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for all x, y ∈ C, respectively; see also [11], [12], [13] and [16]. We know from [28]
that a nonexpansive mapping, a nonspreading mapping and a hybrid mapping are
deduced from a firmly nonexpansive mapping. A mapping T : C → H is said to be
firmly nonexpansive [5], [8] if

∥Tx− Ty∥2 ≤ ⟨x− y, Tx− Ty⟩
for all x, y ∈ C. A firmly nonexpansive mapping F can be deduced from an equilib-
rium problem in a Hilbert space; see, for instance, [4] and [7]. Recently, Kocourek,
Takahashi and Yao [15] considered a broad class of nonlinear mappings in a Hilbert
space which contains the classes of nonexpansive mappings, nonspreading mappings
and hybrid mappings: A mapping T : C → H is called generalized hybrid [15] if
there are α, β ∈ R such that

(1.4) α∥Tx− Ty∥2 + (1− α)∥x− Ty∥2 ≤ β∥Tx− y∥2 + (1− β)∥x− y∥2

for all x, y ∈ C. We call such a mapping an (α, β)-generalized hybrid mapping.
For example, an (α, β)-generalized hybrid mapping is nonexpansive for α = 1 and
β = 0, nonspreading for α = 2 and β = 1, and hybrid for α = 3

2 and β = 1
2 .

Hojo, Takahashi and Yao [10] also introduced a class of nonlinear mappings in a
Hilbert space which contains the class of generalized hybrid mappings: A mapping
U : C → H is called extended hybrid if there are α, β, γ ∈ R such that

α(1 + γ)∥Ux− Uy∥2 + (1− α(1 + γ))∥x− Uy∥2(1.5)

≤ (β + αγ)∥Ux− y∥2 + (1− (β + αγ))∥x− y∥2

− (α− β)γ∥x− Ux∥2 − γ∥y − Uy∥2

for all x, y ∈ C.
In this paper, we first show that the class of extended hybrid mappings contains

the class of strict pseudo-contractions in a Hilbert space. We also obtain some
important properties for extended hybrid mappings and strict pseudo-contractions
in a Hilbert space. Using these results, we prove weak convergence theorems of
Baillon’s type [3] and of Mann’s type [19] for extended hybrid mappings in a Hilbert
space. Finally, we get strong convergence theorems of Halpern’s type [9] and of the
hybrid methods [22], [30] for these mappings.

2. Preliminaries

Let H be a (real) Hilbert space with inner product ⟨·, · ⟩ and norm ∥ · ∥. We
denote the strong convergence and the weak convergence of {xn} to x ∈ H by
xn → x and xn ⇀ x, respectively. From [27], we know the following basic equality:
For x, y ∈ H and λ ∈ R, we have

(2.1) ∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)∥x− y∥2.
Furthermore, we know that for x, y, u, v ∈ H,

(2.2) 2 ⟨x− y, u− v⟩ = ∥x− v∥2 + ∥y − u∥2 − ∥x− u∥2 − ∥y − v∥2.
Let C be a nonempty closed convex subset of H and let T be a mapping from

C into H. Then, we denote by F (T ) the set of fixed points of T . A mapping
T : C → H with F (T ) ̸= ∅ is called quasi-nonexpansive if ∥x − Ty∥ ≤ ∥x − y∥ for
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all x ∈ F (T ) and y ∈ C. It is well-known that the set F (T ) of fixed points of a
quasi-nonexpansive mapping T is closed and convex; see Ito and Takahashi [14]. It
is not so difficult to show this fact in a Hilbert space. In fact, to show that F (T )
is closed, let us take a sequence {zn} ⊂ F (T ) such that zn → z0. Since C is closed
and convex, C is weakly closed and hence z0 ∈ C. We also have

∥z0 − Tz0∥ ≤ ∥z0 − zn∥+ ∥zn − Tz0∥ ≤ 2∥z0 − zn∥

for n ∈ N. Tending n → ∞, we have that z0 ∈ F (T ) and hence F (T ) is closed.
To show that F (T ) is convex, let us take z1, z2 ∈ F (T ) and λ ∈ [0, 1], and put
z0 = λz1 + (1− λ)z2. Then we have from (2.1) that

∥z0 − Tz0∥2 = ∥λz1 + (1− λ)z2 − Tz0∥2

= ∥λ(z1 − Tz0) + (1− λ)(z2 − Tz0)∥2

= λ∥z1 − Tz0∥2 + (1− λ)∥z2 − Tz0∥2 − λ(1− λ)∥z1 − z2∥2

≤ λ∥z1 − z0∥2 + (1− λ)∥z2 − z0∥2 − λ(1− λ)∥z1 − z2∥2

= λ(1− λ)2∥z1 − z2∥2 + λ2(1− λ)∥z1 − z2∥2 − λ(1− λ)∥z1 − z2∥2

= λ(1− λ)(1− λ+ λ− 1)∥z1 − z2∥2 = 0

and hence z0 ∈ F (T ). So, F (T ) is convex.
Let C be a nonempty closed convex subset of H and x ∈ H. Then, we know that

there exists a unique nearest point z ∈ C such that ∥x − z∥ = infy∈C ∥x − y∥. We
denote such a correspondence by z = PCx. PC is called the metric projection of H
onto C. It is known that PC is nonexpansive and

⟨x− PCx, PCx− u⟩ ≥ 0

for all x ∈ H and u ∈ C. Furthermore, we know that

(2.3) ∥PCx− PCy∥2 ≤ ⟨x− y, PCx− PCy⟩

for all x, y ∈ H; see [27] for more details. The following lemma was proved by
Takahashi and Toyoda [31].

Lemma 2.1. Let D be a nonempty closed convex subset of a real Hilbert space H.
Let P be the metric projection of H onto D and let {xn} be a sequence in H. If
∥xn+1 − u∥ ≤ ∥xn − u∥ for all u ∈ D and n ∈ N, then {Pxn} converges strongly.

Let C be a nonempty closed convex subset of H. Then, we know that a mapping
T : C → H is called generalized hybrid [15] if there are α, β ∈ R such that

(2.4) α∥Tx− Ty∥2 + (1− α)∥x− Ty∥2 ≤ β∥Tx− y∥2 + (1− β)∥x− y∥2

for all x, y ∈ C. We can show that if x = Tx, then for any y ∈ C,

α∥x− Ty∥2 + (1− α)∥x− Ty∥2 ≤ β∥x− y∥2 + (1− β)∥x− y∥2

and hence

(2.5) ∥x− Ty∥ ≤ ∥x− y∥.



556 W. TAKAHASHI, N.-C. WONG, AND J.-C. YAO

This means that an (α, β)-generalized hybrid mapping with a fixed point is quasi-
nonexpansive. A mapping S : C → H is super hybrid [15, 33] if there are α, β, γ ∈ R
such that

α∥Sx− Sy∥2+(1− α+ γ)∥x− Sy∥2

≤
(
β + (β − α)γ

)
∥Sx− y∥2 +

(
1− β − (β − α− 1)γ

)
∥x− y∥2

+ (α− β)γ∥x− Sx∥2 + γ∥y − Sy∥2

for all x, y ∈ C. We call such a mapping an (α, β, γ)-super hybrid mapping. An
(α, β, 0)-super hybrid mapping is (α, β)-generalized hybrid. So, the class of super
hybrid mappings contains the class of generalized hybrid mappings. Kocourek,
Takahashi and Yao [15] also proved the following fixed point theorem for super
hybrid mappings in a Hilbert space.

