ISOMETRIC SHIFTS ON $C_{0}(X)$

JYH-SHYANG JEANG AND NGAI-CHING WONG

Abstract

For a linear isometry $T: C_{0}(X) \longrightarrow C_{0}(Y)$ of finite corank, there is a cofinite subset Y_{1} of Y such that $T f_{\mid Y_{1}}=h \cdot f \circ \varphi$ is a weighted composition operator and X is homeomorphic to a quotient space of Y_{1} modulo a finite subset. When $X=Y$, such a T is called an isometric quasi- n-shift on $C_{0}(X)$. In this case, the action of T can be implemented as a shift on a tree-like structure, called a T-tree, in $M(X)$ with exactly n joints. The T-tree is total in $M(X)$ when T is a shift. With this tools, we can analyze the structure of T.

1. Introduction

Let T be a linear isometry from an infinite dimensional separable Hilbert space H into H of finite corank n. The von Neumann-Wold Decomposition Theorem (see e.g. [4, p. 112]) states that T can be written as a direct sum of a unitary and a product of n copies of the unilateral shift. More precisely, $H_{u}=\bigcap_{m=1}^{\infty} T^{m} H$ is a reducing subspace of T. Its orthogonal complement $H_{s}=H \ominus H_{u}$ is the infinite orthogonal sum $\bigoplus_{m=0}^{\infty} T^{m} N$, where $N=H \ominus T H$ is of dimension n. Now, $T_{H_{u}}$ is a unitary and $T_{\mid H_{s}}$ shifts each n-dimensional subspace $T^{m} N$ onto $T^{m+1} N$ for $m=0,1,2, \ldots$. In this sense, we may call T an isometric quasi- n-shift on H.

We are interested in generalizing the notion of shifts and quasi-shifts to Banach spaces in a basis free setting. Generalizing a notion of Crownoven [5], we call a (necessarily bounded) linear operator S from a Banach space E into E an n-shift if
(a) S is injective and has closed range;
(b) S has corank n;
(c) The intersection $\bigcap_{m=1}^{\infty} S^{m} E$ of the range spaces of all powers S^{m} of S is zero.
S is called a quasi-n-shift if S satisfies conditions (a) and (b). When $n=1$, we will simply call S a shift or a quasi-shift accordingly.

In this paper, we study isometric (quasi-) n-shifts on continuous function spaces. Let X be a locally compact Hausdorff spaces. Let $C_{0}(X)$ be the Banach space of continuous (realor complex-valued) functions defined on X vanishing at infinity. In [10], Holub proved that the real Banach space $C(X, \mathbb{R})$ of continuous real-valued functions defined on X admits no shift at all if X is compact and connected. When the underlying field is the complex,

[^0]however, many concrete examples of such shifts was provided in [9]. The general theory of isometric shifts and quasi-shifts on continuous function spaces was built up in [8], in which Gutek et. al. posed also a number of open problems. Farid and Varadarajan [6], Rajagopalan, Rassias and Sundaresan [14, 15, 16] and Haydon [9] answered some of them. More recently, Araujo and Font [1, 7, 2] discussed related questions in this direction. The current paper extends the theory to n-shifts for $n \geq 1$ (and in a locally compact space setting). In particular, we provide new tools in analyzing the range spaces of such shifts.

In Section 2, we study linear isometries T from $C_{0}(X)$ into $C_{0}(Y)$ of finite corank. We shall give a full description of such operators and, especially, the structure of their range spaces. In particular, we show that there is a cofinite subset Y_{1} of Y such that $T f_{\mid Y_{1}}=h \cdot f \circ \varphi$ is a weighted composition operator and X is homeomorphic to a quotient space of Y_{1} modulo a finite subset. These results are applied in Section 3 to isometric n-shifts and quasi- n-shifts on $C_{0}(X)$. In particular, we show that every isometric quasi-n-shift on $C_{0}(X)$ is implemented by a shift on a countable set with a tree-like structure, called a T-tree, with exactly n joints in the dual space $M(X)$ of $C_{0}(X)$. The action of the quasi- n-shift is implemented as a shift on the T-tree. The T-tree is total in $M(X)$ when T is a shift. An open problem stated in [8, p. 119] asks if X is separable when $C_{0}(X)$ admits an isometric shift. We shall show that if X does not contain infinitely many isolated points or the T-tree satisfies some conditions then the existence of an isometric n-shift T on $C_{0}(X)$ ensuring the separability of X.

2. Isometries with finite corank

For a locally compact Hausdorff space X, we let $X_{\infty}=X \cup\{\infty\}$ be the one-point compactification of X and let $C_{0}(X)=\left\{f \in C\left(X_{\infty}\right): f(\infty)=0\right\}$ be the Banach space of continuous functions on X vanishing at infinity and equipped with the supremum norm. Note that the point ∞ at infinity is isolated in X_{∞} if and only if X is compact. Let $M(X)$ be the Banach dual space of $C_{0}(X)$, which consists of all bounded regular Borel measures on X. Denote by $M_{1}(X)$ the closed unit ball of $M(X)$ and the set of its extreme points by

$$
\operatorname{ext} M_{1}(X)=\left\{\lambda \delta_{x} \in M_{1}(X):|\lambda|=1 \text { and } x \in X\right\}
$$

which consists of all unimodular scalar multiples of point masses δ_{x} at x in X.
In this section, X and Y are locally compact Hausdorff and $T: C_{0}(X) \longrightarrow C_{0}(Y)$ is a linear isometry with the dual map $T^{*}: M(Y) \longrightarrow M(X)$. Clearly, $T^{*} \delta_{y} \in M_{1}(X)$ for all y in Y.

Definition 2.1. We define the vanishing set of T to be

$$
Y_{0}=\left\{y \in Y: T^{*} \delta_{y}=0\right\},
$$

the Holsztyński set to be

$$
Y_{1}=\left\{y \in Y: T^{*} \delta_{y} \in \operatorname{ext} M_{1}(X)\right\},
$$

and the exceptional set to be

$$
Y_{e}=Y \backslash\left(Y_{0} \cup Y_{1}\right)
$$

The following result is known as Holsztyński's Theorem ([11, 12]). We include a sketch of the proof here for completeness.

