq \emptyset$.

Proof. Using (2.2), we have that the inequality (3.4) is equivalent to

(3.5)
$$2(1-k)\|Ux - Uy\|^{2} + (-1+2k)\|x - Uy\|^{2}$$
$$\leq (1-2k)\|Ux - y\|^{2} + 2k\|x - y\|^{2}$$
$$+ k\|x - Ux\|^{2} + k\|y - Uy\|^{2}.$$

On the other hand, putting $\alpha = 2$, $\beta = 1$ and $\gamma = -k$ in (3.1), we get this inequality (3.5). So, U is a (2,1,-k)-extended hybrid mapping. Using $0 \le k < 1$ and Theorem 3.3, we have the desired result.

For example, taking $k = \frac{1}{2}$ in (3.4), we obtain that

$$2||Ux - Uy||^{2} \le 2||x - y||^{2} + ||x - Ux||^{2} + ||y - Uy||^{2}$$

for all $x, y \in C$. Using Theorem 3.4, we have that such a mapping U has a fixed point in C if C is bounded, closed and convex. Furthermore, F(U) is closed and convex.

We also have the following important result for extended hybrid mappings in a Hilbert space.

Theorem 3.5. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let α, β, γ be real numbers and let $U : C \to H$ be an (α, β, γ) -extended hybrid mapping with $1 + \gamma > 0$. Then, I - U is demiclosed, i.e., $x_n \to z$ and $x_n - Ux_n \to 0$ imply $z \in F(U)$.

Proof. Since $U: C \to H$ is extended hybrid, there are $\alpha, \beta, \gamma \in \mathbb{R}$ such that

$$\begin{aligned} \alpha(1+\gamma) \|Ux - Uy\|^2 + (1 - \alpha(1+\gamma)) \|x - Uy\|^2 \\ &\leq (\beta + \alpha\gamma) \|Ux - y\|^2 + (1 - (\beta + \alpha\gamma)) \|x - y\|^2 \\ &- (\alpha - \beta)\gamma \|x - Ux\|^2 - \gamma \|y - Uy\|^2 \end{aligned}$$

for all $x, y \in C$. Suppose $x_n \rightharpoonup z$ and $x_n - Ux_n \rightarrow 0$. Let us consider

$$\begin{aligned} \alpha(1+\gamma) \|Ux_n - Uz\|^2 + (1 - \alpha(1+\gamma)) \|x_n - Uz\|^2 \\ &\leq (\beta + \alpha\gamma) \|Ux_n - z\|^2 + (1 - (\beta + \alpha\gamma)) \|x_n - z\|^2 \\ &- (\alpha - \beta)\gamma \|x_n - Ux_n\|^2 - \gamma \|z - Uz\|^2. \end{aligned}$$

From this inequality, we have

$$\alpha(1+\gamma) \|Ux_n - x_n + x_n - Uz\|^2 + (1 - \alpha(1+\gamma)) \|x_n - Uz\|^2$$

$$\leq (\beta + \alpha\gamma) \|Ux_n - x_n + x_n - z\|^2 + (1 - (\beta + \alpha\gamma)) \|x_n - z\|^2$$

$$-(\alpha-\beta)\gamma\|x_n-Ux_n\|^2-\gamma\|z-Uz\|^2.$$

We apply a Banach limit μ to both sides of the inequality. Then, we have

$$\begin{aligned} \alpha(1+\gamma)\mu_n \|Ux_n - x_n + x_n - Uz\|^2 + (1 - \alpha(1+\gamma))\mu_n \|x_n - Uz\|^2 \\ &\leq (\beta + \alpha\gamma)\mu_n \|Ux_n - x_n + x_n - z\|^2 + (1 - (\beta + \alpha\gamma))\mu_n \|x_n - z\|^2 \\ &- (\alpha - \beta)\gamma\mu_n \|x_n - Ux_n\|^2 - \gamma\mu_n \|z - Uz\|^2. \end{aligned}$$

We know from the properties of μ that

$$\mu_n \|Ux_n - x_n + x_n - Uz\|^2$$

= $\mu_n (\|Ux_n - x_n\|^2 + \|x_n - Uz\|^2 + 2\langle Ux_n - x_n, x_n - Uz \rangle)$
= $\mu_n \|Ux_n - x_n\|^2 + \mu_n \|x_n - Uz\|^2 + 2\mu_n \langle Ux_n - x_n, x_n - Uz \rangle$
= $\mu_n \|x_n - Uz\|^2$

and $\mu_n ||Ux_n - x_n + x_n - z||^2 = \mu_n ||x_n - z||^2$. So, we have

$$\alpha(1+\gamma)\mu_n \|x_n - Uz\|^2 + (1 - \alpha(1+\gamma))\mu_n \|x_n - Uz\|^2$$

$$\leq (\beta + \alpha\gamma)\mu_n \|x_n - z\|^2 + (1 - (\beta + \alpha\gamma))\mu_n \|x_n - z\|^2$$

$$- \gamma \|z - Uz\|^2$$

and hence

$$\mu_n \|x_n - Uz\|^2 \le \mu_n \|x_n - z\|^2 - \gamma \|z - Uz\|^2.$$

From $\mu_n \|x_n - Uz\|^2 = \mu_n \|x_n - z + z - Uz\|^2 = \mu_n \|x_n - z\|^2 + \|z - Uz\|^2$, we also have

$$\mu_n \|x_n - z\|^2 + \|z - Uz\|^2 \le \mu_n \|x_n - z\|^2 - \gamma \|z - Uz\|^2.$$

Hence, we obtain $(1 + \gamma) ||z - Uz||^2 \le 0$. Since $1 + \gamma > 0$, we have $||z - Uz||^2 \le 0$. Then, Uz = z. This implies that I - U is demiclosed.

Using Theorems 3.2 and 3.6, we have the following result obtained by Marino and Xu [20]; see also [1].

Corollary 3.6. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let k be a real number with $0 \le k < 1$ and $U : C \to H$ be a k-strict pseudo-contraction. Then, I - U is demiclosed, i.e., $x_n \rightharpoonup z$ and $x_n - Ux_n \to 0$ imply $z \in F(U)$.

Proof. We know from Theorem 3.2 that a k-strict pseudo-contraction $U: C \to H$ is (1,0,-k)-entended hybrid. Furthermore, $0 \le k < 1$ implies $1 + \gamma = 1 - k > 0$. So, we have the desired result from Theorem 3.6.

4. Nonlinear ergodic theorem

In this section, using the technique developed in [24], [29] and [32], we prove a nonlinear ergodic theorem of Baillon's type [3] for extended hybrid mappings in a Hilbert space. For proving it, we need the following two lemmas proved by Takahashi and Yao and Kocourek [33] and Hojo, Takahashi and Yao [10]. **Lemma 4.1.** Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let $T : C \to H$ be a generalized hybrid mapping. Suppose that there exists $\{x_n\} \subset C$ such that $x_n \rightharpoonup z$ and $x_n - Tx_n \rightarrow 0$. Then, $z \in F(T)$.