Theorem 2.2. Let C be a nonempty bounded closed convex subset of a Hilbert
space H and let α, β and γ be real numbers with γ ≥ 0. Let S : C → C be an
(α, β, γ)-super hybrid mapping. Then, S has a fixed point in C. In particular, if
S : C → C is an (α, β)-generalized hybrid mapping, then S has a fixed point in C.

We also know a fixed point theorem [10] for generalized hybrid non-self mappings
in a Hilbert space.

Theorem 2.3. Let C be a nonempty bounded closed convex subset of a Hilbert space
H and let α and β be real numbers. Let T be an (α, β)-generalized hybrid mapping
of C into H with α − β ≥ 0. Suppose that there exists m > 1 such that for any
x ∈ C, Tx = x + t(y − x) for some y ∈ C and t with 1 ≤ t ≤ m. Then, T has a
fixed point in C.

To prove one of our main results, we need the following lemma [2]:

Lemma 2.4. Let {sn} be a sequence of nonnegative real numbers, let {αn} be
a sequence of [0, 1] with

∑∞
n=1 αn = ∞, let {βn} be a sequence of nonnegative

real numbers with
∑∞

n=1 βn < ∞, and let {γn} be a sequence of real numbers with
lim supn→∞ γn ≤ 0. Suppose that

sn+1 ≤ (1− αn)sn + αnγn + βn

for all n = 1, 2, .... Then limn→∞ sn = 0.

Let l∞ be the Banach space of bounded sequences with supremum norm. Let
µ be an element of (l∞)∗ (the dual space of l∞). Then, we denote by µ(f) the
value of µ at f = (x1, x2, x3, . . . ) ∈ l∞. Sometimes, we denote by µn(xn) the value
µ(f). A linear functional µ on l∞ is called a mean if µ(e) = ∥µ∥ = 1, where
e = (1, 1, 1, . . . ). A mean µ is called a Banach limit on l∞ if µn(xn+1) = µn(xn).
We know that there exists a Banach limit on l∞. If µ is a Banach limit on l∞, then
for f = (x1, x2, x3, . . . ) ∈ l∞,

lim inf
n→∞

xn ≤ µn(xn) ≤ lim sup
n→∞

xn.

In particular, if f = (x1, x2, x3, . . . ) ∈ l∞ and xn → a ∈ R, then we have µ(f) =
µn(xn) = a. For the proof of existence of a Banach limit and its other elementary
properties, see [25].
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For a sequence {Cn} of nonempty closed convex subsets of a Hilbert space H,
define s-LinCn and w-LsnCn as follows: x ∈s-LinCn if and only if there exists
{xn} ⊂ H such that {xn} converges strongly to x and xn ∈ Cn for all n ∈ N.
Similarly, y ∈w-LsnCn if and only if there exist a subsequence {Cni} of {Cn} and a
sequence {yi} ⊂ H such that {yi} converges weakly to y and yi ∈ Cni for all i ∈ N.
If C0 satisfies that

(2.6) C0 =s-LinCn =w-LsnCn,

we say that {Cn} converges to C0 in the sense of Mosco [21] and we write C0 =M-
limn→∞Cn. It is easy to show that if {Cn} is nonincreasing with respect to inclusion,
then {Cn} converges to ∩∞

n=1Cn in the sense of Mosco. For more details, see [21].
We know the following theorem [34].

Theorem 2.5. Let H be a Hilbert space. Let {Cn} be a sequence of nonempty
closed convex subsets of H. If C0 =M-limn→∞Cn exists and nonempty, then for
each x ∈ H, PCnx converges strongly to PC0x, where PCn and PC0 are the mertic
projections of H onto Cn and C0, respectively.

3. Extended hybrid mappings

Let H be a Hilbert space and let C be a nonempty closed convex subset of H.
We recall that a mapping U : C → H is called extended hybrid [10] if there are
α, β, γ ∈ R such that

α(1 + γ)∥Ux− Uy∥2 + (1− α(1 + γ))∥x− Uy∥2(3.1)

≤ (β + αγ)∥Ux− y∥2 + (1− (β + αγ))∥x− y∥2

− (α− β)γ∥x− Ux∥2 − γ∥y − Uy∥2

for all x, y ∈ C and such a mapping U is called (α, β, γ)-extended hybrid. In [10],
the authors derived a relation between the class of generalized hybrid mappings and
the class of extended hybrid mappings in a Hilbert space.

Theorem 3.1. Let C be a nonempty closed convex subset of a Hilbert space H and
let α, β and γ be real numbers with γ ̸= −1. Let T and U be mappings of C into
H such that U = 1

1+γT + γ
1+γ I, where Ix = x for all x ∈ H. Then, for 1 + γ > 0,

T : C → H is an (α, β)-generalized hybrid mapping if and only if U : C → H is an
(α, β, γ)-extended hybrid mapping. In this case, F (T ) = F (U).

In this section, we first prove a fixed point theorem for strict pseudo-contractions
in a Hilbert space.

Theorem 3.2. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let k be a real number with 0 ≤ k < 1 and let U : C → H be a k-strict
pseudo-contraction. Then, U is a (1,0,-k)-extended hybrid mapping and F (U) is
closed and convex. If, in addition, C is bounded and U is a mapping of C into
itself, then F (U) is nonempty.

Proof. Let U : C → H be a k-strict pseudo-contraction. Then, 0 ≤ k < 1 and

(3.2) ∥Ux− Uy∥2 ≤ ∥x− y∥2 + k∥(I − U)x− (I − U)y∥2
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for all x, y ∈ C. So, we have from (2.2) that for all x, y ∈ C,

∥Ux− Uy∥2 ≤ ∥x− y∥2 + k∥(I − U)x− (I − U)y∥2

= ∥x− y∥2 + k∥x− y − (Ux− Uy)∥2

= ∥x− y∥2 + k(∥x− y∥2 + ∥Ux− Uy∥2 − 2⟨x− y, Ux− Uy⟩)
= ∥x− y∥2 + k(∥x− y∥2 + ∥Ux− Uy∥2

− ∥x− Uy∥2 − ∥y − Ux∥2 + ∥x− Ux∥2 + ∥y − Uy∥2)

and hence

(1− k)∥Ux−Uy∥2 + k∥x− Uy∥2 ≤ −k∥Ux− y∥2(3.3)

+ (1 + k)∥x− y∥2 + k∥x− Ux∥2 + k∥y − Uy∥2.

Putting α = 1, β = 0 and γ = −k in (3.1), we get (3.3). Then, U is a (1,0,-k)-
extended hybrid mapping. Furthermore, putting T = (1− k)U + kI, where Ix = x
for all x ∈ H, we have that

U =
1

1− k
T +

−k

1− k
I.

Using 1 + γ = 1 − k > 0 and Theorem 3.1, we have that T is a (1,0)-generalized
hybrid mapping, i.e., a nonexpansive mapping. So, F (T ) is closed and convex.
From F (T ) = F (U), F (U) is also closed and convex. Since C is a bounded closed
convex set and T is a nonexpansive mapping of C into itself, F (T ) is nonempty; see
[27]. Hence F (U) is nonempty. �

In general, we have the following fixed point theorem for extended hybrid map-
pings in a Hilbert space.

Theorem 3.3. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let α, β, γ be real numbers. Let U : C → H be an (α, β, γ)-extended
hybrid mapping with 1 + γ > 0. Then F (U) is closed and convex. If, in addition,
C is bounded, 0 ≤ −γ < 1 and U is a mapping of C into itself, then F (U) ̸= ∅.