Lemma 2.2 (Holsztyński). There is a continuous surjective map φ from Y_{1} onto X and a unimodular scalar continuous function h on Y_{1} such that

$$
T f_{\mid Y_{1}}=h \cdot f \circ \varphi, \quad \forall f \in C_{0}(X)
$$

In other words, $T f(y)=h(y) f(\varphi(y))$ for all y in Y_{1}.
Sketch of the proof. Let $F=\operatorname{ran} T$ be the (necessarily closed) range space of the isometry T. The dual map $T^{*}: M(Y) \longrightarrow M(X)$ induces an affine homeomorphism Φ from the closed dual ball F_{1}^{*} of F onto $M_{1}(X)$ in weak* topologies. In particular, Φ maps ext F_{1}^{*} onto ext $M_{1}(X)$. Hence, for each x in X there is an extreme point η in F_{1}^{*} of norm one such that $\Phi(\eta)=\delta_{x}$. Since the set of all norm one extensions of η to $C_{0}(X)$ is a nonempty weak* closed face of $M_{1}(Y)$, there is a (not necessarily unique) extreme point $\frac{\delta_{y}}{\lambda}$ in ext $M_{1}(Y)$ such that $T^{*}\left(\frac{\delta_{y}}{\lambda}\right)=\delta_{x}$, or $T^{*} \delta_{y}=\lambda \delta_{x}$. In particular, $y \in Y_{1}$. Set $\varphi(y)=x$ and $h(y)=\lambda$ whenever $T^{*}\left(\delta_{y}\right)=\lambda \delta_{x}$. It is then routine to verify that φ and h are well-defined and continuous on Y_{1} such that $\varphi\left(Y_{1}\right)=X,|h(y)|=1$ on Y_{1}, and $T f_{\mid Y_{1}}=h \cdot f \circ \varphi$ for all f in $C_{0}(X)$.

We remark that $\varphi(y)=x$ if and only if $|T f(y)|=|f(x)|$ for all f in $C_{0}(X)$, as the latter ensures $\operatorname{ker} T^{*} \delta_{y}=\operatorname{ker} \delta_{x}$.

Lemma 2.3. The set $Y_{0} \cup Y_{1}$ is closed in Y. Moreover, if we extend φ by setting

$$
\varphi_{\mid Y_{0} \cup\{\infty\}} \equiv \infty
$$

then the surjective map $\varphi: Y_{0} \cup Y_{1} \cup\{\infty\} \longrightarrow X \cup\{\infty\}$ is again continuous.
Proof. Let $\left\{y_{\lambda}\right\}_{\lambda}$ be a net in $Y_{0} \cup Y_{1}$ such that $y_{\lambda} \rightarrow y$ for some y in Y. We want to verify that $y \in Y_{0} \cup Y_{1}$. Suppose y does not belong to the closed set $Y_{0}=\bigcap\left\{(T f)^{-1}\{0\}: f \in C_{0}(X)\right\}$, we can then assume that y_{λ} is in Y_{1} for all λ. Let $x_{\lambda}=\varphi\left(y_{\lambda}\right) \in X$. We have

$$
\begin{equation*}
\left|f\left(x_{\lambda}\right)\right|=\left|T f\left(y_{\lambda}\right)\right| \rightarrow|T f(y)|, \quad \forall f \in C_{0}(X) . \tag{1}
\end{equation*}
$$

Note that there is some f in $C_{0}(X)$ with $T f(y) \neq 0$ since $y \notin Y_{0}$. Let x be any cluster point of the net $\left\{x_{\lambda}\right\}_{\lambda}$ in $X \cup\{\infty\}$. By (1), we have $x \neq \infty$ and

$$
|T f(y)|=|f(x)|, \quad \forall f \in C_{0}(X)
$$

Hence, $y \in Y_{1}$ and $\varphi(y)=x$. Thus, $Y_{0} \cup Y_{1}$ is closed in Y.
To verify the continuity of φ, we show that $\varphi\left(y_{\lambda}\right) \rightarrow \varphi(y)$ in $X \cup\{\infty\}$ whenever $y_{\lambda} \rightarrow y$ in $Y_{0} \cup Y_{1} \cup\{\infty\}$. By first half of the proof, it suffices to check that $\varphi\left(y_{\lambda}\right) \rightarrow \infty$ whenever $y \in Y_{0} \cup\{\infty\}$. Indeed, this follows from the observation

$$
0=|T f(y)|=\lim _{\lambda}\left|T f\left(y_{\lambda}\right)\right|=\lim _{\lambda}\left|f\left(\varphi\left(y_{\lambda}\right)\right)\right|, \quad \forall f \in C_{0}(X) .
$$

Note that as an open subset of a closed subset of a locally compact space, Y_{1} is locally compact of its own.

Lemma 2.4. Let $T_{1}: C_{0}(X) \longrightarrow C_{0}\left(Y_{1}\right)$ be the linear isometry defined by $T_{1} f=T f_{\mid Y_{1}}$ for all f in $C_{0}(X)$. Then

$$
\operatorname{ran} T_{1}=\left\{g \in C_{0}\left(Y_{1}\right): \frac{g(a)}{h(a)}=\frac{g(b)}{h(b)} \text { whenever } a, b \in Y_{1} \text { such that } \varphi(a)=\varphi(b)\right\}
$$

Proof. One inclusion is plain since $T_{1} f=h \cdot f \circ \varphi$. Suppose g in $C_{0}\left(Y_{1}\right)$ satisfies that $\frac{g(a)}{h(a)}=\frac{g(b)}{h(b)}$ whenever $\varphi(a)=\varphi(b)$. Define a function f on X by

$$
f(x)=\frac{g(y)}{h(y)} \quad \text { if } y \in Y_{1} \text { and } \varphi(y)=x
$$

