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Abstract. For a linear isometry T : C0(X) −→ C0(Y ) of finite corank, there is a cofinite
subset Y1 of Y such that Tf|Y1 = h · f ◦ ϕ is a weighted composition operator and X
is homeomorphic to a quotient space of Y1 modulo a finite subset. When X = Y , such
a T is called an isometric quasi-n-shift on C0(X). In this case, the action of T can be
implemented as a shift on a tree-like structure, called a T -tree, in M(X) with exactly n
joints. The T -tree is total in M(X) when T is a shift. With this tools, we can analyze the
structure of T .

1. Introduction

Let T be a linear isometry from an infinite dimensional separable Hilbert space H into H

of finite corank n. The von Neumann–Wold Decomposition Theorem (see e.g. [4, p. 112])
states that T can be written as a direct sum of a unitary and a product of n copies of
the unilateral shift. More precisely, Hu =

⋂∞
m=1 TmH is a reducing subspace of T . Its

orthogonal complement Hs = H ª Hu is the infinite orthogonal sum
⊕∞

m=0 TmN , where
N = H ª TH is of dimension n. Now, T|Hu

is a unitary and T|Hs
shifts each n-dimensional

subspace TmN onto Tm+1N for m = 0, 1, 2, . . . . In this sense, we may call T an isometric
quasi-n-shift on H.

We are interested in generalizing the notion of shifts and quasi-shifts to Banach spaces in
a basis free setting. Generalizing a notion of Crownoven [5], we call a (necessarily bounded)
linear operator S from a Banach space E into E an n-shift if

(a) S is injective and has closed range;
(b) S has corank n;
(c) The intersection

⋂∞
m=1 SmE of the range spaces of all powers Sm of S is zero.

S is called a quasi-n-shift if S satisfies conditions (a) and (b). When n = 1, we will simply
call S a shift or a quasi-shift accordingly.

In this paper, we study isometric (quasi-)n-shifts on continuous function spaces. Let X

be a locally compact Hausdorff spaces. Let C0(X) be the Banach space of continuous (real-
or complex-valued) functions defined on X vanishing at infinity. In [10], Holub proved that
the real Banach space C(X,R) of continuous real-valued functions defined on X admits
no shift at all if X is compact and connected. When the underlying field is the complex,
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however, many concrete examples of such shifts was provided in [9]. The general theory
of isometric shifts and quasi-shifts on continuous function spaces was built up in [8], in
which Gutek et. al. posed also a number of open problems. Farid and Varadarajan [6],
Rajagopalan, Rassias and Sundaresan [14, 15, 16] and Haydon [9] answered some of them.
More recently, Araujo and Font [1, 7, 2] discussed related questions in this direction. The
current paper extends the theory to n-shifts for n ≥ 1 (and in a locally compact space
setting). In particular, we provide new tools in analyzing the range spaces of such shifts.

In Section 2, we study linear isometries T from C0(X) into C0(Y ) of finite corank.
We shall give a full description of such operators and, especially, the structure of their
range spaces. In particular, we show that there is a cofinite subset Y1 of Y such that
Tf|Y1

= h · f ◦ ϕ is a weighted composition operator and X is homeomorphic to a quotient
space of Y1 modulo a finite subset. These results are applied in Section 3 to isometric
n-shifts and quasi-n-shifts on C0(X). In particular, we show that every isometric quasi-
n-shift on C0(X) is implemented by a shift on a countable set with a tree-like structure,
called a T -tree, with exactly n joints in the dual space M(X) of C0(X). The action of the
quasi-n-shift is implemented as a shift on the T -tree. The T -tree is total in M(X) when T

is a shift. An open problem stated in [8, p. 119] asks if X is separable when C0(X) admits
an isometric shift. We shall show that if X does not contain infinitely many isolated points
or the T -tree satisfies some conditions then the existence of an isometric n-shift T on C0(X)
ensuring the separability of X.

2. Isometries with finite corank

For a locally compact Hausdorff space X, we let X∞ = X ∪ {∞} be the one-point
compactification of X and let C0(X) = {f ∈ C(X∞) : f(∞) = 0} be the Banach space of
continuous functions on X vanishing at infinity and equipped with the supremum norm.
Note that the point ∞ at infinity is isolated in X∞ if and only if X is compact. Let M(X)
be the Banach dual space of C0(X), which consists of all bounded regular Borel measures
on X. Denote by M1(X) the closed unit ball of M(X) and the set of its extreme points by

extM1(X) = {λδx ∈ M1(X) : |λ| = 1 and x ∈ X},
which consists of all unimodular scalar multiples of point masses δx at x in X.

In this section, X and Y are locally compact Hausdorff and T : C0(X) −→ C0(Y ) is a
linear isometry with the dual map T ∗ : M(Y ) −→ M(X). Clearly, T ∗δy ∈ M1(X) for all y

in Y .

Definition 2.1. We define the vanishing set of T to be

Y0 = {y ∈ Y : T ∗δy = 0},

the Holsztyński set to be

Y1 = {y ∈ Y : T ∗δy ∈ ext M1(X)},
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and the exceptional set to be

Ye = Y \ (Y0 ∪ Y1).