Proof. Let U : C → H be an (α, β, γ)-extended hybrid mapping with 1 + γ > 0.
Putting T = (1 + γ)U − γI, we have

U =
1

1 + γ
T +

γ

1 + γ
I.

From Theorem 3.1, we have that T is an (α, β)-generalized hybrid mapping of C
into H. If F (U) ̸= ∅, then F (T ) ̸= ∅ from F (U) = F (T ). Then we have from
(2.5) that T : C → H is quasi-nonexpansive. So, we have that F (T ) is closed and
convex and hence F (U) is closed and convex. If F (U) = ∅, it is obvious that F (U)
is closed and convex. Let U : C → C be an (α, β, γ)-extended hybrid mapping with
0 ≤ −γ < 1. We note that if 0 ≤ −γ < 1, then 1 + γ > 0. Since 0 ≤ −γ < 1 and
T = (1+γ)U−γI, we have from Theorem 3.1 that T is an (α, β)-generalized hybrid
mapping of C into itself. Using Theorem 2.2, we have F (T ) ̸= ∅. So, F (U) ̸= ∅. �

Using Theorem 3.3, we have the following fixed point theorem.
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Theorem 3.4. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let k be a real number with 0 ≤ k < 1. Let U : C → H be a mapping
such that

2∥Ux− Uy∥2 ≤ ∥x− Uy∥2 + ∥Ux− y∥2(3.4)

+ k(∥(I − U)x− (I − U)y∥2 − 2⟨x− Ux, y − Uy⟩)

for all x, y ∈ C. Then, F (U) is closed and convex. In addition, if C is bounded and
U is a mapping C into itself, then F (U) ̸= ∅.

Proof. Using (2.2), we have that the inequality (3.4) is equivalent to

2(1− k)∥Ux− Uy∥2 + (−1 + 2k)∥x− Uy∥2(3.5)

≤ (1− 2k)∥Ux− y∥2 + 2k∥x− y∥2

+ k∥x− Ux∥2 + k∥y − Uy∥2.

On the other hand, putting α = 2, β = 1 and γ = −k in (3.1), we get this inequality
(3.5). So, U is a (2,1,-k)-extended hybrid mapping. Using 0 ≤ k < 1 and Theorem
3.3, we have the desired result. �

For example, taking k = 1
2 in (3.4), we obtain that

2∥Ux− Uy∥2 ≤ 2∥x− y∥2 + ∥x− Ux∥2 + ∥y − Uy∥2

for all x, y ∈ C. Using Theorem 3.4, we have that such a mapping U has a fixed
point in C if C is bounded, closed and convex. Furthermore, F (U) is closed and
convex.

We also have the following important result for extended hybrid mappings in a
Hilbert space.

Theorem 3.5. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let α, β, γ be real numbers and let U : C → H be an (α, β, γ)-extended
hybrid mapping with 1 + γ > 0. Then, I − U is demiclosed, i.e., xn ⇀ z and
xn − Uxn → 0 imply z ∈ F (U).

Proof. Since U : C → H is extended hybrid, there are α, β, γ ∈ R such that

α(1 + γ)∥Ux− Uy∥2 + (1− α(1 + γ))∥x− Uy∥2

≤ (β + αγ)∥Ux− y∥2 + (1− (β + αγ))∥x− y∥2

− (α− β)γ∥x− Ux∥2 − γ∥y − Uy∥2

for all x, y ∈ C. Suppose xn ⇀ z and xn − Uxn → 0. Let us consider

α(1 + γ)∥Uxn − Uz∥2 + (1− α(1 + γ))∥xn − Uz∥2

≤ (β + αγ)∥Uxn − z∥2 + (1− (β + αγ))∥xn − z∥2

− (α− β)γ∥xn − Uxn∥2 − γ∥z − Uz∥2.
From this inequality, we have

α(1 + γ)∥Uxn − xn + xn − Uz∥2 + (1− α(1 + γ))∥xn − Uz∥2

≤ (β + αγ)∥Uxn − xn + xn − z∥2 + (1− (β + αγ))∥xn − z∥2
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− (α− β)γ∥xn − Uxn∥2 − γ∥z − Uz∥2.

We apply a Banach limit µ to both sides of the inequality. Then, we have

α(1 + γ)µn∥Uxn − xn + xn − Uz∥2 + (1− α(1 + γ))µn∥xn − Uz∥2

≤ (β + αγ)µn∥Uxn − xn + xn − z∥2 + (1− (β + αγ))µn∥xn − z∥2

− (α− β)γµn∥xn − Uxn∥2 − γµn∥z − Uz∥2.

We know from the properties of µ that

µn∥Uxn−xn + xn − Uz∥2

= µn(∥Uxn − xn∥2 + ∥xn − Uz∥2 + 2⟨Uxn − xn, xn − Uz⟩)
= µn∥Uxn − xn∥2 + µn∥xn − Uz∥2 + 2µn⟨Uxn − xn, xn − Uz⟩
= µn∥xn − Uz∥2

and µn∥Uxn − xn + xn − z∥2 = µn∥xn − z∥2. So, we have

α(1 + γ)µn∥xn − Uz∥2 + (1− α(1 + γ))µn∥xn − Uz∥2

≤ (β + αγ)µn∥xn − z∥2 + (1− (β + αγ))µn∥xn − z∥2

− γ∥z − Uz∥2

and hence

µn∥xn − Uz∥2 ≤ µn∥xn − z∥2 − γ∥z − Uz∥2.
From µn∥xn − Uz∥2 = µn∥xn − z + z − Uz∥2 = µn∥xn − z∥2 + ∥z − Uz∥2, we also
have

µn∥xn − z∥2 + ∥z − Uz∥2 ≤ µn∥xn − z∥2 − γ∥z − Uz∥2.
Hence, we obtain (1 + γ)∥z − Uz∥2 ≤ 0. Since 1 + γ > 0, we have ∥z − Uz∥2 ≤ 0.
Then, Uz = z. This implies that I − U is demiclosed. �

Using Theorems 3.2 and 3.6, we have the following result obtained by Marino
and Xu [20]; see also [1].

Corollary 3.6. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let k be a real number with 0 ≤ k < 1 and U : C → H be a k-strict
pseudo-contraction. Then, I − U is demiclosed, i.e., xn ⇀ z and xn − Uxn → 0
imply z ∈ F (U).

Proof. We know from Theorem 3.2 that a k-strict pseudo-contraction U : C → H
is (1,0,-k)-entended hybrid. Furthermore, 0 ≤ k < 1 implies 1 + γ = 1− k > 0. So,
we have the desired result from Theorem 3.6. �

4. Nonlinear ergodic theorem

In this section, using the technique developed in [24], [29] and [32], we prove
a nonlinear ergodic theorem of Baillon’s type [3] for extended hybrid mappings
in a Hilbert space. For proving it, we need the following two lemmas proved by
Takahashi and Yao and Kocourek [33] and Hojo, Takahashi and Yao [10].
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Lemma 4.1. Let H be a Hilbert space and let C be a nonempty closed convex subset
of H. Let T : C → H be a generalized hybrid mapping. Suppose that there exists
{xn} ⊂ C such that xn ⇀ z and xn − Txn → 0. Then, z ∈ F (T ).

Lemma 4.2. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let T be a generalized hybrid mapping from C into itself. Suppose that {Tnx}
is bounded for some x ∈ C. Define Snx = 1

n

∑n
k=1 T

kx. Then, limn→∞ ∥Snx −
TSnx∥ = 0. In particular, if C is bounded, then

lim
n→∞

sup
x∈C

∥Snx− TSnx∥ = 0.

