A Supplement to James' Theorem *

Hwa-Long Gau and Ngai-Ching Wong Department of Applied Mathematics National Sun Yat-sen University Kao-hsiung, 80424, Taiwan, R.O.C.

A convex subset B of a real locally convex space X is said to have the *separation* property if it can be separated from any closed convex subset A of X, which is disjoint from B, by a closed hyperplane, *i.e.* there is a continuous linear functional f of X such that

$$\inf\{f(x) : x \in A\} > \sup\{f(x) : x \in B\}.$$

The famous R. James' Theorem (see [3–7] and [8]) asserts that a Banach space E is reflexive if and only if the closed unit ball U_E has the *James' property*, *i.e.* every continuous linear functional f of E attains its supremum in U_E . James' Theorem does not hold, however, for general normed spaces [6]. We prove in this talk that a normed space X is reflexive if and only if U_X has the separation property. Since the separation property is equivalent to, in Banach spaces, and implies, in general, James' property, our results can be viewed as a supplement to James'.

This talk sketches parts of our works in [1], in which details of proofs and other results on this subject can be found.

Theorem. Let U be the closed unit ball of a real normed space X. U is weakly compact if and only if U has the separation property. In particular, a real normed space is reflexive if and only if its closed unit ball has the separation property.

PROOF. Only the implication from the separation property to weak compactness demands a proof, since the other direction follows clearly from the well-known strong separation theorem. Let \tilde{U} be the closed unit ball of the completion \tilde{X} of X. We want to show

^{*}This research is partially supported by National Science Council of Taiwan, R.O.C.

that $\tilde{U} = U$. Suppose there were an element b in \tilde{U} with || b || = 1 such that $b \notin U$, and b is contained in a supporting hyperplane H of \tilde{U} . W.O.L.G. $H = \{x \in \tilde{X} : f(x) = 1\}$ for some continuous linear functional f of \tilde{X} . In particular, f(b) = 1. Let $b_n = (1 + \frac{1}{n})b$, for each $n = 1, 2, 3, \cdots$. Let $B_{\tilde{X}}(a; \delta)$ denote the open ball $\{x \in \tilde{X} : || x - a || < \delta\}$. Since $B_{\tilde{X}}(b_n; \frac{1}{n}) \cap \{x \in \tilde{X} : f(x) > 1 + \frac{1}{n}\}$ is non-empty and open in \tilde{X} for each $n = 1, 2, \cdots$, and X is dense in \tilde{X} , we can choose a_n 's from X so that $a_n \in B_{\tilde{X}}(b_n; \frac{1}{n}) \cap \{x \in \tilde{X} : f(x) > 1 + \frac{1}{n}\}$. Then $f(a_n) > 1 + \frac{1}{n}$, for $n = 1, 2, 3, \cdots$, and the sequence $\{a_n\}$ converges to b in norm.