Since $\varphi\left(Y_{1}\right)=X$ (Lemma 2.2), such an f is well-defined on X. To see f is continuous, we assume on the contrary that $x_{\lambda} \rightarrow x$ in $X \cup\{\infty\}$ but $\left|f(x)-f\left(x_{\lambda}\right)\right|>\epsilon$ for some $\epsilon>0$. Let $x_{\lambda}=\varphi\left(y_{\lambda}\right)$ for some y_{λ} in Y_{1}. Let y be a cluster point of $\left\{y_{\lambda}\right\}_{\lambda}$ in $Y_{0} \cup Y_{1} \cup\{\infty\}$. By Lemma 2.3, $\varphi(y)$ is a cluster point of $\left\{x_{\lambda}\right\}_{\lambda}$. Thus $\varphi(y)=x$. If $x \in X$ then $y \in Y_{1}$ and $\frac{g(y)}{h(y)}=f(x)$ is a cluster point of $f\left(x_{\lambda}\right)=\frac{g\left(y_{\lambda}\right)}{h\left(y_{\lambda}\right)}$, a contradiction. In case $x_{\lambda} \rightarrow \infty$, we see that $y \in Y_{0} \cup\{\infty\}$ by Lemma 2.3. Since h is unimodular, we have $\left|f\left(x_{\lambda}\right)\right|=\left|g\left(y_{\lambda}\right)\right| \rightarrow 0$, a contradiction again. Therefore, $f \in C_{0}(X)$ and $g=T f \in \operatorname{ran} T_{1}$.

From now on, we assume that $T: C_{0}(X) \longrightarrow C_{0}(Y)$ is a linear isometry with finite corank n. Let $\# A$ denote the cardinality of a set A.

Definition 2.5. Let

$$
M=\left\{y \in Y_{1}: \varphi^{-1}\{\varphi(y)\} \text { contains at least two points }\right\}
$$

be the set of merging points, $\varphi(M)$ the set of merged points and the number $\# M-\# \varphi(M)$ the merging index of T. Call also the number $\# Y_{0}$ the vanishing index and $\# Y_{e}$ the exception index of T.

Lemma 2.6.

$$
\# M-\# \varphi(M) \leq n
$$

and

$$
\# Y_{0}+\# Y_{e} \leq n
$$

Proof. It follows from Lemma 2.4 that $\# M-\# \varphi(M)=\operatorname{corank} T_{1} \leq \operatorname{corank} T=n$. For the second inequality, we note that $Y_{e}=Y \backslash Y_{0} \cup Y_{1}$ is open in Y by Lemma 2.3. Suppose there are distinct p_{1}, \ldots, p_{k} in Y_{0} and y_{1}, \ldots, y_{l} in Y_{e}. Then we can choose $f_{1}, \ldots, f_{k}, g_{1}, \ldots, g_{l}$ in $C_{0}(Y)$ with mutually disjoint supports such that

$$
f_{1}\left(p_{1}\right)=\cdots=f_{k}\left(p_{k}\right)=g_{1}\left(y_{1}\right)=\cdots=g_{l}\left(y_{l}\right)=1
$$

and

$$
g_{j \mid Y_{0} \cup Y_{1}} \equiv 0, \quad j=1, \ldots, l
$$

We claim that these $k+l$ functions are linear independent modulo the range space of T. To this end, let

$$
T f=\lambda_{1} f_{1}+\cdots+\lambda_{k} f_{k}+\alpha_{1} g_{1}+\cdots+\alpha_{l} g_{l}
$$

for some f in $C_{0}(X)$ and scalars $\lambda_{1}, \ldots, \lambda_{k}, \alpha_{1}, \ldots, \alpha_{l}$. By evaluating at each p_{i}, we get $\lambda_{i}=0$ for $i=1, \ldots, k$. It then follows $T f_{\mid Y_{0} \cup Y_{1}} \equiv 0$ and, in particular, $|f(\varphi(y))|=$ $|T f(y)|=\left|\sum_{j=1}^{l} \alpha_{j} g_{j}(y)\right|=0$ for all y in Y_{1}. Since $\varphi\left(Y_{1}\right)=X$, we have $f=0$. This makes $\alpha_{1}=\cdots=\alpha_{l}=0$ since g_{1}, \ldots, g_{l} have disjoint supports. As a result, $l+k \leq \operatorname{corank} T=$ n.

Corollary 2.7. 1. Both the vanishing set Y_{0} and the exceptional set Y_{e} are finite.
2. Y_{e} consists of isolated points in Y.
3. Suppose X is compact. Then both Y and Y_{1} are compact and Y_{0} consists of isolated points in Y.

Proof. We mention that Y_{e} is an open set by Lemma 2.3. In case X is compact, ∞ is isolated in $X \cup\{\infty\}$ and Lemma 2.3 ensures $Y_{0} \cup\{\infty\}=\varphi^{-1}\{\infty\}$ is also open. The assertions follow since finite open sets consists of isolated points.

The following example borrowed from [13] says that Y_{0} can contain non-isolated point if X is not compact.

Example 2.8 ([13]). Let X be the disjoint union in \mathbb{R}^{2} of $I_{n}^{+}=\{(n, t): 0<t \leq 1\}$ and $I_{n}^{-}=\{(n, t):-1<t<0\}$ for $n=1,2, \ldots$ Let p be the point $(1,1)$ and let $X_{1}=X \backslash\{p\}$. Let φ be the homeomorphism from X_{1} onto X by sending the intervals $I_{1}^{+} \backslash\{p\}$ onto I_{1}^{-}, I_{n+1}^{+}onto I_{n}^{+}, and I_{n}^{-}onto I_{n+1}^{-}in a canonical way for $n=1,2, \ldots$ Then the corank one linear isometry $T f=f \circ \varphi$ from $C_{0}(X)$ into $C_{0}(X)$ has exactly one vanishing point, i.e., p. We note that p is not an isolated point in X. In a similar manner, one can even construct an example in which X is connected (by adjoining each $I_{n}^{ \pm}$a common base point, for example).

Theorem 2.9. The map $\varphi:\left(Y_{1}, M\right) \longrightarrow(X, \varphi(M))$ is a relative homeomorphism. More precisely, $\varphi: Y_{1} \backslash M \rightarrow X \backslash \varphi(M)$ is a homeomorphism, and the induced map $\widetilde{\varphi}: Y_{1} \sim X$ is also a homeomorphism, where " \sim " is the equivalence relation such that $y_{1} \sim y_{2}$ if and only if $\varphi\left(y_{1}\right)=\varphi\left(y_{2}\right)$.