The following result is known as Holsztyński’s Theorem ([11, 12]). We include a sketch
of the proof here for completeness.

Lemma 2.2 (Holsztyński). There is a continuous surjective map ϕ from Y1 onto X and a
unimodular scalar continuous function h on Y1 such that

Tf|Y1
= h · f ◦ ϕ, ∀f ∈ C0(X).

In other words, Tf(y) = h(y)f(ϕ(y)) for all y in Y1.

Sketch of the proof. Let F = ranT be the (necessarily closed) range space of the isometry
T . The dual map T ∗ : M(Y ) −→ M(X) induces an affine homeomorphism Φ from the
closed dual ball F ∗

1 of F onto M1(X) in weak* topologies. In particular, Φ maps extF ∗
1

onto ext M1(X). Hence, for each x in X there is an extreme point η in F ∗
1 of norm one

such that Φ(η) = δx. Since the set of all norm one extensions of η to C0(X) is a non-
empty weak* closed face of M1(Y ), there is a (not necessarily unique) extreme point δy

λ in
ext M1(Y ) such that T ∗( δy

λ ) = δx, or T ∗δy = λδx. In particular, y ∈ Y1. Set ϕ(y) = x and
h(y) = λ whenever T ∗(δy) = λδx. It is then routine to verify that ϕ and h are well-defined
and continuous on Y1 such that ϕ(Y1) = X, |h(y)| = 1 on Y1, and Tf|Y1

= h · f ◦ ϕ for all
f in C0(X).

We remark that ϕ(y) = x if and only if |Tf(y)| = |f(x)| for all f in C0(X), as the latter
ensures kerT ∗δy = ker δx.

Lemma 2.3. The set Y0 ∪ Y1 is closed in Y . Moreover, if we extend ϕ by setting

ϕ|Y0∪{∞} ≡ ∞
then the surjective map ϕ : Y0 ∪ Y1 ∪ {∞} −→ X ∪ {∞} is again continuous.

Proof. Let {yλ}λ be a net in Y0∪Y1 such that yλ → y for some y in Y . We want to verify that
y ∈ Y0 ∪ Y1. Suppose y does not belong to the closed set Y0 =

⋂{(Tf)−1{0} : f ∈ C0(X)},
we can then assume that yλ is in Y1 for all λ. Let xλ = ϕ(yλ) ∈ X. We have

|f(xλ)| = |Tf(yλ)| → |Tf(y)|, ∀f ∈ C0(X).(1)

Note that there is some f in C0(X) with Tf(y) 6= 0 since y /∈ Y0. Let x be any cluster
point of the net {xλ}λ in X ∪ {∞}. By (1), we have x 6= ∞ and

|Tf(y)| = |f(x)|, ∀f ∈ C0(X).

Hence, y ∈ Y1 and ϕ(y) = x. Thus, Y0 ∪ Y1 is closed in Y .

To verify the continuity of ϕ, we show that ϕ(yλ) → ϕ(y) in X ∪ {∞} whenever yλ → y

in Y0 ∪ Y1 ∪ {∞}. By first half of the proof, it suffices to check that ϕ(yλ) →∞ whenever
y ∈ Y0 ∪ {∞}. Indeed, this follows from the observation

0 = |Tf(y)| = lim
λ
|Tf(yλ)| = lim

λ
|f(ϕ(yλ))|, ∀f ∈ C0(X).
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Note that as an open subset of a closed subset of a locally compact space, Y1 is locally
compact of its own.

Lemma 2.4. Let T1 : C0(X) −→ C0(Y1) be the linear isometry defined by T1f = Tf|Y1
for

all f in C0(X). Then

ran T1 = {g ∈ C0(Y1) :
g(a)
h(a)

=
g(b)
h(b)

whenever a, b ∈ Y1 such that ϕ(a) = ϕ(b)}.

Proof. One inclusion is plain since T1f = h · f ◦ ϕ. Suppose g in C0(Y1) satisfies that
g(a)
h(a) = g(b)

h(b) whenever ϕ(a) = ϕ(b). Define a function f on X by

f(x) =
g(y)
h(y)

if y ∈ Y1 and ϕ(y) = x.

Since ϕ(Y1) = X (Lemma 2.2), such an f is well-defined on X. To see f is continuous, we
assume on the contrary that xλ → x in X ∪ {∞} but |f(x) − f(xλ)| > ε for some ε > 0.
Let xλ = ϕ(yλ) for some yλ in Y1. Let y be a cluster point of {yλ}λ in Y0 ∪ Y1 ∪ {∞}. By
Lemma 2.3, ϕ(y) is a cluster point of {xλ}λ. Thus ϕ(y) = x. If x ∈ X then y ∈ Y1 and
g(y)
h(y) = f(x) is a cluster point of f(xλ) = g(yλ)

h(yλ) , a contradiction. In case xλ → ∞, we see
that y ∈ Y0 ∪ {∞} by Lemma 2.3. Since h is unimodular, we have |f(xλ)| = |g(yλ)| → 0, a
contradiction again. Therefore, f ∈ C0(X) and g = Tf ∈ ranT1.