Theorem 4.3. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let α, β and γ be real numbers and let U : C → C be an (α, β,
γ)-extended hybrid mapping such that 0 ≤ −γ < 1 and F (U) ̸= ∅. Let P be the
mertic projection of H onto F (U). Then, for any x ∈ C,

Snx =
1

n

n∑
k=1

((1 + γ)U − γI)kx

converges weakly to z ∈ F (U), where z = limn→∞ PTnx and T = (1 + γ)U − γI.

Proof. Put T = (1 + γ)U − γI. Since 0 ≤ −γ < 1, we have from Theorem 3.1 that
T is an (α, β)-generalized hybrid mapping of C into itself, i.e.,

(4.1) α∥Tx− Ty∥2 + (1− α)∥x− Ty∥2 ≤ β∥Tx− y∥2 + (1− β)∥x− y∥2

for all x, y ∈ C. Since T is a generalized hybrid mapping and F (T ) = F (U) ̸= ∅,
T is quasi-nonexpansive. So, F (T ) is closed and convex. Let x ∈ C and u ∈ F (T ).
Then, we have ∥Tn+1x − u∥ ≤ ∥Tnx − u∥. Putting D = F (T ) in Lemma 2.1, we
have that limn→∞ PTnx converges strongly. Put z = limn→∞ PTnx. Let us show
Snx ⇀ z. Since {Tnx} is bounded, so is {Snx}. Let {Snix} be a subsequence of
{Snx} such that Snix ⇀ v. By Lemma 4.2, we know limn→∞ ∥Snx − TSnx∥ = 0.
Using Lemma 4.1, we have v = Tv. To show Snx ⇀ z, it is sufficient to prove z = v.
From v ∈ F (T ), we have

⟨v − z, T kx− PT kx⟩ = ⟨v − PT kx, T kx− PT kx⟩+ ⟨PT kx− z, T kx− PT kx⟩

≤ ⟨PT kx− z, T kx− PT kx⟩

≤ ∥PT kx− z∥∥T kx− PT kx∥

≤ ∥PT kx− z∥L

for all k ∈ N, where L = sup{∥T kx− PT kx∥ : k ∈ N}. Summing these inequalities
from k = 1 to ni and dividing by ni, we have⟨

v − z, Snix− 1

ni

ni∑
k=1

PT kx

⟩
≤ 1

ni

ni∑
k=1

∥PT kx− z∥L.

Since Snix ⇀ v as i → ∞ and PTnx → z as n → ∞, we have ⟨v − z, v − z⟩ ≤ 0.
This implies z = v. Therefore, {Snx} converges weakly to z ∈ F (T ) = F (U), where
z = limn→∞ PTnx. So, we get the desired result. �

Using Theorem 4.3, we obtain the following corollary.
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Corollary 4.4. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let k be a real number with 0 ≤ k < 1 and U : C → C be a k-strict
pseudo-contraction and F (U) ̸= ∅. Let P be the mertic projection of H onto F (U).
Then, for any x ∈ C,

Snx =
1

n

n∑
m=1

((1− k)U + kI)mx

converges weakly to z ∈ F (U), where z = limn→∞ PTnx and T = (1− k)U + kI.

Proof. We know from Theorem 3.2 that a k-strict pseudo-contraction U : C → C is
(1,0,-k)-entended hybrid. Furthermore, 0 ≤ k < 1 and −γ = k imply 0 ≤ −γ < 1.
So, we have the desired result from Theorem 4.3. �

5. Weak convergence theorem of Mann’s type

In this section, we prove a weak convergence theorem of Mann’s type [19] for
extended hybrid mappings in a Hilbert space. Before proving the theorem, we need
the following lemma proved by Takahashi, Yao and Kocourek [33].

Lemma 5.1. Let H be a Hilbert space, let C be a nonempty closed convex subset
of H and let PC be the metric projection of H onto C. Let α, β and γ be real
numbers with γ ̸= −1 and let S : C → H be an (α, β, γ)-super hybrid mapping
with F (S) ̸= ∅. Let {αn} be a sequence of real numbers such that 0 ≤ αn ≤ 1 and
lim infn→∞ αn(1− αn) > 0. Suppose {xn} is the sequence generated by x1 = x ∈ C
and

xn+1 = PC

{
αnxn + (1− αn)(

1

1 + γ
Sxn +

γ

1 + γ
xn)

}
, n ∈ N.

Then, the sequence {xn} converges weakly to an element v of F (S), where v =
limn→∞ PF (S)xn and PF (S) is the metric projection of H onto F (S).

Theorem 5.2. Let H be a Hilbert space, let C be a nonempty closed convex subset of
H and let PC be the metric projection of H onto C. Let α, β and γ be real numbers.
Let U : C → H be an (α, β, γ)-extended hybrid mapping such that 1 + γ > 0 and
F (U) ̸= ∅. Let {αn} be a sequence of real numbers such that 0 ≤ αn ≤ 1 and
lim infn→∞ αn(1− αn) > 0. Suppose {xn} is the sequence generated by x1 = x ∈ C
and

xn+1 = PC

{
αnxn + (1− αn)((1 + γ)Uxn − γxn)

}
, n ∈ N.

Then, the sequence {xn} converges weakly to an element v of F (U), where v =
limn→∞ PF (U)xn and PF (U) is the metric projection of H onto F (U).

Proof. Put T = (1 + γ)U − γI. Then, we have from 1 + γ > 0 and Theorem 3.1
that T : C → H is an (α, β)-generalized hybrid mapping and F (U) = F (T ) ̸= ∅.
Furthermore, we have that

xn+1 = PC

{
αnxn + (1− αn)Txn

}
, n ∈ N.

Using Lemma 5.1 with γ = 0, we have that {xn} converges weakly to an element v
of F (T ), where v = limn→∞ PF (T )xn and PF (T ) is the metric projection of H onto
F (T ) = F (U). �

As direct consequences of Theorem 5.2, we obtain the following results.
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Corollary 5.3. Let H be a Hilbert space, let C be a nonempty closed convex subset
of H and let PC be the metric projection of H onto C. Let γ be a real number with
1 + γ > 0 and let U : C → H be an (2, 1, γ)-extended hybrid mapping, i.e.,

2(1 + γ)∥Ux− Uy∥2 − (1 + 2γ)∥x− Uy∥2

≤ (1 + 2γ)∥Ux− y∥2 − 2γ∥x− y∥2

− γ∥x− Ux∥2 − γ∥y − Uy∥2

for all x, y ∈ C. Let {αn} be a sequence of real numbers such that 0 ≤ αn ≤ 1 and
lim infn→∞ αn(1− αn) > 0. Suppose {xn} is the sequence generated by x1 = x ∈ C
and

xn+1 = PC

{
αnxn + (1− αn)((1 + γ)Uxn − γxn)

}
, n ∈ N.

If F (U) ̸= ∅, then the sequence {xn} converges weakly to an element v of F (U),
where v = limn→∞ PF (U)xn and PF (U) is the metric projection of H onto F (U).