Lemma 4.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T be a generalized hybrid mapping from C into itself. Suppose that $\{T^nx\}$ is bounded for some $x \in C$. Define $S_n x = \frac{1}{n} \sum_{k=1}^n T^k x$. Then, $\lim_{n\to\infty} \|S_n x - TS_n x\| = 0$. In particular, if C is bounded, then

$$\lim_{n \to \infty} \sup_{x \in C} \|S_n x - TS_n x\| = 0.$$

Theorem 4.3. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let α , β and γ be real numbers and let $U : C \to C$ be an (α, β, γ) -extended hybrid mapping such that $0 \leq -\gamma < 1$ and $F(U) \neq \emptyset$. Let P be the mertic projection of H onto F(U). Then, for any $x \in C$,

$$S_n x = \frac{1}{n} \sum_{k=1}^n ((1+\gamma)U - \gamma I)^k x$$

converges weakly to $z \in F(U)$, where $z = \lim_{n \to \infty} PT^n x$ and $T = (1 + \gamma)U - \gamma I$.

Proof. Put $T = (1 + \gamma)U - \gamma I$. Since $0 \le -\gamma < 1$, we have from Theorem 3.1 that T is an (α, β) -generalized hybrid mapping of C into itself, i.e.,

(4.1)
$$\alpha \|Tx - Ty\|^2 + (1 - \alpha)\|x - Ty\|^2 \le \beta \|Tx - y\|^2 + (1 - \beta)\|x - y\|^2$$

for all $x, y \in C$. Since T is a generalized hybrid mapping and $F(T) = F(U) \neq \emptyset$, T is quasi-nonexpansive. So, F(T) is closed and convex. Let $x \in C$ and $u \in F(T)$. Then, we have $||T^{n+1}x - u|| \leq ||T^nx - u||$. Putting D = F(T) in Lemma 2.1, we have that $\lim_{n\to\infty} PT^n x$ converges strongly. Put $z = \lim_{n\to\infty} PT^n x$. Let us show $S_n x \to z$. Since $\{T^n x\}$ is bounded, so is $\{S_n x\}$. Let $\{S_{n_i} x\}$ be a subsequence of $\{S_n x\}$ such that $S_{n_i} x \to v$. By Lemma 4.2, we know $\lim_{n\to\infty} ||S_n x - TS_n x|| = 0$. Using Lemma 4.1, we have v = Tv. To show $S_n x \to z$, it is sufficient to prove z = v. From $v \in F(T)$, we have

$$\begin{aligned} \langle v-z, T^k x - PT^k x \rangle &= \langle v - PT^k x, T^k x - PT^k x \rangle + \langle PT^k x - z, T^k x - PT^k x \rangle \\ &\leq \langle PT^k x - z, T^k x - PT^k x \rangle \\ &\leq \|PT^k x - z\| \|T^k x - PT^k x\| \\ &\leq \|PT^k x - z\| L \end{aligned}$$

for all $k \in \mathbb{N}$, where $L = \sup\{||T^kx - PT^kx|| : k \in \mathbb{N}\}$. Summing these inequalities from k = 1 to n_i and dividing by n_i , we have

$$\left\langle v-z, S_{n_i}x - \frac{1}{n_i}\sum_{k=1}^{n_i} PT^kx \right\rangle \le \frac{1}{n_i}\sum_{k=1}^{n_i} \|PT^kx - z\|L.$$

Since $S_{n_i}x \to v$ as $i \to \infty$ and $PT^n x \to z$ as $n \to \infty$, we have $\langle v - z, v - z \rangle \leq 0$. This implies z = v. Therefore, $\{S_n x\}$ converges weakly to $z \in F(T) = F(U)$, where $z = \lim_{n \to \infty} PT^n x$. So, we get the desired result. \Box

Using Theorem 4.3, we obtain the following corollary.

Corollary 4.4. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let k be a real number with $0 \le k < 1$ and $U : C \to C$ be a k-strict pseudo-contraction and $F(U) \ne \emptyset$. Let P be the mertic projection of H onto F(U). Then, for any $x \in C$,

$$S_n x = \frac{1}{n} \sum_{m=1}^n ((1-k)U + kI)^m x$$

converges weakly to $z \in F(U)$, where $z = \lim_{n \to \infty} PT^n x$ and T = (1 - k)U + kI.

Proof. We know from Theorem 3.2 that a k-strict pseudo-contraction $U: C \to C$ is (1,0,-k)-entended hybrid. Furthermore, $0 \le k < 1$ and $-\gamma = k$ imply $0 \le -\gamma < 1$. So, we have the desired result from Theorem 4.3.

5. Weak convergence theorem of Mann's type

In this section, we prove a weak convergence theorem of Mann's type [19] for extended hybrid mappings in a Hilbert space. Before proving the theorem, we need the following lemma proved by Takahashi, Yao and Kocourek [33].

Lemma 5.1. Let H be a Hilbert space, let C be a nonempty closed convex subset of H and let P_C be the metric projection of H onto C. Let α , β and γ be real numbers with $\gamma \neq -1$ and let $S : C \to H$ be an (α, β, γ) -super hybrid mapping with $F(S) \neq \emptyset$. Let $\{\alpha_n\}$ be a sequence of real numbers such that $0 \leq \alpha_n \leq 1$ and $\liminf_{n\to\infty} \alpha_n(1-\alpha_n) > 0$. Suppose $\{x_n\}$ is the sequence generated by $x_1 = x \in C$ and

$$x_{n+1} = P_C \left\{ \alpha_n x_n + (1 - \alpha_n) \left(\frac{1}{1 + \gamma} S x_n + \frac{\gamma}{1 + \gamma} x_n \right) \right\}, \quad n \in \mathbb{N}.$$

Then, the sequence $\{x_n\}$ converges weakly to an element v of F(S), where $v = \lim_{n\to\infty} P_{F(S)}x_n$ and $P_{F(S)}$ is the metric projection of H onto F(S).

Theorem 5.2. Let H be a Hilbert space, let C be a nonempty closed convex subset of H and let P_C be the metric projection of H onto C. Let α , β and γ be real numbers. Let $U : C \to H$ be an (α, β, γ) -extended hybrid mapping such that $1 + \gamma > 0$ and $F(U) \neq \emptyset$. Let $\{\alpha_n\}$ be a sequence of real numbers such that $0 \le \alpha_n \le 1$ and $\liminf_{n\to\infty} \alpha_n(1-\alpha_n) > 0$. Suppose $\{x_n\}$ is the sequence generated by $x_1 = x \in C$ and

$$x_{n+1} = P_C \{ \alpha_n x_n + (1 - \alpha_n)((1 + \gamma)Ux_n - \gamma x_n) \}, \quad n \in \mathbb{N}$$

Then, the sequence $\{x_n\}$ converges weakly to an element v of F(U), where $v = \lim_{n\to\infty} P_{F(U)}x_n$ and $P_{F(U)}$ is the metric projection of H onto F(U).

Proof. Put $T = (1 + \gamma)U - \gamma I$. Then, we have from $1 + \gamma > 0$ and Theorem 3.1 that $T: C \to H$ is an (α, β) -generalized hybrid mapping and $F(U) = F(T) \neq \emptyset$. Furthermore, we have that

$$x_{n+1} = P_C \{ \alpha_n x_n + (1 - \alpha_n) T x_n \}, \quad n \in \mathbb{N}.$$

Using Lemma 5.1 with $\gamma = 0$, we have that $\{x_n\}$ converges weakly to an element v of F(T), where $v = \lim_{n \to \infty} P_{F(T)} x_n$ and $P_{F(T)}$ is the metric projection of H onto F(T) = F(U).

As direct consequences of Theorem 5.2, we obtain the following results.