Let A be the closed convex hull of a_n 's in X. We want to show that $A \cap U = \emptyset$. Suppose an element y in X exists such that $y \in A \cap U$. Let N be a positive integer such that $B_{\tilde{X}}(b; \frac{2}{N}) \cap B_{\tilde{X}}(y; \frac{2}{N}) = \emptyset$. Note that f(y) = 1. Since $y \in A$, there exists a sequence y_n 's of convex combinations of a_n 's converges to y in norm. For each n, write $y_n = \sum_{i=1}^{k_n} \alpha_i^n a_i$, where $\alpha_i^n \ge 0$ for $i = 1, 2, \dots, k_n$, $\sum_{i=1}^{k_n} \alpha_i^n = 1$ and k_n is a positive integer depending on n. Since $y_n \to y$ in norm. There exists a positive integer M_1 such that $f(y_n) < 1 + \frac{1}{N}$ for all $n \ge M_1$. For each $n \ge M_1$, $1 + \frac{1}{N} > f(\sum_{i=1}^{k_n} \alpha_i^n a_i) = \sum_{i=1}^{k_n} \alpha_i^n f(a_i) > \sum_{i=1}^{k_n} \alpha_i^n (1 + \frac{1}{i}) = 1 + \sum_{i=1}^{k_n} \frac{\alpha_i^n}{i}$. This implies $\sum_{i=1}^{k_n} \frac{\alpha_i^n}{i} < \frac{1}{N}$. On the other hand, there exists a positive integer M_2 such that $y_n \in B_{\tilde{X}}(y; \frac{2}{N}), \forall n \ge M_2$. Let $M = \max\{M_1, M_2\}$. For $n \ge M$, $\|y_n - b\| = \|\sum_{i=1}^{k_n} \alpha_i^n a_i - b\| = \|\sum_{i=1}^{k_n} \alpha_i^n (a_i - b)\| \le \sum_{i=1}^{k_n} \alpha_i^n \|a_i - b\| < 2\sum_{i=1}^{k_n} \frac{\alpha_i^n}{i} < \frac{2}{N}$. This implies $y_n \in B_{\tilde{X}}(b; \frac{2}{N}), \forall n \ge M$. This contradicts to the fact that $B_{\tilde{X}}(b; \frac{2}{N}) \cap B_{\tilde{X}}(y; \frac{2}{N}) = \emptyset$. Hence $A \cap U = \emptyset$.

By the separation property of U, there is a continuous linear functional g of X such that

$$\sup\{g(u) : u \in U\} < \inf\{g(a) : a \in A\}.$$

Let g' be the continuous extension of g to \tilde{X} . Since $a_n \to b$ as $n \to \infty$ in \tilde{X} ,

$$g'(b) = \lim_{n \to \infty} g(a_n) \ge \inf\{g(a) : a \in A\} > \sup\{g(u) : u \in U\} \ge g'(b).$$

This is a contradiction! Therefore $U = \tilde{U}$, and thus X is a Banach space. Since U has the separation property, by James' Theorem, U is weakly compact in X.

Let us recall the classical theorem that a Banach space is reflexive if and only if its unit ball is weakly sequentially compact [2]. The following extends some James' results from Banach spaces to normed spaces, cf. [5]. A proof can be found in [1].

Corollary. Let B be the closed unit ball of a real normed space N. Then the following

are equivalent:

- (1) B is weakly compact.
- (2) B is weakly countably compact.
- (3) For each sequence x_n 's in B there is an x in B such that for all continuous linear functionals f,

$$\underline{\lim} f(x_n) \le f(x) \le \lim f(x_n).$$

- (4) If K_n 's is a decreasing sequence of closed convex sets in X and $B \cap K_n$ is non-empty for each n, then $B \cap (\bigcap_{n \ge 1} K_n)$ is non-empty.
- (5) B is weakly sequentially compact.
- (6) If S is a weakly closed set and $B \cap S$ is empty, then $d(B,S) = \inf\{\|b-s\| : b \in B, s \in S\} > 0.$
- (7) B has the separation property.

References

- [1] Hwa-long Gau and Ngai-ching Wong, Some converses of the strong separation theorem, preprint.
- [2] W. F. Eberlein, Weak compactness in Banach spaces, Proc. Nat. Acad. Sci. U.S.A. 33 (1947), 51-53.
- [3] R. C. James, *Weakly compact sets*, Trans. Amer. Math. Soc. **113** (1964), 129-140.
- [4] R. C. James, Weak compactness and separation, Canad. J. Math. 16 (1964), 204-206.
- [5] R. C. James, Weakly compactness and reflexivity, Israel J. Math. 2 (1964), 101-119.
- [6] R. C. James, A counterexample for a sup theorem in normed spaces, Israel J. Math. 9 (1971), 511-512.
- [7] R. C. James, *Reflexivity and the sup of linear functionals*, Israel J. Math. 13 (1972), 289-300.

 [8] J. D. Pryce, Weak compactness in locally convex spaces, Proc. Amer. Math. Soc. 17 (1966), 148-155.