Proof. It suffices to show that $y_{\lambda} \rightarrow y$ in Y_{1} whenever $\varphi\left(y_{\lambda}\right) \rightarrow \varphi(y)$ in X. Suppose y^{\prime} is any cluster point of $\left\{y_{\lambda}\right\}$ in $Y_{0} \cup Y_{1} \cup\{\infty\}$ which is compact by Corollary 2.7. It follows from Lemma 2.3 that $\varphi\left(y^{\prime}\right)$ is a cluster point of $\left\{\varphi\left(y_{\lambda}\right)\right\}$. Thus $\varphi(y)=\varphi\left(y^{\prime}\right)$ and, in particular, $y^{\prime} \in Y_{1}$. If y is not a merging point, i.e. $y \notin M$, then $y=y^{\prime}$. In case y is a merging point, the above argument tells us that the equivalence class $[y]=\varphi^{-1}\{\varphi(y)\}$ contains all cluster points y^{\prime} of $\left\{y_{\lambda}\right\}$. This shows that the induced map $\widetilde{\varphi}$ is also a homeomorphism.

Lemma 2.10. Fix each y^{\prime} in Y_{e}, there is a μ^{\prime} in $M(Y)$ supported by Y_{1} such that

$$
g\left(y^{\prime}\right)=\int_{Y_{1}} \frac{g(y)}{h(y)} d \mu^{\prime}(y), \quad \forall g \in \operatorname{ran} T
$$

Proof. Let $\nu=\delta_{y^{\prime}} \circ T \in M(X)$. If $\nu(x)=0$ for all x in $\varphi(M)$, then we can set $\mu^{\prime}(\{y\})=0$ for all y in M and $\mu^{\prime}(B)=\nu\left(\varphi\left(B \cap Y_{1}\right)\right.$) for all Borel subsets B of Y disjoint from M. It follows from Theorem 2.9 that $\mu^{\prime} \in M(Y)$. Clearly, μ^{\prime} satisfies the stated condition. In case $\nu(\{x\}) \neq 0$ for some merged point x in $\varphi(M)$ and $\varphi^{-1}\{x\}=\left\{y_{1}, \ldots, y_{k}\right\}$, we may set $\mu^{\prime}\left(\left\{y_{1}\right\}\right)=\cdots=\mu^{\prime}\left(\left\{y_{k}\right\}\right)=\nu(\{x\}) / k$. Since $\frac{g\left(y_{1}\right)}{h\left(y_{1}\right)}=\cdots=\frac{g\left(y_{k}\right)}{h\left(y_{k}\right)}=f(x)$ if $T f=g$, we again have the stated condition.

Theorem 2.11. The sum of the vanishing, exception and merging indices of a corank n linear isometry $T: C_{0}(X) \longrightarrow C_{0}(Y)$ is n. In other words,

$$
\# Y_{0}+\# Y_{e}+\# M-\# \varphi(M)=n
$$

In fact,

$$
\begin{aligned}
\operatorname{ran} T=\left\{g \in C_{0}(X): g_{\mid Y_{0}} \equiv 0, \quad g\left(y^{\prime}\right)=\int_{Y_{1}} \frac{g(y)}{h(y)} d \mu^{\prime}(y) \text { for all } y^{\prime} \text { in } Y_{e}\right. \\
\text { and } \left.\frac{g(a)}{h(a)}=\frac{g(b)}{h(b)} \text { whenever } a, b \in M \text { such that } \varphi(a)=\varphi(b)\right\}
\end{aligned}
$$

where $T f_{\mid Y_{1}}=h \cdot f \circ \varphi$ and μ^{\prime} is the Borel measure in $M(Y)$ associated to each y^{\prime} in Y_{e} as in Lemmas 2.2 and 2.10.

Proof. From Lemmas 2.2, 2.4 and 2.10, we have already had one side inclusion. For the other inclusion, we suppose a g in $C_{0}(Y)$ satisfies all $\# Y_{0}+\# Y_{e}+\# M-\# \varphi(M)$ linear independent conditions stated on the right hand side. Set

$$
f(x)=\frac{g(y)}{h(y)} \quad \text { whenever } y \in Y_{1} \text { and } \varphi(y)=x
$$

By the proof of Lemma 2.4, we have $f \in C_{0}(X)$ and $T f$ agrees with g on Y_{1}. It is plain that $T f$ also agrees with g on Y_{0} and

$$
T f\left(y^{\prime}\right)=\int_{Y_{1}} \frac{T f(y)}{h(y)} d \mu^{\prime}(y)=\int_{Y_{1}} f(\varphi(y)) d \mu^{\prime}(y)=\int_{Y_{1}} \frac{g(y)}{h(y)} d \mu^{\prime}(y)=g\left(y^{\prime}\right), \quad \forall y^{\prime} \in Y_{e}
$$

Hence $g=T f$, and consequently, $\# Y_{0}+\# Y_{e}+\# M-\# \varphi(M)=n$.
Remark 2.12. (a) In the recent literature, corank 1 linear isometries are of particular interests. In [1], corank 1 linear isometries of function algebras are classified into three types. Recall that a subset of $C_{0}(Y)$ is said to separate points in Y (resp. Y_{∞}) strongly if for any distinct y and y^{\prime} in Y (resp. Y_{∞}) there is a g in this subset such that $|g(y)| \neq\left|g\left(y^{\prime}\right)\right|$. In [1], a corank 1 linear isometry $T: A \longrightarrow B$ between function algebras is said to be of
Type I: if the range of T separates points in Y strongly, except for two of them.
Type II: if the range of T separates points in Y, but not in Y_{∞}, strongly.
Type III: if the range of T separates points in Y_{∞} strongly.
In case $A=C_{0}(X)$ and $B=C_{0}(Y)$, our structure theory (Theorem 2.11) simply says that T is of Type I, II, or III if and only if either the merging, the vanishing, or the exception index of T is 1 . Our approach seems to be more convenient in the higher dimensional case (cf. [7]).
(b) By Corollary 2.7, Y_{e} consists of isolated points. Consequently, if Y is connected then every corank 1 linear isometry T from $C_{0}(X)$ into $C_{0}(Y)$ must be of Type I or Type II. In general, T is of Type I or Type II if and only if T is disjointness preserving, i.e. $f g=0$ implies $T f T g=0$. Hence, we may also divide linear isometries of finite corank into two classes: ones preserve disjointness and the others do not.
(c) If X is compact then Y_{0} consists of isolated points by Corollary 2.7. However, if X is not compact then Y_{0} can contain non-isolated points as shown in Example 2.8. This example provides us more insights into a result in [1, Theorem 6.1], which deals with the preservation of Shilov boundaries of function algebras by a corank 1 linear isometry.