Corollary 5.3. Let H be a Hilbert space, let C be a nonempty closed convex subset of H and let P_C be the metric projection of H onto C. Let γ be a real number with $1 + \gamma > 0$ and let $U : C \to H$ be an $(2, 1, \gamma)$ -extended hybrid mapping, i.e.,

$$2(1+\gamma) \|Ux - Uy\|^{2} - (1+2\gamma)\|x - Uy\|^{2}$$

$$\leq (1+2\gamma) \|Ux - y\|^{2} - 2\gamma\|x - y\|^{2}$$

$$-\gamma\|x - Ux\|^{2} - \gamma\|y - Uy\|^{2}$$

for all $x, y \in C$. Let $\{\alpha_n\}$ be a sequence of real numbers such that $0 \leq \alpha_n \leq 1$ and $\liminf_{n\to\infty} \alpha_n(1-\alpha_n) > 0$. Suppose $\{x_n\}$ is the sequence generated by $x_1 = x \in C$ and

$$x_{n+1} = P_C \{ \alpha_n x_n + (1 - \alpha_n)((1 + \gamma)Ux_n - \gamma x_n) \}, \quad n \in \mathbb{N}.$$

If $F(U) \neq \emptyset$, then the sequence $\{x_n\}$ converges weakly to an element v of F(U), where $v = \lim_{n \to \infty} P_{F(U)}x_n$ and $P_{F(U)}$ is the metric projection of H onto F(U).

Corollary 5.4. Let H be a Hilbert space, let C be a nonempty closed convex subset of H and let P_C be the metric projection of H onto C. Let γ be a real number with $1 + \gamma > 0$ and let $U : C \to H$ be an $(\frac{3}{2}, \frac{1}{2}, \gamma)$ -extended hybrid mapping, i.e.,

$$\begin{aligned} &3(1+\gamma) \|Ux - Uy\|^2 - (1+3\gamma)) \|x - Uy\|^2 \\ &\leq (1+3\gamma) \|Ux - y\|^2 + (1-3\gamma)) \|x - y\|^2 \\ &- 2\gamma \|x - Ux\|^2 - 2\gamma \|y - Uy\|^2 \end{aligned}$$

for all $x, y \in C$. Let $\{\alpha_n\}$ be a sequence of real numbers such that $0 \leq \alpha_n \leq 1$ and $\liminf_{n\to\infty} \alpha_n(1-\alpha_n) > 0$. Suppose $\{x_n\}$ is the sequence generated by $x_1 = x \in C$ and

$$x_{n+1} = P_C \big(\alpha_n x_n + (1 - \alpha_n) ((1 + \gamma) U x_n - \gamma x_n) \big), \quad n \in \mathbb{N}.$$

If $F(U) \neq \emptyset$, then the sequence $\{x_n\}$ converges weakly to an element v of F(U), where $v = \lim_{n \to \infty} P_{F(U)} x_n$ and $P_{F(U)}$ is the metric projection of H onto F(U).

Taking $\gamma = -\frac{1}{2}$ in Corollaries 5.3 and 5.4, we obtain two mappings such that

$$2\|Ux - Uy\|^{2} \le 2\|x - y\|^{2} + \|x - Ux\|^{2} + \|y - Uy\|^{2}$$

and

$$3||Ux - Uy||^{2} + ||x - Uy||^{2} + ||y - Ux||^{2} \leq 5||x - y||^{2} + 2||x - Ux||^{2} + 2||y - Uy||^{2}$$

for all $x, y \in C$, respectively. We can apply Corollaries 5.3 and 5.4 for such mappings and then obtain weak convergence theorems in a Hilbert space. Next, we prove a weak convergence theorem of Mann's type for a class of non-self mappings containing the class of nonexpansive mappings in a Hilbert space. For proving it, we state the following lemma proved by Takahashi, Yao and Kocourek [33].

Lemma 5.5. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let γ be a real number with $\gamma \neq -1$ and let $S : C \to H$ be a mapping such that

$$||Sx - Sy||^2 + 2\gamma \langle x - y, Sx - Sy \rangle \le (1 + 2\gamma) ||x - y||^2$$

for all $x, y \in C$. Let $\{\alpha_n\}$ be a sequence of real numbers such that $0 \leq \alpha_n \leq 1$ and $\sum_{n=1}^{\infty} \alpha_n (1 - \alpha_n) = \infty$. Suppose $\{x_n\}$ is a sequence generated by $x_1 = x \in C$ and

$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n) P_C \left(\frac{1}{1 + \gamma} S x_n + \frac{\gamma}{1 + \gamma} x_n\right), \quad n = 1, 2, \dots$$

If $F(S) \neq \emptyset$, then the sequence $\{x_n\}$ converges weakly to an element v of F(S), where $v = \lim_{n \to \infty} P_{F(S)}x_n$ and $P_{F(S)}$ is the metric projection of H onto F(S).

Theorem 5.6. Let H be a Hilbert space, let C be a nonempty closed convex subset of H and let P_C be the metric projection of H onto C. Let α , β and γ be real numbers. Let γ be a real number with $1 + \gamma > 0$ and let $U : C \to H$ be a mapping with $F(U) \neq \emptyset$ such that

$$||Ux - Uy||^{2} \le ||x - y||^{2} - \gamma ||(I - U)x - (I - U)y||^{2}$$

for all $x, y \in C$. Let $\{\alpha_n\}$ be a sequence of real numbers such that $0 \leq \alpha_n \leq 1$ and $\sum_{n=1}^{\infty} \alpha_n (1 - \alpha_n) = \infty$. Suppose $\{x_n\}$ is a sequence generated by $x_1 = x \in C$ and

$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n) P_C ((1 + \gamma) U x_n - \gamma x_n)), \quad n \in \mathbb{N}.$$

Then the sequence $\{x_n\}$ converges weakly to an element v of F(U), where $v = \lim_{n\to\infty} P_{F(U)}x_n$ and $P_{F(U)}$ is the metric projection of H onto F(U).

Proof. We have that for any $x, y \in C$,

$$\begin{aligned} \|Ux - Uy\|^2 &\leq \|x - y\|^2 - \gamma(\|(I - U)x - (I - U)y\|^2 \\ \iff \|Ux - Uy\|^2 \leq \|x - y\|^2 - \gamma(\|x - y\|^2 + \|Ux - Uy\|^2 \\ &- \|x - Uy\|^2 - \|Ux - y\|^2 + \|Ux - x\|^2 + \|y - Uy\|^2) \\ \iff (1 + \gamma)\|Ux - Uy\|^2 - \gamma\|x - Uy\|^2 \\ &\leq \gamma\|Ux - y\|^2 + (1 - \gamma)\|x - y\|^2 - \gamma\|Ux - x\|^2 - \gamma\|y - Uy\|^2. \end{aligned}$$

Thus, U is a $(1, 0, \gamma)$ -extended hybrid mapping with $1+\gamma > 0$. Put $T = (1+\gamma)U-\gamma I$. Then, we have from Theorem 3.1 that $T: C \to H$ is an (1, 0)-generalized hybrid mapping, i.e., a nonexpansive mapping and $F(U) = F(T) \neq \emptyset$. Using Lemma 5.5 with $\gamma = 0$ or Reich's theorem [23], we have that $\{x_n\}$ converges weakly to an element v of F(T), where $v = \lim_{n\to\infty} P_{F(T)}x_n$ and $P_{F(T)}$ is the metric projection of H onto F(T) = F(U).

As a direct consequence of Theorem 5.6, we have the following corollary.