Corollary 5.4. Let H be a Hilbert space, let C be a nonempty closed convex subset
of H and let PC be the metric projection of H onto C. Let γ be a real number with
1 + γ > 0 and let U : C → H be an (32 ,

1
2 , γ)-extended hybrid mapping, i.e.,

3(1 + γ)∥Ux− Uy∥2 − (1 + 3γ))∥x− Uy∥2

≤ (1 + 3γ)∥Ux− y∥2 + (1− 3γ))∥x− y∥2

− 2γ∥x− Ux∥2 − 2γ∥y − Uy∥2

for all x, y ∈ C. Let {αn} be a sequence of real numbers such that 0 ≤ αn ≤ 1 and
lim infn→∞ αn(1− αn) > 0. Suppose {xn} is the sequence generated by x1 = x ∈ C
and

xn+1 = PC

(
αnxn + (1− αn)((1 + γ)Uxn − γxn)

)
, n ∈ N.

If F (U) ̸= ∅, then the sequence {xn} converges weakly to an element v of F (U),
where v = limn→∞ PF (U)xn and PF (U) is the metric projection of H onto F (U).

Taking γ = −1
2 in Corollaries 5.3 and 5.4, we obtain two mappings such that

2∥Ux− Uy∥2 ≤ 2∥x− y∥2 + ∥x− Ux∥2 + ∥y − Uy∥2

and

3∥Ux− Uy∥2+∥x− Uy∥2 + ∥y − Ux∥2

≤ 5∥x− y∥2 + 2∥x− Ux∥2 + 2∥y − Uy∥2

for all x, y ∈ C, respectively. We can apply Corollaries 5.3 and 5.4 for such mappings
and then obtain weak convergence theorems in a Hilbert space. Next, we prove a
weak convergence theorem of Mann’s type for a class of non-self mappings containing
the class of nonexpansive mappings in a Hilbert space. For proving it, we state the
following lemma proved by Takahashi, Yao and Kocourek [33].

Lemma 5.5. Let H be a Hilbert space and let C be a nonempty closed convex subset
of H. Let γ be a real number with γ ̸= −1 and let S : C → H be a mapping such
that

∥Sx− Sy∥2 + 2γ⟨x− y, Sx− Sy⟩ ≤ (1 + 2γ)∥x− y∥2
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for all x, y ∈ C. Let {αn} be a sequence of real numbers such that 0 ≤ αn ≤ 1 and∑∞
n=1 αn(1− αn) = ∞. Suppose {xn} is a sequence generated by x1 = x ∈ C and

xn+1 = αnxn + (1− αn)PC

( 1

1 + γ
Sxn +

γ

1 + γ
xn

)
, n = 1, 2, . . . .

If F (S) ̸= ∅, then the sequence {xn} converges weakly to an element v of F (S),
where v = limn→∞ PF (S)xn and PF (S) is the metric projection of H onto F (S).

Theorem 5.6. Let H be a Hilbert space, let C be a nonempty closed convex subset
of H and let PC be the metric projection of H onto C. Let α, β and γ be real
numbers. Let γ be a real number with 1 + γ > 0 and let U : C → H be a mapping
with F (U) ̸= ∅ such that

∥Ux− Uy∥2 ≤ ∥x− y∥2 − γ∥(I − U)x− (I − U)y∥2

for all x, y ∈ C. Let {αn} be a sequence of real numbers such that 0 ≤ αn ≤ 1 and∑∞
n=1 αn(1− αn) = ∞. Suppose {xn} is a sequence generated by x1 = x ∈ C and

xn+1 = αnxn + (1− αn)PC

(
(1 + γ)Uxn − γxn)

)
, n ∈ N.

Then the sequence {xn} converges weakly to an element v of F (U), where v =
limn→∞ PF (U)xn and PF (U) is the metric projection of H onto F (U).

Proof. We have that for any x, y ∈ C,

∥Ux− Uy∥2 ≤ ∥x− y∥2 − γ(∥(I − U)x− (I − U)y∥2

⇐⇒ ∥Ux− Uy∥2 ≤ ∥x− y∥2 − γ(∥x− y∥2 + ∥Ux− Uy∥2

− ∥x− Uy∥2 − ∥Ux− y∥2 + ∥Ux− x∥2 + ∥y − Uy∥2)
⇐⇒ (1 + γ)∥Ux− Uy∥2 − γ∥x− Uy∥2

≤ γ∥Ux− y∥2 + (1− γ)∥x− y∥2 − γ∥Ux− x∥2 − γ∥y − Uy∥2.

Thus, U is a (1, 0, γ)-extended hybrid mapping with 1+γ > 0. Put T = (1+γ)U−γI.
Then, we have from Theorem 3.1 that T : C → H is an (1, 0)-generalized hybrid
mapping, i.e., a nonexpansive mapping and F (U) = F (T ) ̸= ∅. Using Lemma 5.5
with γ = 0 or Reich’s theorem [23], we have that {xn} converges weakly to an
element v of F (T ), where v = limn→∞ PF (T )xn and PF (T ) is the metric projection
of H onto F (T ) = F (U). �

As a direct consequence of Theorem 5.6, we have the following corollary.

Corollary 5.7. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let k be a real number with 0 ≤ k < 1 and U : C → C be a
k-strict pseudo-contraction and F (U) ̸= ∅. Let P be the mertic projection of H
onto F (U). Let {αn} be a sequence of real numbers such that 0 ≤ αn ≤ 1 and∑∞

n=1 αn(1− αn) = ∞. Suppose {xn} is a sequence generated by x1 = x ∈ C and

xn+1 = αnxn + (1− αn){(1− k)Uxn + kxn}, n ∈ N.

Then the sequence {xn} converges weakly to an element v of F (U), where v =
limn→∞ PF (U)xn and PF (U) is the metric projection of H onto F (U).
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Proof. We know from Theorem 3.2 that a k-strict pseudo-contraction U : C → H
is (1,0,-k)-entended hybrid. Furthermore, 0 ≤ k < 1 and −γ = k imply 1 + γ > 0.
So, we have the desired result from Theorem 5.6. �

Using Corollary 5.7, we prove a weak convergence theorem of Mann’s type for
strict pseudo-contractions which was obtained by Marino and Xu [20]; see also [1].

Theorem 5.8. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let k be a real number with 0 ≤ k < 1 and U : C → C be a k-strict
pseudo-contraction such that F (U) ̸= ∅. Let {βn} be a sequence of real numbers
such that k < βn < 1 and

∑∞
n=1(βn − k)(1 − βn) = ∞. Suppose that {xn} is a

sequence generated by x1 = x ∈ C and

xn+1 = βnxn + (1− βn)Uxn, n ∈ N.

Then the sequence {xn} converges weakly to an element v of F (U).

Proof. We have that for any n ∈ N,

yn = βnxn + (1− βn)Uxn

=
βn − k

1− k
xn + (1− βn − k

1− k
){(1− k)Uxn + kxn}.

Putting αn = βn−k
1−k , we have from 1 > βn > k that 1 − k > βn − k > 0 and hence

1 > βn−k
1−k = αn > 0. Furthermore, we have that

∞∑
n=1

(βn − k)(1− βn) = ∞

⇐⇒
∞∑
n=1

(1− k)αn(1− k)(1− αn) = ∞

⇐⇒(1− k)2
∞∑
n=1

αn(1− αn) = ∞

⇐⇒
∞∑
n=1

αn(1− αn) = ∞.

From Corollary 5.7, we have the desired result. �

6. Strong convergence theorems

In this section, we first prove a strong convergence theorem of Halpern’s type [9]
for extended hybrid mappings in a Hilbert space.