3. IsOMETRIC (QUASI-) n-SHIFTS ON $C_{0}(X)$

Recall that an isometric quasi- n-shift T on $C_{0}(X)$ is a corank n linear isometry from $C_{0}(X)$ into itself. All results in Section 2 thus apply. In particular, we have the following generalization of [8, Theorem 2.6].

Proposition 3.1. Let X be a compact Hausdorff space with at most finitely many isolated points. If $C(X)$ admits an isometric quasi-n-shift T, then there is a finite subset M of X and a relative homeomorphism $\varphi:(X, M) \longrightarrow(X, \varphi(M))$ such that $n=\#(M)-\#(\varphi(M))$. Moreover, the induced quotient $\operatorname{map} \widetilde{\varphi}: X / \sim \rightarrow X$ is a homeomorphism, where \sim is the equivalence relation on X such that $x \sim x^{\prime}$ if and only if $\varphi(x)=\varphi\left(x^{\prime}\right)$.

Proof. By Lemma 2.2, Tf $=h \cdot f \circ \varphi$ for a continuous unimodular scalar function h on X and a surjective continuous map φ from X_{1} onto X. By Corollary 2.7, both X_{0} and X_{e} are empty since X is compact and contains at most finitely many isolated points; for else the set $\left\{\varphi^{-n}\{x\}: n=1,2, \ldots\right\}$ would contain infinitely many isolated points in X for any x in $X_{0} \cup X_{e}$. Hence, $X=X_{1}$. The assertions now follow from Theorem 2.9.

Corollary 3.2. Let X be a path-connected compact Hausdorff space in which points are strong deformation retract of compact neighborhoods. If $C(X)$ admits an isometric quasi-n-shift then the first homological group $H_{1}(X)$ of X has infinitely many free generators.

Proof. Suppose $x \in \varphi(M)$ and $\varphi^{-1}\{x\}=\left\{y_{1}, \ldots, y_{l}\right\}$. Consider the long exact sequence:

$$
\begin{aligned}
\cdots \rightarrow H_{1}\left(\left\{y_{1}, \ldots, y_{l}\right\}\right) \rightarrow H_{1}(X) & \rightarrow H_{1}\left(X,\left\{y_{1}, \ldots, y_{l}\right\}\right) \\
& \rightarrow H_{0}\left(\left\{y_{1}, \ldots, y_{l}\right\}\right) \rightarrow H_{0}(X) \rightarrow H_{0}\left(X,\left\{y_{1}, \ldots, y_{l}\right\}\right)
\end{aligned}
$$

Since X is path-connected and points are strong deformation retract of compact neighborhoods in X, the above long exact sequence gives a short exact sequence

$$
0 \rightarrow H_{1}(X) \rightarrow H_{1}\left(X / \sim_{x}\right) \rightarrow \mathbb{Z}^{l-1} \rightarrow 0
$$

where \sim_{x} is the equivalence relation defined on X by identifying y_{1}, \ldots, y_{l}. Hence,

$$
H_{1}\left(X / \sim_{x}\right) \cong H_{1}(X) \oplus \mathbb{Z}^{l-1}
$$

Let x^{\prime} be another point in $\varphi(M)$ and $\varphi^{-1}\left\{x^{\prime}\right\}=\left\{y_{1}^{\prime}, \ldots, y_{k}^{\prime}\right\}$. Applying the same argument to X / \sim_{x}, we get

$$
H_{1}\left(X / \sim_{x, x^{\prime}}\right) \cong H_{1}\left(X / \sim_{x}\right) \oplus \mathbb{Z}^{k-1} \cong H_{1}(X) \oplus \mathbb{Z}^{l+k-2},
$$

where $\sim_{x, x^{\prime}}$ is the equivalence relation defined on X by identifying y_{1}, \ldots, y_{l} and identifying $y_{1}^{\prime}, \ldots, y_{k}^{\prime}$. In this manner, we would get

$$
H_{1}(X / \sim) \cong H_{1}(X) \oplus \mathbb{Z}^{n}
$$

since $n=\# M-\# \varphi(M)$, where \sim is the equivalent relation defined as in Proposition 3.1. Because X / \sim and X are homeomorphic, the assertion follows.

We note that the first homological group of any finite-dimensional compact topological manifold is finitely generated (see e.g. [17, p. 163]). Suggested by [8, Corollary 2.4], we extend [6, Theorem 6.1] in the following

Corollary 3.3. There is no finite-dimensional compact topological manifold X such that $C(X)$ admits any isometric quasi-n-shift.

Remark 3.4. In a similar manner, results in [3] can be applied so that Corollaries 3.2 and 3.3 are also valid for disjointness preserving quasi- n-shifts.

Let T be an isometric quasi- n-shift on $C_{0}(X)$ such that $T f=h \cdot f \circ \varphi$ on X_{1} (Lemma 2.2). In the following, we discuss the structure of the range spaces of the powers T^{k} of T. For convenience, we extend h to X_{∞} be setting $h \equiv 1$ on $X_{\infty} \backslash X_{1}$. Note that h is not necessarily continuous unless X is compact (Corollary 2.7).