Corollary 5.7. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let k be a real number with $0 \le k < 1$ and $U : C \to C$ be a k-strict pseudo-contraction and $F(U) \ne \emptyset$. Let P be the mertic projection of Honto F(U). Let $\{\alpha_n\}$ be a sequence of real numbers such that $0 \le \alpha_n \le 1$ and $\sum_{n=1}^{\infty} \alpha_n (1 - \alpha_n) = \infty$. Suppose $\{x_n\}$ is a sequence generated by $x_1 = x \in C$ and

$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n) \{ (1 - k) U x_n + k x_n \}, \quad n \in \mathbb{N}.$$

Then the sequence $\{x_n\}$ converges weakly to an element v of F(U), where $v = \lim_{n\to\infty} P_{F(U)}x_n$ and $P_{F(U)}$ is the metric projection of H onto F(U).

Proof. We know from Theorem 3.2 that a k-strict pseudo-contraction $U : C \to H$ is (1,0,-k)-entended hybrid. Furthermore, $0 \le k < 1$ and $-\gamma = k$ imply $1 + \gamma > 0$. So, we have the desired result from Theorem 5.6.

Using Corollary 5.7, we prove a weak convergence theorem of Mann's type for strict pseudo-contractions which was obtained by Marino and Xu [20]; see also [1].

Theorem 5.8. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let k be a real number with $0 \le k < 1$ and $U : C \to C$ be a k-strict pseudo-contraction such that $F(U) \ne \emptyset$. Let $\{\beta_n\}$ be a sequence of real numbers such that $k < \beta_n < 1$ and $\sum_{n=1}^{\infty} (\beta_n - k)(1 - \beta_n) = \infty$. Suppose that $\{x_n\}$ is a sequence generated by $x_1 = x \in C$ and

$$x_{n+1} = \beta_n x_n + (1 - \beta_n) U x_n, \quad n \in \mathbb{N}.$$

Then the sequence $\{x_n\}$ converges weakly to an element v of F(U).

Proof. We have that for any $n \in \mathbb{N}$,

$$y_n = \beta_n x_n + (1 - \beta_n) U x_n$$

= $\frac{\beta_n - k}{1 - k} x_n + (1 - \frac{\beta_n - k}{1 - k}) \{ (1 - k) U x_n + k x_n \}$

Putting $\alpha_n = \frac{\beta_n - k}{1 - k}$, we have from $1 > \beta_n > k$ that $1 - k > \beta_n - k > 0$ and hence $1 > \frac{\beta_n - k}{1 - k} = \alpha_n > 0$. Furthermore, we have that

$$\sum_{n=1}^{\infty} (\beta_n - k)(1 - \beta_n) = \infty$$
$$\iff \sum_{n=1}^{\infty} (1 - k)\alpha_n(1 - k)(1 - \alpha_n) = \infty$$
$$\iff (1 - k)^2 \sum_{n=1}^{\infty} \alpha_n(1 - \alpha_n) = \infty$$
$$\iff \sum_{n=1}^{\infty} \alpha_n(1 - \alpha_n) = \infty.$$

From Corollary 5.7, we have the desired result.

6. Strong convergence theorems

In this section, we first prove a strong convergence theorem of Halpern's type [9] for extended hybrid mappings in a Hilbert space.

Theorem 6.1. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let γ be a real number with $1 + \gamma > 0$ and let $U : C \to H$ be a mapping such that

$$||Ux - Uy||^{2} \le ||x - y||^{2} - \gamma ||(I - U)x - (I - U)y||^{2}$$

for all $x, y \in C$. Let $\{\alpha_n\} \subset [0, 1]$ be a sequence of real numbers such that $\alpha_n \to 0$, $\sum_{n=1}^{\infty} \alpha_n = \infty$ and $\sum_{n=1}^{\infty} |\alpha_n - \alpha_{n+1}| < \infty$. Suppose $\{x_n\}$ is a sequence generated by $x_1 = x \in C$, $u \in C$ and

$$x_{n+1} = \alpha_n u + (1 - \alpha_n) P_C \{ (1 + \gamma) U x_n - \gamma x_n \}, \quad n \in \mathbb{N}.$$

If $F(U) \neq \emptyset$, then the sequence $\{x_n\}$ converges strongly to an element v of F(U), where $v = P_{F(U)}u$ and $P_{F(U)}$ is the metric projection of H onto F(U).

Proof. As in the proof of Theorem 5.6, we have that U is a $(1, 0, \gamma)$ -extended hybrid mapping of C into H. Put $T = (1 + \gamma)U - \gamma I$. Then, we have from Theorem 3.1 that T is a (1, 0)-generalized hybrid mapping of C into H, i.e., T is a nonexpansive mapping of C into H. Furthermore, we have F(U) = F(T). From Wittmann's theorem [35], we obtain $x_n \to P_{F(P_C T)}u$; see also Takahashi [26]. Let us show $F(P_C T) = F(T) = F(U)$. We know F(T) = F(U). It is obvious that $F(T) \subset F(P_C T)$. We show $F(P_C T) \subset F(T)$. If $P_C T v = v$, we have from the property of P_C that for $u \in F(T)$,

$$2\|v - u\|^{2} = 2\|P_{C}Tv - u\|^{2}$$

$$\leq 2\langle Tv - u, P_{C}Tv - u \rangle$$

$$= \|Tv - u\|^{2} + \|P_{C}Tv - u\|^{2} - \|Tv - P_{C}Tv\|^{2}$$

and hence

$$2\|v-u\|^{2} \le \|v-u\|^{2} + \|v-u\|^{2} - \|Tv-v\|^{2}.$$

Then, we have $0 \leq -\|Tv - v\|^2$ and hence Tv = v. This completes the proof. \Box

As a direct consequence of Theorem 6.1, we have the following corollary.

Corollary 6.2. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let k be a real number with $0 \le k < 1$ and $U : C \to C$ be a k-strict pseudo-contraction with $F(U) \ne \emptyset$. Let P be the mertic projection of H onto F(U). Let $\{\alpha_n\} \subset [0,1]$ be a sequence of real numbers such that $\alpha_n \to 0$, $\sum_{n=1}^{\infty} \alpha_n = \infty$ and $\sum_{n=1}^{\infty} |\alpha_n - \alpha_{n+1}| < \infty$. Suppose $\{x_n\}$ is a sequence generated by $x_1 = x \in C$, $u \in C$ and

$$x_{n+1} = \alpha_n u + (1 - \alpha_n) \{ (1 - k)Ux_n + kx_n \}, \quad n \in \mathbb{N}.$$

Then the sequence $\{x_n\}$ converges strongly to an element v of F(U), where $v = P_{F(U)}u$ and $P_{F(U)}$ is the metric projection of H onto F(U).

Next, using an idea of mean convergence and the method of the proof in [18], we prove a strong convergence theorem of Halpern's type for extended hybrid mappings in a Hilbert space.

Theorem 6.3. Let C be a nonempty closed convex subset of a real Hilbert space H and let α , β and k be real numbers. Let $U: C \to C$ be a $(\alpha, \beta, -k)$ -extended hybrid mapping such that $0 \le k < 1$ and $F(U) \ne \emptyset$ and let P be the metric projection of H onto F(U). Suppose $\{x_n\}$ is a sequence generated by $x_1 = x \in C$, $u \in C$ and

$$\begin{cases} x_{n+1} = \alpha_n u + (1 - \alpha_n) z_n, \\ z_n = \frac{1}{n} \sum_{m=1}^n ((1 - k)U + kI)^m x_n \end{cases}$$

for all $n = 1, 2, ..., where 0 \le \alpha_n \le 1, \alpha_n \to 0$ and $\sum_{n=1}^{\infty} \alpha_n = \infty$. Then $\{x_n\}$ converges strongly to Pu.