Theorem 6.1. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let γ be a real number with 1+γ > 0 and let U : C → H be a mapping
such that

∥Ux− Uy∥2 ≤ ∥x− y∥2 − γ∥(I − U)x− (I − U)y∥2
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for all x, y ∈ C. Let {αn} ⊂ [0, 1] be a sequence of real numbers such that αn → 0,∑∞
n=1 αn = ∞ and

∑∞
n=1 |αn − αn+1| < ∞. Suppose {xn} is a sequence generated

by x1 = x ∈ C, u ∈ C and

xn+1 = αnu+ (1− αn)PC

{
(1 + γ)Uxn − γxn

}
, n ∈ N.

If F (U) ̸= ∅, then the sequence {xn} converges strongly to an element v of F (U),
where v = PF (U)u and PF (U) is the metric projection of H onto F (U).

Proof. As in the proof of Theorem 5.6, we have that U is a (1, 0, γ)-extended
hybrid mapping of C into H. Put T = (1 + γ)U − γI. Then, we have from
Theorem 3.1 that T is a (1, 0)-generalized hybrid mapping of C into H, i.e., T is
a nonexpansive mapping of C into H. Furthermore, we have F (U) = F (T ). From
Wittmann’s theorem [35], we obtain xn → PF (PCT )u; see also Takahashi [26]. Let
us show F (PCT ) = F (T ) = F (U). We know F (T ) = F (U). It is obvious that
F (T ) ⊂ F (PCT ). We show F (PCT ) ⊂ F (T ). If PCTv = v, we have from the
property of PC that for u ∈ F (T ),

2∥v − u∥2 = 2∥PCTv − u∥2

≤ 2⟨Tv − u, PCTv − u⟩
= ∥Tv − u∥2 + ∥PCTv − u∥2 − ∥Tv − PCTv∥2

and hence
2∥v − u∥2 ≤ ∥v − u∥2 + ∥v − u∥2 − ∥Tv − v∥2.

Then, we have 0 ≤ −∥Tv − v∥2 and hence Tv = v. This completes the proof. �
As a direct consequence of Theorem 6.1, we have the following corollary.

Corollary 6.2. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let k be a real number with 0 ≤ k < 1 and U : C → C be a k-strict
pseudo-contraction with F (U) ̸= ∅. Let P be the mertic projection of H onto F (U).
Let {αn} ⊂ [0, 1] be a sequence of real numbers such that αn → 0,

∑∞
n=1 αn = ∞

and
∑∞

n=1 |αn − αn+1| < ∞. Suppose {xn} is a sequence generated by x1 = x ∈ C,
u ∈ C and

xn+1 = αnu+ (1− αn)
{
(1− k)Uxn + kxn

}
, n ∈ N.

Then the sequence {xn} converges strongly to an element v of F (U), where v =
PF (U)u and PF (U) is the metric projection of H onto F (U).

Next, using an idea of mean convergence and the method of the proof in [18], we
prove a strong convergence theorem of Halpern’s type for extended hybrid mappings
in a Hilbert space.

Theorem 6.3. Let C be a nonempty closed convex subset of a real Hilbert space H
and let α, β and k be real numbers. Let U : C → C be a (α, β, −k)-extended hybrid
mapping such that 0 ≤ k < 1 and F (U) ̸= ∅ and let P be the metric projection of
H onto F (U). Suppose {xn} is a sequence generated by x1 = x ∈ C, u ∈ C and

xn+1 = αnu+ (1− αn)zn,

zn =
1

n

n∑
m=1

((1− k)U + kI)mxn
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for all n = 1, 2, ..., where 0 ≤ αn ≤ 1, αn → 0 and
∑∞

n=1 αn = ∞. Then {xn}
converges strongly to Pu.

Proof. For an (α, β, −k)-extended hybrid mapping U : C → C, define

T = (1− k)U + kI.

Then, we have from Theorem 3.1 that T : C → C is an (α, β)-generalized hybrid
mapping such that F (T ) = F (U). Since F (T ) = F (U) is nonempty, we take
q ∈ F (T ). Put r = ∥u− q∥. We define

D = {y ∈ H : ∥y − q∥ ≤ r} ∩ C.

Then D is a nonempty bounded closed convex subset of C. Furthermore, D is
T -invariant and contains u. Thus we may assume that C is bounded without loss
of generality. Since T is quasi-nonexpansive, we have that for all q ∈ F (T ) and
n = 1, 2, 3, ...,

∥zn − q∥ =

∥∥∥∥∥ 1n
n∑

m=1

Tmxn − q

∥∥∥∥∥ ≤ 1

n

n∑
m=1

∥Tmxn − q∥

≤ 1

n

n∑
m=1

∥xn − q∥ = ∥xn − q∥.
(6.1)

Let us show lim supn→∞⟨u−Pu, zn−Pu⟩ ≤ 0. Since {zn} is bounded, there exists a
subsequence {zni} of {zn} with zni ⇀ v. We may assume without loss of generality

lim sup
n→∞

⟨u− Pu, zn − Pu⟩ = lim
i→∞

⟨u− Pu, zni − Pu⟩.

By Lemma 4.2, we have limn→∞ ∥zn − Tzn∥ = 0. Using Lemma 4.1, we have
v ∈ F (T ). Since P is the metric projection of H onto F (T ), we have

lim
i→∞

⟨u− Pu, zni − Pu⟩ = ⟨u− Pu, v − Pu⟩ ≤ 0.

This implies

lim sup
n→∞

⟨u− Pu, zn − Pu⟩ ≤ 0.(6.2)

Since xn+1 − Pu = (1− αn)(zn − Pu) + αn(u− Pu), from (6.1) we have

∥xn+1 − Pu∥2 = ∥(1− αn)(zn − Pu) + αn(u− Pu)∥2

≤ (1− αn)
2∥zn − Pu∥2 + 2αn⟨u− Pu, xn+1 − Pu⟩

≤ (1− αn)∥xn − Pu∥2 + 2αn⟨u− Pu, xn+1 − Pu⟩.

Putting sn = ∥xn − Pu∥2, βn = 0 and γn = 2⟨u − Pu, xn+1 − Pu⟩ in Lemma 2.4,
from

∑∞
n=1 αn = ∞ and (6.2) we have

lim
n→∞

∥xn − Pu∥ = 0.

This completes the proof. �
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7. Strong convergence theorems by hybrid methods

In this section, using the hybrid method by Nakajo and Takahashi [22], we first
prove a strong convergence theorem for extended hybrid non-self mappings in a
Hilbert space. The method of the proof is due to Nakajo and Takahashi [22] and
Marino and Xu [20].

Theorem 7.1. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let α, β and k be real numbers and let U : C → H be an (α, β,
−k)-extended hybrid mapping such that k < 1 and F (U) ̸= ∅. Let {xn} ⊂ C be a
sequence generated by x1 = x ∈ C and

yn = αnxn + (1− αn){(1− k)Uxn + kxn},
Cn = {z ∈ C : ∥yn − z∥2 ≤ ∥xn − z∥2 − (1− k)2αn(1− αn)∥xn − Uxn∥2},
Qn = {z ∈ C : ⟨xn − z, x− xn⟩ ≥ 0},
xn+1 = PCn∩Qnx, ∀n ∈ N,

where PCn∩Qn is the metric projection of H onto Cn ∩ Qn and {αn} ⊂ (−∞, 1).
Then, {xn} converges strongly to z0 = RF (U)x, where PF (U) is the metric projection
of H onto F (U).