Let $X_{e}=\left\{q_{1}, \ldots, q_{m}\right\}$ be the exceptional set of T. For each q in X_{e}, let μ be the bounded regular Borel measure in $M(X)$ supported by X_{1} defined as in Lemma 2.10 such that

$$
T f(q)=\int_{X_{1}} \frac{T f(y)}{h(y)} d \mu(y), \quad \forall f \in C_{0}(X) .
$$

In a similar manner, we can construct a sequence $\left\{\mu_{k}\right\}$ of bounded regular Borel measures in $M(X)$ supported by X_{1} such that $T^{*}\left(\frac{\mu_{k+1}}{h}\right)=\mu_{k}$ for $k=0,1, \ldots$. Here we set $\mu_{0}=T^{*} \delta_{q}$ and $\mu_{1}=\mu$. In general, let $\mu_{k+1}(B)=\mu_{k}\left(\varphi\left(B \cap X_{1}\right)\right)$ for all Borel subsets B of X disjoint from the merging set M, and for each merged point x in $\varphi(M)$ we let $\mu_{k+1}\left(\left\{y_{1}\right\}\right)=\cdots=$ $\mu_{k+1}\left(\left\{y_{k}\right\}\right)=\mu_{k}(\{x\}) / k$ if $\varphi^{-1}\{x\}=\left\{y_{1}, \ldots, y_{k}\right\}$. Moreover, we identify points x in X with point evaluations δ_{x} in $M(X)$, and ∞ with the zero measure.

Definition 3.5. A T-branch originated at a point x in X_{∞} is defined to be the set

$$
B_{x}=\bigcup\left\{\varphi^{-n}(x): n=0,1,2, \ldots\right\}
$$

where $\varphi^{0}(x)=\{x\}$ and $\varphi^{-n}(x)=\left\{y \in X: \varphi^{n}(y)=x\right\}$ for $n=1,2, \ldots$. We note that $x=\varphi(y)$ if and only if $T^{*}\left(\frac{\delta_{y}}{h}\right)=\delta_{x}$. Suppose μ is the bounded Borel measure in $M(X)$ associated simultaneously to $q_{1}, q_{2}, \ldots, q_{r}$ in X_{e}, i.e. $T^{*} \delta_{q_{i}}=\mu$ for $i=1,2, \ldots, r$. We define the T-branch B_{μ} originated at μ to be the union of the sequence $\left\{\mu_{k}\right\}$ and $B_{q_{i}}$ for $i=1,2, \ldots, r$. The T-tree is a directed graph, whose vertex set is the union of all T branches B_{x} originated at some point x in $\varphi(M)$ (and also at $x=\infty$ if $Y_{0} \neq \emptyset$) and all
T-branches B_{μ} originated at some μ associated to a point q in X_{e}. There is a directed edge from μ to ν if and only if $T^{*}(\mu / h)=\nu$. In case μ and ν are point masses at y and x in X_{∞} respectively, we will write $x \leftarrow y$ instead. Note that this is equivalent to $\varphi(y)=x$.

The branch of the T-tree originated at μ may look like:

This T-branch has at least r "joints" (and maybe more "joints" at some subsequent vertex $\left.\varphi^{-1}\left(q_{j}\right)\right)$. In general, the whole T-tree has exactly n "joints" if T is a quasi- n-shift.

Example 3.6. Let ℓ_{∞} be the Banach space of bounded scalar sequences. We can identify ℓ_{∞} as $C(\beta \mathbb{N})$, where $\beta \mathbb{N}$ is the Stone-Cech compactification of the natural numbers \mathbb{N}. Define an isometric shift T on ℓ_{∞} be $T\left(x_{1}, x_{2}, \ldots\right)=\left(0, x_{1}, x_{2}, \ldots\right)$. The T-tree is

Note that the T-tree is dense in $X=\beta \mathbb{N}$.
Example 3.7. Let $c_{0}=C_{0}(\mathbb{N})$ be the Banach space of null sequences. Let $T: c_{0} \rightarrow c_{0}$ be defined by

$$
T\left(\left(x_{1}, x_{2}, x_{3}, \ldots\right)\right)=\left(x_{1},-\frac{x_{1}+x_{2}}{2}, x_{2}, x_{3}, \ldots\right)
$$

Then T is an isometric quasi-shift on c_{0}. In this case, $X=\mathbb{N}, X_{0}=\emptyset, X_{e}=\{2\}$, $X_{1}=\mathbb{N} \backslash\{2\}, h \equiv 1$ on $\mathbb{N} \backslash\{2\}$, and $\varphi: \mathbb{N} \backslash\{2\} \rightarrow \mathbb{N}$ is a homeomorphism defined by $\varphi(1)=1$ and $\varphi(n+1)=n$ for $n=2,3, \ldots$ Moreover, we have $M=\varphi(M)=\emptyset$ and

$$
\mu=T^{*} \delta_{2}=-\frac{\delta_{1}+\delta_{2}}{2}
$$

where δ_{m} is the point evaluation at m in \mathbb{N}. The T-tree is

where

$$
\begin{aligned}
& \mu_{1}=\mu \circ \varphi=-\frac{\delta_{\varphi^{-1}(1)}+\delta_{\varphi^{-1}(2)}}{2}=-\frac{\delta_{1}+\delta_{3}}{2} \\
& \mu_{2}=\mu \circ \varphi^{2}=-\frac{\delta_{\varphi^{-2}(1)}+\delta_{\varphi^{-2}(2)}}{2}=-\frac{\delta_{1}+\delta_{4}}{2}
\end{aligned}
$$

and, in general, for $m=1,2, \ldots$,

$$
\mu_{m}=\mu \circ \varphi^{m}=-\frac{\delta_{\varphi^{-m}(1)}+\delta_{\varphi^{-m}(2)}}{2}=-\frac{\delta_{1}+\delta_{m+2}}{2}
$$

We verify that T is a shift on c_{0}, i.e., $\bigcap_{m=1}^{\infty} \operatorname{ran} T^{m}=\{0\}$. It follows from Theorem 2.11 that the range space of T is

$$
\operatorname{ran} T=\left\{g=\left(g_{m}\right)_{m=1}^{\infty} \in c_{0}: g_{2}=-\frac{g_{1}+g_{3}}{2}\right\}
$$

It is also easy to see that

$$
\begin{aligned}
& T^{2} f(3)=T f(\varphi(3))=T f(2)=\int f(x) d \mu(x) \\
& \quad=\int f(\varphi(y)) d \mu(\varphi(y))=\int T f(y) d \mu_{1}(y)=\int T f(\varphi(z)) d \mu_{1}(\varphi(z))=\int T^{2} f(z) d \mu_{2}(z)
\end{aligned}
$$

for all f in c_{0}. Hence,

$$
\operatorname{ran} T^{2}=\left\{g=\left(g_{m}\right)_{m=1}^{\infty} \in c_{0}: g_{2}=-\frac{g_{1}+g_{3}}{2} \text { and } g_{3}=-\frac{g_{1}+g_{4}}{2}\right\}
$$