Proof. For an $(\alpha, \beta, -k)$ -extended hybrid mapping $U: C \to C$, define

$$T = (1 - k)U + kI.$$

Then, we have from Theorem 3.1 that $T: C \to C$ is an (α, β) -generalized hybrid mapping such that F(T) = F(U). Since F(T) = F(U) is nonempty, we take $q \in F(T)$. Put r = ||u - q||. We define

$$D = \{ y \in H : ||y - q|| \le r \} \cap C.$$

Then D is a nonempty bounded closed convex subset of C. Furthermore, D is T-invariant and contains u. Thus we may assume that C is bounded without loss of generality. Since T is quasi-nonexpansive, we have that for all $q \in F(T)$ and n = 1, 2, 3, ...,

(6.1)
$$\|z_n - q\| = \left\|\frac{1}{n}\sum_{m=1}^n T^m x_n - q\right\| \le \frac{1}{n}\sum_{m=1}^n \|T^m x_n - q\|$$
$$\le \frac{1}{n}\sum_{m=1}^n \|x_n - q\| = \|x_n - q\|.$$

Let us show $\limsup_{n\to\infty} \langle u - Pu, z_n - Pu \rangle \leq 0$. Since $\{z_n\}$ is bounded, there exists a subsequence $\{z_{n_i}\}$ of $\{z_n\}$ with $z_{n_i} \rightharpoonup v$. We may assume without loss of generality

$$\limsup_{n \to \infty} \langle u - Pu, z_n - Pu \rangle = \lim_{i \to \infty} \langle u - Pu, z_{n_i} - Pu \rangle.$$

By Lemma 4.2, we have $\lim_{n\to\infty} ||z_n - Tz_n|| = 0$. Using Lemma 4.1, we have $v \in F(T)$. Since P is the metric projection of H onto F(T), we have

$$\lim_{i \to \infty} \langle u - Pu, z_{n_i} - Pu \rangle = \langle u - Pu, v - Pu \rangle \le 0.$$

This implies

(6.2)
$$\limsup_{n \to \infty} \langle u - Pu, z_n - Pu \rangle \le 0.$$

Since $x_{n+1} - Pu = (1 - \alpha_n)(z_n - Pu) + \alpha_n(u - Pu)$, from (6.1) we have

$$||x_{n+1} - Pu||^2 = ||(1 - \alpha_n)(z_n - Pu) + \alpha_n(u - Pu)||^2$$

$$\leq (1 - \alpha_n)^2 ||z_n - Pu||^2 + 2\alpha_n \langle u - Pu, x_{n+1} - Pu \rangle$$

$$\leq (1 - \alpha_n) ||x_n - Pu||^2 + 2\alpha_n \langle u - Pu, x_{n+1} - Pu \rangle.$$

Putting $s_n = ||x_n - Pu||^2$, $\beta_n = 0$ and $\gamma_n = 2\langle u - Pu, x_{n+1} - Pu \rangle$ in Lemma 2.4, from $\sum_{n=1}^{\infty} \alpha_n = \infty$ and (6.2) we have

$$\lim_{n \to \infty} \|x_n - Pu\| = 0.$$

This completes the proof.

7. Strong convergence theorems by hybrid methods

In this section, using the hybrid method by Nakajo and Takahashi [22], we first prove a strong convergence theorem for extended hybrid non-self mappings in a Hilbert space. The method of the proof is due to Nakajo and Takahashi [22] and Marino and Xu [20].

Theorem 7.1. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let α , β and k be real numbers and let $U : C \to H$ be an $(\alpha, \beta, -k)$ -extended hybrid mapping such that k < 1 and $F(U) \neq \emptyset$. Let $\{x_n\} \subset C$ be a sequence generated by $x_1 = x \in C$ and

$$\begin{cases} y_n = \alpha_n x_n + (1 - \alpha_n) \{ (1 - k) U x_n + k x_n \}, \\ C_n = \{ z \in C : \|y_n - z\|^2 \le \|x_n - z\|^2 - (1 - k)^2 \alpha_n (1 - \alpha_n) \|x_n - U x_n\|^2 \}, \\ Q_n = \{ z \in C : \langle x_n - z, x - x_n \rangle \ge 0 \}, \\ x_{n+1} = P_{C_n \cap Q_n} x, \quad \forall n \in \mathbb{N}, \end{cases}$$

where $P_{C_n \cap Q_n}$ is the metric projection of H onto $C_n \cap Q_n$ and $\{\alpha_n\} \subset (-\infty, 1)$. Then, $\{x_n\}$ converges strongly to $z_0 = R_{F(U)}x$, where $P_{F(U)}$ is the metric projection of H onto F(U).

Proof. Put T = (1 - k)U + kI. We have $U = \frac{1}{1-k}T + \frac{-k}{1-k}I$. So, we have from Theorem 3.1 that T is an (α, β) -generalized hybrid mapping of C into H and F(U) = F(T). Since F(T) is closed and convex, F(U) is closed and convex. So, there exists the mertic projection of H onto F(U). Furthermore, we have

$$y_n = \alpha_n x_n + (1 - \alpha_n) T x_n$$

for all $n \in \mathbb{N}$. For any $z \in H$, the inequality

$$||y_n - z||^2 \le ||x_n - z||^2 - (1 - k)^2 \alpha_n (1 - \alpha_n) ||x_n - Ux_n||^2$$

is equivalent to

$$2\langle x_n - y_n, z \rangle \le ||x_n||^2 - ||y_n||^2 - (1-k)^2 \alpha_n (1-\alpha_n) ||x_n - Ux_n||^2.$$

So, we have that C_n , Q_n and $C_n \cap Q_n$ are closed and convex for all $n \in \mathbb{N}$. We next show that $C_n \cap Q_n$ is nonempty. Let $z \in F(T) = F(U)$. Since T is quasi-nonexpansive, we have that

$$||y_n - z||^2 = ||\alpha_n x_n + (1 - \alpha_n) T x_n - z||^2$$

= $\alpha_n ||x_n - z||^2 + (1 - \alpha_n) ||T x_n - z||^2 - \alpha_n (1 - \alpha_n) ||T x_n - x_n||^2$
 $\leq \alpha_n ||x_n - z||^2 + (1 - \alpha_n) ||x_n - z||^2 - \alpha_n (1 - \alpha_n) ||T x_n - x_n||^2$
= $||x_n - z||^2 - (1 - k)^2 \alpha_n (1 - \alpha_n) ||U x_n - x_n||^2$.