Proof. Put T = (1 − k)U + kI. We have U = 1
1−kT + −k

1−kI. So, we have from

Theorem 3.1 that T is an (α, β)-generalized hybrid mapping of C into H and
F (U) = F (T ). Since F (T ) is closed and convex, F (U) is closed and convex. So,
there exists the mertic projection of H onto F (U). Furthermore, we have

yn = αnxn + (1− αn)Txn

for all n ∈ N. For any z ∈ H, the inequality

∥yn − z∥2 ≤ ∥xn − z∥2 − (1− k)2αn(1− αn)∥xn − Uxn∥2

is equivalent to

2⟨xn − yn, z⟩ ≤ ∥xn∥2 − ∥yn∥2 − (1− k)2αn(1− αn)∥xn − Uxn∥2.
So, we have that Cn, Qn and Cn ∩ Qn are closed and convex for all n ∈ N. We
next show that Cn ∩ Qn is nonempty. Let z ∈ F (T ) = F (U). Since T is quasi-
nonexpansive, we have that

∥yn − z∥2 = ∥αnxn + (1− αn)Txn − z∥2

= αn∥xn − z∥2 + (1− αn)∥Txn − z∥2 − αn(1− αn)∥Txn − xn∥2

≤ αn∥xn − z∥2 + (1− αn)∥xn − z∥2 − αn(1− αn)∥Txn − xn∥2

= ∥xn − z∥2 − (1− k)2αn(1− αn)∥Uxn − xn∥2.
So, we have z ∈ Cn and hence F (T ) ⊂ Cn for all n ∈ N. Next, we show by induction
that F (T ) ⊂ Cn∩Qn for all n ∈ N. From F (T ) ⊂ Q1, it follows that F (T ) ⊂ C1∩Q1.
Suppose that F (T ) ⊂ Ck ∩Qk for some k ∈ N. From xk+1 = PCk∩Qk

x, we have

⟨xk+1 − z, x− xk+1⟩ ≥ 0, ∀z ∈ Ck ∩Qk.

Since F (T ) ⊂ Ck ∩Qk, we also have

⟨xk+1 − z, x− xk+1⟩ ≥ 0, ∀z ∈ F (T ).
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This implies F (T ) ⊂ Qk+1. So, we have F (T ) ⊂ Ck+1∩Qk+1. By induction, we have
F (T ) ⊂ Cn ∩Qn for all n ∈ N. This means that {xn} is well-defined. Since xn ∈ C
and ⟨xn − xn, x − xn⟩ = 0, we have xn ∈ Qn. Furthermore, from the definition of
Qn, we have xn = PQnx. Using xn = PQnx and xn+1 = PCn∩Qnx ⊂ Qn, we have
from (2.2) that

0 ≤ 2⟨x− xn, xn − xn+1⟩(7.1)

= ∥x− xn+1∥2 − ∥x− xn∥2 − ∥xn − xn+1∥2

≤ ∥x− xn+1∥2 − ∥x− xn∥2.
So, we get that

∥x− xn∥2 ≤ ∥x− xn+1∥2.(7.2)

Furthermore, since xn = PQnx and z ∈ F (T ) ⊂ Qn, we have

∥x− xn∥2 ≤ ∥x− z∥2.(7.3)

So, we have that limn→∞ ∥x − xn∥2 exists. This implies that {xn} is bounded.
Hence, {Txn} is also bounded. From (7.1), we also have

∥xn − xn+1∥2 ≤ ∥x− xn+1∥2 − ∥x− xn∥2

and hence

∥xn − xn+1∥ → 0.(7.4)

From xn+1 ∈ Cn, we have that

(7.5) ∥yn − xn+1∥2 ≤ ∥xn − xn+1∥2 − αn(1− αn)∥xn − Txn∥2.
On the other hand, we know

∥yn − xn+1∥2 = ∥αnxn + (1− αn)Txn − xn+1∥2(7.6)

= αn∥xn − xn+1∥2 + (1− αn)∥Txn − xn+1∥2

− αn(1− αn)∥xn − Txn∥2.

From (7.5) and (7.6), we have

(1− αn)∥Txn − xn+1∥2 ≤ (1− αn)∥xn − xn+1∥2.
Since 1− αn > 0, we have ∥Txn − xn+1∥2 ≤ ∥xn − xn+1∥2 and hence

∥Txn − xn+1∥ → 0.

From

∥Txn − xn∥2 = ∥Txn − xn+1∥2 + 2⟨Txn − xn+1, xn+1 − xn⟩+ ∥xn+1 − xn∥2,
we also have

∥Txn − xn∥ → 0.(7.7)

Since {xn} is bounded, there exists a subsequence {xni} ⊂ {xn} such that xni ⇀
z∗. From (7.7) and Lemma 4.1, we have z∗ ∈ F (T ). Put z0 = PF (T )x. Since
z0 = PF (T )x ⊂ Cn ∩Qn and xn+1 = PCn∩Qnx, we have that

(7.8) ∥x− xn+1∥2 ≤ ∥x− z0∥2.
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Since ∥ · ∥2 is weakly lower semicontinuous, from xni ⇀ z∗ we have that

∥x− z∗∥2 = ∥x∥2 − 2⟨x, z∗⟩+ ∥z∗∥2

≤ lim inf
i→∞

(∥x∥2 − 2⟨x, xni⟩+ ∥xni∥2)

= lim inf
i→∞

∥x− xni∥2

≤ ∥x− z0∥2.
From the definition of z0, we have z

∗ = z0. So, we obtain xn ⇀ z0. We finally show
that xn → z0. Since

∥z0 − xn∥2 = ∥z0 − x∥2 + ∥x− xn∥2 + 2⟨z0 − x, x− xn⟩, ∀n ∈ N,
we have

lim sup
n→∞

∥z0 − xn∥2 = lim sup
n→∞

(∥z0 − x∥2 + ∥x− xn∥2 + 2⟨z0 − x, x− xn⟩)

≤ lim sup
n→∞

(∥z0 − x∥2 + ∥x− z0∥2 + 2⟨z0 − x, x− xn⟩)

= ∥z0 − x∥2 + ∥x− z0∥2 + 2⟨z0 − x, x− z0⟩
= 0.

So, we obtain limn→∞ ∥z0 − xn∥ = 0. Hence, {xn} converges strongly to z0. This
completes the proof. �

Using Theorem 7.1, we can prove the following theorem obtained by Marino and
Xu [20].

Theorem 7.2. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let k be a real number with 0 ≤ k < 1 and let U : C → C be a k-strict
pseudo contraction such that F (U) ̸= ∅. Let {xn} ⊂ C be a sequence generated by
x1 = x ∈ C and

yn = βnxn + (1− βn)Uxn,

Cn = {z ∈ C : ∥yn − z∥2 ≤ ∥xn − z∥2 − (βn − k)(1− βn)∥xn − Uxn∥2},
Qn = {z ∈ C : ⟨xn − z, x− xn⟩ ≥ 0},
xn+1 = PCn∩Qnx, ∀n ∈ N,

where PCn∩Qn is the metric projection of H onto Cn ∩ Qn and {βn} ⊂ (−∞, 1).
Then, {xn} converges strongly to z0 = RF (U)x, where PF (U) is the metric projection
of H onto F (U).

Proof. We first know that a (1,0,-k)-extended hybrid mapping with 0 ≤ k < 1 is a
k-strict pseudo contraction. We also have that for any n ∈ N,

yn = βnxn + (1− βn)Uxn

=
βn − k

1− k
xn + (1− βn − k

1− k
){(1− k)Uxn + kxn}.