In this manner, for any $g=\left(g_{m}\right)$ in c_{0}, we have

$$
\begin{aligned}
g \in \bigcap_{m=1}^{\infty} \operatorname{ran} T^{m} & \Leftrightarrow g(m+1)=\int g d \mu_{m}, \quad \forall m=1,2, \ldots \\
& \Leftrightarrow g_{m+1}=-\frac{g_{1}+g_{m+2}}{2}, \quad \forall m=1,2, \ldots \\
& \Leftrightarrow g_{1}=-2 g_{m+1}-g_{m+2}, \quad \forall m=1,2, \ldots
\end{aligned}
$$

As a result, $g_{1}=0$ and thus

$$
2 g_{m+1}+g_{m+2}=0, \quad \forall m=1,2, \ldots
$$

Consequently,

$$
\left|g_{m+1}\right|=\frac{\left|g_{m+2}\right|}{2}=\frac{\left|g_{m+3}\right|}{2^{2}}=\cdots=\frac{\left|g_{m+k}\right|}{2^{k}} \rightarrow 0, \quad \text { as } k \rightarrow \infty
$$

Hence, $g=0$, and thus $\bigcap_{m=1}^{\infty} \operatorname{ran} T^{m}=\{0\}$.

Suppose T is an isometric quasi- n-shift on $C_{0}(X)$ and $T f=h \cdot f \circ \varphi$ on X_{1}. Denote by

$$
h \circ \varphi_{k!}(x)=h(x) h(\varphi(x)) \cdots h\left(\varphi^{k-1}(x)\right), \quad \forall x \in X_{\infty}, \forall k=1,2, \ldots
$$

We set $h_{\mid X_{\infty} \backslash X_{1}}=1$ for convenience.
Definition 3.8. A g in $C_{0}(X)$ is said to be h-equipotential on the T-tree at level k if we have

$$
\int \frac{g}{h \circ \varphi_{k!}} d \mu_{k}=\int \frac{g}{h \circ \varphi_{k!}} d \nu_{k}
$$

whenever the two vertices μ_{k} and ν_{k} in the T-tree are connected forward by k directed edges to the same vertex. Note that points x in X are identified with point masses δ_{x} in $M(X)$.

The following result is obtained by the same argument given in Example 3.7.

Proposition 3.9. Let T be an isometric quasi-n-shift on $C_{0}(X)$. The range space of the power T^{m} is given by

$$
\operatorname{ran} T^{m}=\left\{g \in C_{0}(X): g \text { is } h \text {-equipotential on the } T \text {-tree at levels } 1,2, \ldots, m\right\}
$$

Corollary 3.10. The T-tree is weak* total in $M(X)$ whenever T is an isometric n-shift on $C_{0}(X)$.

We remark that the converse of Corollary 3.10 is not true. For example, consider the isometric quasi-shift $T\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{1}, x_{1}, x_{2}, x_{3}, \ldots\right)$ on $c=C(\mathbb{N} \cup\{\infty\})$. The T-tree

$$
\bigcirc_{1<\quad} 1<\quad 3<\ldots .
$$

is dense in $X=\mathbb{N} \cup\{\infty\}$ although T is not a shift.
Example 3.11. Let

$$
X=\{1,2,3, \ldots, \infty, \infty+1, \infty+2, \ldots, \infty+l\}
$$

be the disjoint union of $\mathbb{N}_{\infty}=\mathbb{N} \cup\{\infty\}$ and a discrete set of l points. Let $T: C(X) \rightarrow C(X)$ be the isometric shift defined by

$$
\begin{aligned}
& T\left(\left(x_{1}, x_{2}, x_{3}, \ldots, x_{\infty}, x_{\infty+1}, \ldots, x_{\infty+l-1}, x_{\infty+l}\right)\right) \\
& \quad=\left(x_{\infty+1}, x_{1}, x_{2}, \ldots, x_{\infty}, x_{\infty+2}, \ldots, x_{\infty+l},-x_{\infty+1}\right)
\end{aligned}
$$

Then $T f=h \cdot f \circ \varphi$ for all f in $C(X)$. Here, $h(\infty+l)=-1$ and $h \equiv 1$ elsewhere. The relative homeomorphism $\varphi:(X,\{1, \infty+l\}) \longrightarrow(X,\{\infty+1\})$ is represented by the following T-tree, which is the branch originated at the merged point $\infty+1$. Here, $a \leftarrow b$ indicates $\varphi(b)=a$. Moreover, $\varphi(\infty)=\infty$.

We verify that $\cap_{m=1}^{\infty} \operatorname{ran} T^{m}=\emptyset$. By Proposition 3.9,

$$
\begin{gathered}
\operatorname{ran} T=\{g \in C(X): g(1)=-g(\infty+l)\} \\
\operatorname{ran} T^{2}=\{g \in C(X): g(1)=-g(\infty+l), g(2)=-g(\infty+l-1)\}
\end{gathered}
$$

In fact, a g in $C(X)$ is h-equipotential on the T-tree at level k if and only if

$$
\frac{g(k)}{h \circ \varphi_{k!}(k)}=\frac{g\left(\infty+l-k_{1}\right)}{h \circ \varphi_{k!}\left(\infty+l-k_{1}\right)},
$$

or

$$
g(k)=(-1)^{r} g\left(\infty+l-k_{1}\right),
$$

where $k=r l-k_{1}$ and $0 \leq k_{1}<l$. This makes $g(k)=0$ for $k=1,2, \ldots, \infty$. It then in turn forces $g(\infty+k)=0$ for $k=1,2, \ldots, l$. Hence, $g=0$ as asserted.

Note that the T-tree has exactly one joint at $\infty+1$, and it is dense in X. In fact, only the limit point ∞ is missing from the T-tree above.