So, we have $z \in C_n$ and hence $F(T) \subset C_n$ for all $n \in \mathbb{N}$. Next, we show by induction that $F(T) \subset C_n \cap Q_n$ for all $n \in \mathbb{N}$. From $F(T) \subset Q_1$, it follows that $F(T) \subset C_1 \cap Q_1$. Suppose that $F(T) \subset C_k \cap Q_k$ for some $k \in \mathbb{N}$. From $x_{k+1} = P_{C_k \cap Q_k} x$, we have

$$\langle x_{k+1} - z, x - x_{k+1} \rangle \ge 0, \quad \forall z \in C_k \cap Q_k.$$

Since $F(T) \subset C_k \cap Q_k$, we also have

$$\langle x_{k+1} - z, x - x_{k+1} \rangle \ge 0, \quad \forall z \in F(T).$$

This implies $F(T) \subset Q_{k+1}$. So, we have $F(T) \subset C_{k+1} \cap Q_{k+1}$. By induction, we have $F(T) \subset C_n \cap Q_n$ for all $n \in \mathbb{N}$. This means that $\{x_n\}$ is well-defined. Since $x_n \in C$ and $\langle x_n - x_n, x - x_n \rangle = 0$, we have $x_n \in Q_n$. Furthermore, from the definition of Q_n , we have $x_n = P_{Q_n}x$. Using $x_n = P_{Q_n}x$ and $x_{n+1} = P_{C_n \cap Q_n}x \subset Q_n$, we have from (2.2) that

(7.1)
$$0 \le 2\langle x - x_n, x_n - x_{n+1} \rangle \\ = \|x - x_{n+1}\|^2 - \|x - x_n\|^2 - \|x_n - x_{n+1}\|^2 \\ \le \|x - x_{n+1}\|^2 - \|x - x_n\|^2.$$

So, we get that

(7.2)
$$||x - x_n||^2 \le ||x - x_{n+1}||^2.$$

Furthermore, since $x_n = P_{Q_n} x$ and $z \in F(T) \subset Q_n$, we have

(7.3)
$$||x - x_n||^2 \le ||x - z||^2.$$

So, we have that $\lim_{n\to\infty} ||x - x_n||^2$ exists. This implies that $\{x_n\}$ is bounded. Hence, $\{Tx_n\}$ is also bounded. From (7.1), we also have

$$||x_n - x_{n+1}||^2 \le ||x - x_{n+1}||^2 - ||x - x_n||^2$$

and hence

(7.4)
$$||x_n - x_{n+1}|| \to 0.$$

From $x_{n+1} \in C_n$, we have that

(7.5)
$$||y_n - x_{n+1}||^2 \le ||x_n - x_{n+1}||^2 - \alpha_n (1 - \alpha_n) ||x_n - Tx_n||^2.$$

On the other hand, we know

(7.6)
$$\|y_n - x_{n+1}\|^2 = \|\alpha_n x_n + (1 - \alpha_n) T x_n - x_{n+1}\|^2$$
$$= \alpha_n \|x_n - x_{n+1}\|^2 + (1 - \alpha_n) \|T x_n - x_{n+1}\|^2$$
$$- \alpha_n (1 - \alpha_n) \|x_n - T x_n\|^2.$$

From (7.5) and (7.6), we have

$$(1 - \alpha_n) \|Tx_n - x_{n+1}\|^2 \le (1 - \alpha_n) \|x_n - x_{n+1}\|^2.$$

Since $1 - \alpha_n > 0$, we have $\|Tx_n - x_{n+1}\|^2 \le \|x_n - x_{n+1}\|^2$ and hence
 $\|Tx_n - x_{n+1}\| \to 0.$

From

$$||Tx_n - x_n||^2 = ||Tx_n - x_{n+1}||^2 + 2\langle Tx_n - x_{n+1}, x_{n+1} - x_n \rangle + ||x_{n+1} - x_n||^2$$

we also have

$$(7.7) ||Tx_n - x_n|| \to 0.$$

Since $\{x_n\}$ is bounded, there exists a subsequence $\{x_{n_i}\} \subset \{x_n\}$ such that $x_{n_i} \rightharpoonup z^*$. From (7.7) and Lemma 4.1, we have $z^* \in F(T)$. Put $z_0 = P_{F(T)}x$. Since $z_0 = P_{F(T)}x \subset C_n \cap Q_n$ and $x_{n+1} = P_{C_n \cap Q_n}x$, we have that

(7.8)
$$||x - x_{n+1}||^2 \le ||x - z_0||^2.$$

Since $\|\cdot\|^2$ is weakly lower semicontinuous, from $x_{n_i} \rightharpoonup z^*$ we have that

$$\begin{aligned} \|x - z^*\|^2 &= \|x\|^2 - 2\langle x, z^* \rangle + \|z^*\|^2 \\ &\leq \liminf_{i \to \infty} (\|x\|^2 - 2\langle x, x_{n_i} \rangle + \|x_{n_i}\|^2) \\ &= \liminf_{i \to \infty} \|x - x_{n_i}\|^2 \\ &\leq \|x - z_0\|^2. \end{aligned}$$

From the definition of z_0 , we have $z^* = z_0$. So, we obtain $x_n \rightharpoonup z_0$. We finally show that $x_n \rightarrow z_0$. Since

$$||z_0 - x_n||^2 = ||z_0 - x||^2 + ||x - x_n||^2 + 2\langle z_0 - x, x - x_n \rangle, \quad \forall n \in \mathbb{N},$$

we have

$$\lim_{n \to \infty} \sup_{n \to \infty} ||z_0 - x_n||^2 = \lim_{n \to \infty} \sup_{n \to \infty} (||z_0 - x||^2 + ||x - x_n||^2 + 2\langle z_0 - x, x - x_n \rangle)$$

$$\leq \lim_{n \to \infty} \sup_{n \to \infty} (||z_0 - x||^2 + ||x - z_0||^2 + 2\langle z_0 - x, x - x_n \rangle)$$

$$= ||z_0 - x||^2 + ||x - z_0||^2 + 2\langle z_0 - x, x - z_0 \rangle$$

$$= 0.$$

So, we obtain $\lim_{n\to\infty} ||z_0 - x_n|| = 0$. Hence, $\{x_n\}$ converges strongly to z_0 . This completes the proof.

Using Theorem 7.1, we can prove the following theorem obtained by Marino and Xu [20].

Theorem 7.2. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let k be a real number with $0 \le k < 1$ and let $U : C \to C$ be a k-strict pseudo contraction such that $F(U) \ne \emptyset$. Let $\{x_n\} \subset C$ be a sequence generated by $x_1 = x \in C$ and

$$\begin{cases} y_n = \beta_n x_n + (1 - \beta_n) U x_n, \\ C_n = \{ z \in C : \|y_n - z\|^2 \le \|x_n - z\|^2 - (\beta_n - k)(1 - \beta_n) \|x_n - U x_n\|^2 \}, \\ Q_n = \{ z \in C : \langle x_n - z, x - x_n \rangle \ge 0 \}, \\ x_{n+1} = P_{C_n \cap Q_n} x, \quad \forall n \in \mathbb{N}, \end{cases}$$

where $P_{C_n \cap Q_n}$ is the metric projection of H onto $C_n \cap Q_n$ and $\{\beta_n\} \subset (-\infty, 1)$. Then, $\{x_n\}$ converges strongly to $z_0 = R_{F(U)}x$, where $P_{F(U)}$ is the metric projection of H onto F(U).