Putting αn = βn−k
1−k , we have from 1 > βn that 1−k > βn−k and hence 1 > βn−k

1−k =
αn. Furthermore, we have that for any n ∈ N and z ∈ C,

∥yn − z∥2 ≤ ∥xn − z∥2 − (βn − k)(1− βn)∥xn − Uxn∥2
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⇐⇒∥yn − z∥2 ≤ ∥xn − z∥2 − (1− k)αn(1− k)(1− αn)∥xn − Uxn∥2

⇐⇒∥yn − z∥2 ≤ ∥xn − z∥2 − (1− k)2αn(1− αn)∥xn − Uxn∥2.
From Theorem 7.1, we have the desired result. �

Next, we prove a strong convergence theorem by the shrinking projection method
[30] for extended hybrid non-self mappings in a Hilbert space.

Theorem 7.3. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let α, β and k be real numbers and let U : C → H be an (α, β,
−k)-extended hybrid mapping such that k < 1 and F (U) ̸= ∅. Let C1 = C and let
{xn} ⊂ C be a sequence generated by x1 = x ∈ C and

yn = αnxn + (1− αn){(1− k)Uxn + kxn},
Cn+1 = {z ∈ Cn : ∥yn − z∥2 ≤ ∥xn − z∥2 − (1− k)2αn(1− αn)∥Uxn − xn∥2},
xn+1 = PCn+1x, ∀n ∈ N,

where PCn+1 is the metric projection of H onto Cn+1, and {αn} ⊂ (−∞, 1). Then,
{xn} converges strongly to z0 = PF (U)x, where PF (U) is the metric projection of H
onto F (U).

Proof. Put T = (1 − k)U + kI. Then, we have from Theorem 3.1 that T is an (α,
β)-generalized hybrid mapping of C into H and F (U) = F (T ). Since F (T ) is closed
and convex, so is F (U). Then, there exists the mertic projection of H onto F (U).
Furthermore, we have

yn = αnxn + (1− αn)Txn
for all n ∈ N. We show that Cn are closed and convex, and F (T ) ⊂ Cn for all
n ∈ N. It is obvious from the assumption that C1 = C is closed and convex, and
F (T ) ⊂ C1. Suppose that Ck is closed and convex, and F (T ) ⊂ Ck for some k ∈ N.
As in the proof of Theorem 7.1, we know that for z ∈ Ck, the inequality

∥yn − z∥2 ≤ ∥xn − z∥2 − (1− k)2αn(1− αn)∥xn − Uxn∥2

is equivalent to

2⟨xn − yn, z⟩ ≤ ∥xn∥2 − ∥yn∥2 − (1− k)2αn(1− αn)∥xn − Uxn∥2.
Since Ck is closed and convex, so is Ck+1. Take z ∈ F (T ) ⊂ Ck. Then we have
from (2.2) that

∥yn − z∥2 = ∥αnxn + (1− αn)Txn − z∥2

= αn∥xn − z∥2 + (1− αn)∥Txn − z∥2 − αn(1− αn)∥Txn − xn∥2

≤ αn∥xn − z∥2 + (1− αn)∥xn − z∥2 − (1− k)2αn(1− αn)∥Uxn − xn∥2.
Hence, we have z ∈ Ck+1 and hence F (T ) ⊂ Ck+1. By induction, we have that Cn

are closed and convex, and F (T ) ⊂ Cn for all n ∈ N. Since Cn is closed and convex,
there exists the metric projection PCn of H onto Cn. Thus, {xn} is well-defined.
Since {Cn} is a nonincreasing sequence of nonempty closed convex subsets of H
with respect to inclusion, it follows that

(7.9) ∅ ̸= F (T ) ⊂ M- lim
n→∞

Cn =

∞∩
n=1

Cn.
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Put C0 =
∩∞

n=1Cn. Then, by Theorem 2.5 we have that {PCnx} converges strongly
to x0 = PC0x, i.e.,

xn = PCnx → x0.

To complete the proof, it is sufficient to show that x0 = PF (T )x. Since xn = PCnx
and xn+1 = PCn+1x ∈ Cn+1 ⊂ Cn, we have from (2.2) that

0 ≤ 2⟨x− xn, xn − xn+1⟩(7.10)

= ∥x− xn+1∥2 − ∥x− xn∥2 − ∥xn − xn+1∥2

≤ ∥x− xn+1∥2 − ∥x− xn∥2.

Thus, we get that

∥x− xn∥2 ≤ ∥x− xn+1∥2.(7.11)

Furthermore, since xn = PCnx and z ∈ F (T ) ⊂ Cn, we have

∥x− xn∥2 ≤ ∥x− z∥2,(7.12)

from which it follows that limn→∞ ∥x − xn∥2 exists. This implies that {xn} is
bounded. Hence, {Txn} are also bounded. From (7.10), we have

∥xn − xn+1∥2 ≤ ∥x− xn+1∥2 − ∥x− xn∥2.

So, we have that

∥xn − xn+1∥ → 0.(7.13)

From xn+1 ∈ Cn+1, we also have that

∥yn − xn+1∥2 ≤ ∥xn − xn+1∥2 − (1− k)2αn(1− αn)∥xn − Uxn∥2(7.14)

= ∥xn − xn+1∥2 − αn(1− αn)∥xn − Txn∥2.

On the other hand, we have from (2.2) that

∥yn − xn+1∥2 = ∥αnxn + (1− αn)Txn − xn+1∥2(7.15)

= αn∥xn − xn+1∥2 + (1− αn)∥Txn − xn+1∥2

− αn(1− αn)∥xn − Txn∥2.

From (7.14) and (7.15), we have

(1− αn)∥Txn − xn+1∥2 ≤ (1− αn)∥xn − xn+1∥2.

Since 1− αn > 0, we have ∥Txn − xn+1∥2 ≤ ∥xn − xn+1∥2 and hence

∥Txn − xn+1∥ → 0.

Since

∥Txn − xn∥2 = ∥Txn − xn+1∥2 + 2⟨Txn − xn+1, xn+1 − xn⟩+ ∥xn+1 − xn∥2,

we also have

∥Txn − xn∥ → 0.(7.16)
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From xn = PCnx → x0, we have xn ⇀ x0. Using (7.16) and Lemma 4.1 we have
x0 ∈ F (T ). Put z0 = PF (T )x. Since z0 = PF (T )x ⊂ Cn+1 and xn+1 = PCn+1x, we
have that

(7.17) ∥x− xn+1∥2 ≤ ∥x− z0∥2.

So, we have from xn = PCnx → x0 that

∥x− x0∥2 = lim
n→∞

∥x− xn∥2 ≤ ∥x− z0∥2.

From the definition of z0, we get z0 = x0. Hence, {xn} converges strongly to z0.
This completes the proof. �

Using Theorem 7.3 and the metod of proof in Theorem 7.2, we have the following
strong convergence theorem for strict pseud-contractions in a Hilbert space.

Theorem 7.4. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let k be a real number with 0 ≤ k < 1 and let U : C → H be a
k-strict pseudo-contraction such that F (U) ̸= ∅. Let C1 = C and let {xn} ⊂ C be a
sequence generated by x1 = x ∈ C and

yn = βnxn + (1− βn)Uxn,

Cn+1 = {z ∈ Cn : ∥yn − z∥2 ≤ ∥xn − z∥2 − (βn − k)(1− βn)∥Uxn − xn∥2},
xn+1 = PCn+1x, ∀n ∈ N,

where PCn+1 is the metric projection of H onto Cn+1, and {βn} ⊂ (−∞, 1). Then,
{xn} converges strongly to z0 = PF (U)x, where PF (U) is the metric projection of H
onto F (U).
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