Remark 3.12. In [8] and [6], the authors considered the notion of types. Example 3.11 was used in [6] to show that there is a type I isometric 1 -shift T such that T is a weighted composition operator on $X \backslash\{q\}$ and the set

$$
D=\left\{q, \varphi^{-1}(q), \varphi^{-2}(q), \ldots\right\}
$$

is not dense in X. In this case, $q=1$ and $D=\mathbb{N}$. But we have seen above that the T-tree is dense in X, indeed. It seems to us that the notions of types of shifts and the set D (and F in their notations) can be misleading in some situations.

Note that the unilateral shift defined only on separable Hilbert spaces. The action of the unilateral shift can be thought of a shift on a countable orthonormal basis. Although it is now a basis free theory for isometric shifts T on $C_{0}(X)$, the T-tree can be considered as a "basis" for the shift T. Corollary 3.10 says this countable "basis" is total in $M(X)$. Thus $M(X)$ is weak* separable. We are interested in knowing when X is separable. Recall that a measure μ in $M(X)$ is separately supported if the $\operatorname{support} \operatorname{supp}(\mu)$ of μ is a separable subset of X.

Theorem 3.13. Suppose $C_{0}(X)$ admits an isometric n-shift T. If all measures $\mu^{\prime}=\delta_{y^{\prime}} \circ T$ arising from points y^{\prime} in X_{e} are separately supported then X is separable.

Proof. We first note that the assumption implies all measures appearing in the T-tree are separately supported. In fact, every such measure is either a point mass or the one obtained by successively composing those μ^{\prime} with φ in a finite steps. For the latter, the supports is separable since $\varphi:\left(X_{1}, M\right) \longrightarrow(X, \varphi(M))$ is a relative homeomorphism and M is a finite set. Let S be the countable union of the supports of all the measures appearing in the T-tree. Then S has a countable dense subset. Finally, we claim S is dense in X. It is plain that every g in $C_{0}(X)$ vanishing on S is zero at each vertex in the T-tree. By Corollary 3.9, all such g are in the range of T^{m} for $m=1,2, \ldots$. This forces g being constantly zero since T is an n-shift. Hence S is dense in X, as asserted.

Corollary 3.14. Suppose $C_{0}(X)$ admits an isometric n-shift T. Then X is separable if any one of the following holds.

1. X does not contain infinitely many isolated points.
2. The range space of T cannot strongly separate points in X_{∞} unless at least n points are removed.
3. T is disjointness preserving.
4. X_{e} is empty.
5. The T-tree is contained in X_{∞}.

Proof. It follows from the structure of the range space of T (Theorem 2.11) that T is disjointness preserving, if and only if, X_{e} is empty, if and only if, the T-tree is contained in X_{∞}. On the other hand, if q is a point in X_{e} then q is isolated by Corollary 2.7. Consequently, the T-branch originated at q consists of infinitely many isolated points in X. Hence the first condition also implies X_{e} is empty. Finally, the second condition ensures that the merging index $\# M-\# \varphi(M)$ of T is exactly n. Thus $X_{e}=\emptyset$ again. In all cases, Theorem 3.13 applies.

To end this paper, we remark that Araujo and Font [2] recently showed that if X is a (not necessarily compact) metrizable space such that the Banach space $C_{b}(X)$ of bounded continuous functions on X admits an isometric shift then X is separable.

References

[1] J. Araujo and J. J. Font, Codimension 1 linear isometries on function algebras, Proc. Amer. Math. Soc., 127 (1999), 2273-2281.
[2] J. Araujo and J. J. Font, Isometric shifts and metric spaces, preprint.
[3] L.-S. Chen, J.-S. Jeang and N.-C. Wong, Disjointness preserving shifts on $C_{0}(X)$, preprint.
[4] J. B. Conway, "A course in operator theory," American Mathematical Society, Providence, Rhode Island 2000.
[5] R. M. Crownover, Commutants of shifts on Banach spaces, Michigan Math. J., 19 (1972), 233-247.
[6] F. O. Farid and K. Varadarajan, Isometric shift operators on $C(X)$, Can. J. Math., 46 (1994), 532-542.
[7] J. J. Font, Isometries between function algebras with finite codimensional range, Manuscripta Math., 100 (1999), 13-21.
[8] A. Gutek, D. Hart, J. Jamison and M. Rajagopalan, Shift operators on Banach spaces, J. Funct. Anal., 101 (1991), 97-119.
[9] R. Haydon, Isometric shifts on $C(K)$, J. Funct. Anal., 135 (1996), 157-162.
[10] J. R. Holub, On shift operators, Canad. Math. Bull., 31 (1988), 85-94.
[11] W. Holsztyński, Continuous mappings induced by isometries of spaces of continuous functions, Studia Math., 26 (1966), 133-136.
[12] J.-S. Jeang and N.-C. Wong, Weighted composition operators of $C_{0}(X)$'s, J. Math. Anal. Appl., 201 (1996), 981-993.
[13] , Disjointness preserving Fredholm operators of $C_{0}(X)$, preprint.
[14] M. Rajagopalan and K. Sundaresan, Backward shifts on Banach spaces $C(X)$, J. Math. Anal. Appl., 202 (1996), 485-491.
[15] M. Rajagopalan and K. Sundaresan, Backward shifts on Banach spaces $C(X)$ II, in "Proceedings of the Tennessee Topology Conference," World Scientific, 1996, 199-205.
[16] M. Rajagopalan, T. M. Rassias and K. Sundaresan, Generalized backward shifts on Banach spaces $C(X, E)$, Bull. Sci. math. 124 (2000), 685-693.
[17] J. Vick, "Homology theory," Academic Press, 1973.

Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan, 80424, Republic of China.

E-mail address: wong@math.nsysu.edu.tw

[^0]: Date: March 20, 2001; submitted to J. Math. Anal. Appl.
 1991 Mathematics Subject Classification. 46J10, 47B30, 47A53.
 Key words and phrases. shifts, quasi-shifts, finite corank isometries, continuous function spaces.
 Partially supported by Taiwan National Science Council grants: NSC 89-2115-M110-009.
 Correspondence author: Ngai-Ching Wong, Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan 80424, ROC. E-mail: wong@math.nsysu.edu.tw .