Proof. We first know that a (1,0,-k)-extended hybrid mapping with $0 \le k < 1$ is a k-strict pseudo contraction. We also have that for any $n \in \mathbb{N}$,

$$y_n = \beta_n x_n + (1 - \beta_n) U x_n$$

= $\frac{\beta_n - k}{1 - k} x_n + (1 - \frac{\beta_n - k}{1 - k}) \{ (1 - k) U x_n + k x_n \}$

Putting $\alpha_n = \frac{\beta_n - k}{1 - k}$, we have from $1 > \beta_n$ that $1 - k > \beta_n - k$ and hence $1 > \frac{\beta_n - k}{1 - k} = \alpha_n$. Furthermore, we have that for any $n \in \mathbb{N}$ and $z \in C$,

 $||y_n - z||^2 \le ||x_n - z||^2 - (\beta_n - k)(1 - \beta_n)||x_n - Ux_n||^2$

WEAK AND STRONG MEAN CONVERGENCE THEOREMS

$$\iff \|y_n - z\|^2 \le \|x_n - z\|^2 - (1 - k)\alpha_n(1 - k)(1 - \alpha_n)\|x_n - Ux_n\|^2$$

$$\iff \|y_n - z\|^2 \le \|x_n - z\|^2 - (1 - k)^2\alpha_n(1 - \alpha_n)\|x_n - Ux_n\|^2.$$
every 7.1, we have the desired result. \square

From Theorem 7.1, we have the desired result.

Next, we prove a strong convergence theorem by the shrinking projection method [30] for extended hybrid non-self mappings in a Hilbert space.

Theorem 7.3. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let α , β and k be real numbers and let $U: C \to H$ be an (α, β, β) -k)-extended hybrid mapping such that k < 1 and $F(U) \neq \emptyset$. Let $C_1 = C$ and let $\{x_n\} \subset C$ be a sequence generated by $x_1 = x \in C$ and

$$\begin{cases} y_n = \alpha_n x_n + (1 - \alpha_n) \{ (1 - k) U x_n + k x_n \}, \\ C_{n+1} = \{ z \in C_n : \|y_n - z\|^2 \le \|x_n - z\|^2 - (1 - k)^2 \alpha_n (1 - \alpha_n) \|U x_n - x_n\|^2 \}, \\ x_{n+1} = P_{C_{n+1}} x, \quad \forall n \in \mathbb{N}, \end{cases}$$

where $P_{C_{n+1}}$ is the metric projection of H onto C_{n+1} , and $\{\alpha_n\} \subset (-\infty, 1)$. Then, $\{x_n\}$ converges strongly to $z_0 = P_{F(U)}x$, where $P_{F(U)}$ is the metric projection of H onto F(U).

Proof. Put T = (1-k)U + kI. Then, we have from Theorem 3.1 that T is an (α, β) β)-generalized hybrid mapping of C into H and F(U) = F(T). Since F(T) is closed and convex, so is F(U). Then, there exists the mertic projection of H onto F(U). Furthermore, we have

$$y_n = \alpha_n x_n + (1 - \alpha_n) T x_n$$

for all $n \in \mathbb{N}$. We show that C_n are closed and convex, and $F(T) \subset C_n$ for all $n \in \mathbb{N}$. It is obvious from the assumption that $C_1 = C$ is closed and convex, and $F(T) \subset C_1$. Suppose that C_k is closed and convex, and $F(T) \subset C_k$ for some $k \in \mathbb{N}$. As in the proof of Theorem 7.1, we know that for $z \in C_k$, the inequality

$$||y_n - z||^2 \le ||x_n - z||^2 - (1 - k)^2 \alpha_n (1 - \alpha_n) ||x_n - Ux_n||^2$$

is equivalent to

$$2\langle x_n - y_n, z \rangle \le ||x_n||^2 - ||y_n||^2 - (1-k)^2 \alpha_n (1-\alpha_n) ||x_n - Ux_n||^2$$

Since C_k is closed and convex, so is C_{k+1} . Take $z \in F(T) \subset C_k$. Then we have from (2.2) that

$$||y_n - z||^2 = ||\alpha_n x_n + (1 - \alpha_n)Tx_n - z||^2$$

= $\alpha_n ||x_n - z||^2 + (1 - \alpha_n)||Tx_n - z||^2 - \alpha_n (1 - \alpha_n)||Tx_n - x_n||^2$
 $\leq \alpha_n ||x_n - z||^2 + (1 - \alpha_n)||x_n - z||^2 - (1 - k)^2 \alpha_n (1 - \alpha_n)||Ux_n - x_n||^2.$

Hence, we have $z \in C_{k+1}$ and hence $F(T) \subset C_{k+1}$. By induction, we have that C_n are closed and convex, and $F(T) \subset C_n$ for all $n \in \mathbb{N}$. Since C_n is closed and convex, there exists the metric projection P_{C_n} of H onto C_n . Thus, $\{x_n\}$ is well-defined. Since $\{C_n\}$ is a nonincreasing sequence of nonempty closed convex subsets of H with respect to inclusion, it follows that

(7.9)
$$\emptyset \neq F(T) \subset \operatorname{M-lim}_{n \to \infty} C_n = \bigcap_{n=1}^{\infty} C_n.$$

Put $C_0 = \bigcap_{n=1}^{\infty} C_n$. Then, by Theorem 2.5 we have that $\{P_{C_n}x\}$ converges strongly to $x_0 = P_{C_0}x$, i.e.,

$$x_n = P_{C_n} x \to x_0.$$

To complete the proof, it is sufficient to show that $x_0 = P_{F(T)}x$. Since $x_n = P_{C_n}x$ and $x_{n+1} = P_{C_{n+1}}x \in C_{n+1} \subset C_n$, we have from (2.2) that

(7.10)
$$0 \le 2\langle x - x_n, x_n - x_{n+1} \rangle \\ = \|x - x_{n+1}\|^2 - \|x - x_n\|^2 - \|x_n - x_{n+1}\|^2 \\ \le \|x - x_{n+1}\|^2 - \|x - x_n\|^2.$$

Thus, we get that

(7.11)
$$||x - x_n||^2 \le ||x - x_{n+1}||^2$$

Furthermore, since $x_n = P_{C_n}x$ and $z \in F(T) \subset C_n$, we have

(7.12)
$$||x - x_n||^2 \le ||x - z||^2,$$

from which it follows that $\lim_{n\to\infty} ||x - x_n||^2$ exists. This implies that $\{x_n\}$ is bounded. Hence, $\{Tx_n\}$ are also bounded. From (7.10), we have

$$||x_n - x_{n+1}||^2 \le ||x - x_{n+1}||^2 - ||x - x_n||^2$$

So, we have that

(7.13)
$$||x_n - x_{n+1}|| \to 0.$$

From $x_{n+1} \in C_{n+1}$, we also have that

(7.14)
$$\|y_n - x_{n+1}\|^2 \le \|x_n - x_{n+1}\|^2 - (1-k)^2 \alpha_n (1-\alpha_n) \|x_n - Ux_n\|^2$$
$$= \|x_n - x_{n+1}\|^2 - \alpha_n (1-\alpha_n) \|x_n - Tx_n\|^2.$$

On the other hand, we have from (2.2) that

(7.15)
$$\|y_n - x_{n+1}\|^2 = \|\alpha_n x_n + (1 - \alpha_n) T x_n - x_{n+1}\|^2$$
$$= \alpha_n \|x_n - x_{n+1}\|^2 + (1 - \alpha_n) \|T x_n - x_{n+1}\|^2$$
$$- \alpha_n (1 - \alpha_n) \|x_n - T x_n\|^2.$$

From (7.14) and (7.15), we have

$$(1 - \alpha_n) \|Tx_n - x_{n+1}\|^2 \le (1 - \alpha_n) \|x_n - x_{n+1}\|^2.$$

Since $1 - \alpha_n > 0$, we have $||Tx_n - x_{n+1}||^2 \le ||x_n - x_{n+1}||^2$ and hence

$$\|Tx_n - x_{n+1}\| \to 0.$$

Since

$$||Tx_n - x_n||^2 = ||Tx_n - x_{n+1}||^2 + 2\langle Tx_n - x_{n+1}, x_{n+1} - x_n \rangle + ||x_{n+1} - x_n||^2,$$
we also have

$$(7.16) ||Tx_n - x_n|| \to 0.$$

From $x_n = P_{C_n} x \to x_0$, we have $x_n \to x_0$. Using (7.16) and Lemma 4.1 we have $x_0 \in F(T)$. Put $z_0 = P_{F(T)} x$. Since $z_0 = P_{F(T)} x \subset C_{n+1}$ and $x_{n+1} = P_{C_{n+1}} x$, we have that

(7.17)
$$\|x - x_{n+1}\|^2 \le \|x - z_0\|^2.$$

So, we have from $x_n = P_{C_n} x \to x_0$ that

$$||x - x_0||^2 = \lim_{n \to \infty} ||x - x_n||^2 \le ||x - z_0||^2.$$

From the definition of z_0 , we get $z_0 = x_0$. Hence, $\{x_n\}$ converges strongly to z_0 . This completes the proof.

Using Theorem 7.3 and the metod of proof in Theorem 7.2, we have the following strong convergence theorem for strict pseud-contractions in a Hilbert space.

Theorem 7.4. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let k be a real number with $0 \le k < 1$ and let $U : C \to H$ be a k-strict pseudo-contraction such that $F(U) \ne \emptyset$. Let $C_1 = C$ and let $\{x_n\} \subset C$ be a sequence generated by $x_1 = x \in C$ and

$$\begin{cases} y_n = \beta_n x_n + (1 - \beta_n) U x_n, \\ C_{n+1} = \{ z \in C_n : \|y_n - z\|^2 \le \|x_n - z\|^2 - (\beta_n - k)(1 - \beta_n) \|U x_n - x_n\|^2 \}, \\ x_{n+1} = P_{C_{n+1}} x, \quad \forall n \in \mathbb{N}, \end{cases}$$

where $P_{C_{n+1}}$ is the metric projection of H onto C_{n+1} , and $\{\beta_n\} \subset (-\infty, 1)$. Then, $\{x_n\}$ converges strongly to $z_0 = P_{F(U)}x$, where $P_{F(U)}$ is the metric projection of H onto F(U).

References

- G. L. Acedo and H.-K. Xu, Iterative methods for strict pseudo-contractions in Hilbert spaces, Nonlinear Anal. 67 (2007), 2258–2271.
- [2] K. Aoyama, Y. Kimura, W. Takahashi and M. Toyoda, Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space, Nonlinear Anal. 67 (2007), 2350–2360.
- [3] J.-B. Baillon, Un theoreme de type ergodique pour les contractions non lineaires dans un espace de Hilbert, C.R. Acad. Sci. Paris Ser. A-B 280 (1975), 1511–1514.
- [4] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), 123–145.
- [5] F. E. Browder, Convergence theorems for sequences of nonlinear operators in Banach spaces, Math. Z. 100 (1967), 201–225.
- [6] F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl. 20 (1967), 197–228.
- [7] P.L. Combettes and A. Hirstoaga, Equilibrium problems in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005), 117–136.
- [8] K. Goebel and W. A. Kirk, *Topics in Metric Fixed Point Theory*, Cambridge University Press, Cambridge, 1990.
- [9] B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967), 957–961.
- [10] M. Hojo, W. Takahashi and J.-C. Yao, Weak and strong mean convergence theorems for supper hybrid mappings in Hilbert spaces, Fixed Point Theory 12 (2011), 113–126.
- [11] T. Ibaraki and W. Takahashi, Weak convergence theorem for new nonexpansive mappings in Banach spaces and its applications, Taiwanese J. Math. 11 (2007), 929–944.

- [12] T. Ibaraki and W. Takahashi, Fixed point theorems for nonlinear mappings of nonexpansive type in Banach spaces, J. Nonlinear Convex Anal. 10 (2009), 21–32.
- [13] S. Iemoto and W. Takahashi, Approximating fixed points of nonexpansive mappings and nonspreading mappings in a Hilbert space, Nonlinear Anal. 71 (2009), 2082–2089.
- [14] S. Itoh and W. Takahashi, The common fixed point theory of single-valued mappings and multi-valued mappings, Pacific J. Math. 79 (1978), 493–508.
- [15] P. Kocourek, W. Takahashi and J. -C. Yao, Fixed point theorems and weak convergence theorems for generalized hybrid mappings in Hilbert spaces, Taiwanese J. Math. 14 (2010), 2497– 2511.
- [16] F. Kohsaka and W. Takahashi, Existence and approximation of fixed points of firmly nonexpansive-type mappings in Banach spaces, SIAM. J. Optim. 19 (2008), 824–835.
- [17] F. Kohsaka and W. Takahashi, Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces, Arch. Math. 91 (2008), 166–177.
- [18] Y. Kurokawa and W. Takahashi, Weak and strong convergence theorems for nonspreading mappings in Hilbert spaces, Nonlinear Anal. 73 (2010), 1562–1568.
- [19] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506–510.
- [20] G. Marino and H.-K. Xu, Weak and strong convergence theorems for strich pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl. 329 (2007), 336–346.
- [21] U. Mosco, convergence of convex sets and of solutions of variational inequalities, Adv. Math. 3 (1969), 510–585.
- [22] K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl. 279 (2003), 372–378.
- [23] S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67 (1979), 274–276.
- [24] W. Takahashi, A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space, Proc. Amer. Math. Soc. 81 (1981), 253–256.
- [25] W. Takahashi, Nonlinear Functional Analysis, Yokohoma Publishers, Yokohoma, 2000.
- [26] W. Takahashi, Convex Analysis and Approximation of Fixed Points, Yokohama Publishers, Yokohama, 2000 (in Japanese).
- [27] W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohoma Publishers, Yokohoma, 2009.
- [28] W. Takahashi, Fixed point theorems for new nonlinear mappings in a Hilbert space, J. Nonlinear Convex Anal. 11 (2010), 79–88.
- [29] W. Takahashi, Nonlinear operators and fixed point theorems in Hilbert spaces, RIMS Kokyuroku 1685 (2010), 177–189.
- [30] W. Takahashi, Y. Takeuchi and R. Kubota, Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 341 (2008), 276–286.
- [31] W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 118 (2003), 417–428.
- [32] W. Takahashi and J.-C. Yao, Fixed point theorems and ergodic theorems for nonlinear mappings in Hilbert spaces, Taiwanese J. Math. 15 (2011), 457–472.
- [33] W. Takahashi, J.-C. Yao and P. Kocourek, Weak and strong convergence theorems for generalized hybrid nonself-mappings in Hilbert spaces, J. Nonlinear Convex Anal. 11 (2010), 567–586.
- [34] M. Tsukada, Convergence of best approximation in a smooth Banach space, J. Approx. Theory 40 (1984), 301–309.
- [35] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. 58 (1992), 486–491.

WATARU TAKAHASHI

Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Tokyo 152-8552, Japan

E-mail address: wataru@is.titech.ac.jp

NGAI-CHING WONG

Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan *E-mail address:* wong@math.nsysu.edu.tw

Jen-Chih Yao

Center for General Education, Kaohsiung Medical University, Kaohsiung 80702, Taiwan *E-mail address:* yaojc@kmu.edu.tw