From now on, we assume that T : C0(X) −→ C0(Y ) is a linear isometry with finite
corank n. Let #A denote the cardinality of a set A.

Definition 2.5. Let

M = {y ∈ Y1 : ϕ−1{ϕ(y)} contains at least two points}
be the set of merging points, ϕ(M) the set of merged points and the number #M −#ϕ(M)
the merging index of T . Call also the number #Y0 the vanishing index and #Ye the
exception index of T .

Lemma 2.6.

#M −#ϕ(M) ≤ n,

and

#Y0 + #Ye ≤ n.

Proof. It follows from Lemma 2.4 that #M−#ϕ(M) = corankT1 ≤ corankT = n. For the
second inequality, we note that Ye = Y \Y0∪Y1 is open in Y by Lemma 2.3. Suppose there
are distinct p1, . . . , pk in Y0 and y1, . . . , yl in Ye. Then we can choose f1, . . . , fk, g1, . . . , gl

in C0(Y ) with mutually disjoint supports such that

f1(p1) = · · · = fk(pk) = g1(y1) = · · · = gl(yl) = 1,

and
gj |Y0∪Y1

≡ 0, j = 1, . . . , l.
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We claim that these k + l functions are linear independent modulo the range space of T .
To this end, let

Tf = λ1f1 + · · ·+ λkfk + α1g1 + · · ·+ αlgl

for some f in C0(X) and scalars λ1, . . . , λk, α1, . . . , αl. By evaluating at each pi, we get
λi = 0 for i = 1, . . . , k. It then follows Tf|Y0∪Y1

≡ 0 and, in particular, |f(ϕ(y))| =
|Tf(y)| = |∑l

j=1 αjgj(y)| = 0 for all y in Y1. Since ϕ(Y1) = X, we have f = 0. This makes
α1 = · · · = αl = 0 since g1, . . . , gl have disjoint supports. As a result, l + k ≤ corankT =
n.

Corollary 2.7. 1. Both the vanishing set Y0 and the exceptional set Ye are finite.
2. Ye consists of isolated points in Y .
3. Suppose X is compact. Then both Y and Y1 are compact and Y0 consists of isolated

points in Y .

Proof. We mention that Ye is an open set by Lemma 2.3. In case X is compact,∞ is isolated
in X∪{∞} and Lemma 2.3 ensures Y0∪{∞} = ϕ−1{∞} is also open. The assertions follow
since finite open sets consists of isolated points.

The following example borrowed from [13] says that Y0 can contain non-isolated point if
X is not compact.

Example 2.8 ([13]). Let X be the disjoint union in R2 of I+
n = {(n, t) : 0 < t ≤ 1} and

I−n = {(n, t) : −1 < t < 0} for n = 1, 2, . . . . Let p be the point (1, 1) and let X1 = X \ {p}.
Let ϕ be the homeomorphism from X1 onto X by sending the intervals I+

1 \ {p} onto I−1 ,
I+
n+1 onto I+

n , and I−n onto I−n+1 in a canonical way for n = 1, 2, . . . . Then the corank
one linear isometry Tf = f ◦ ϕ from C0(X) into C0(X) has exactly one vanishing point,
i.e., p. We note that p is not an isolated point in X. In a similar manner, one can even
construct an example in which X is connected (by adjoining each I±n a common base point,
for example).

Theorem 2.9. The map ϕ : (Y1,M) −→ (X, ϕ(M)) is a relative homeomorphism. More
precisely, ϕ : Y1 \M → X \ϕ(M) is a homeomorphism, and the induced map ϕ̃ : Y1�∼→ X

is also a homeomorphism, where “∼” is the equivalence relation such that y1 ∼ y2 if and
only if ϕ(y1) = ϕ(y2).

Proof. It suffices to show that yλ → y in Y1 whenever ϕ(yλ) → ϕ(y) in X. Suppose y′ is any
cluster point of {yλ} in Y0 ∪ Y1 ∪ {∞} which is compact by Corollary 2.7. It follows from
Lemma 2.3 that ϕ(y′) is a cluster point of {ϕ(yλ)}. Thus ϕ(y) = ϕ(y′) and, in particular,
y′ ∈ Y1. If y is not a merging point, i.e. y /∈ M , then y = y′. In case y is a merging point,
the above argument tells us that the equivalence class [y] = ϕ−1{ϕ(y)} contains all cluster
points y′ of {yλ}. This shows that the induced map ϕ̃ is also a homeomorphism.

Lemma 2.10. Fix each y′ in Ye, there is a µ′ in M(Y ) supported by Y1 such that

g(y′) =
∫

Y1

g(y)
h(y)

dµ′(y), ∀g ∈ ranT.
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Proof. Let ν = δy′ ◦ T ∈ M(X). If ν(x) = 0 for all x in ϕ(M), then we can set µ′({y}) = 0
for all y in M and µ′(B) = ν(ϕ(B ∩ Y1)) for all Borel subsets B of Y disjoint from M . It
follows from Theorem 2.9 that µ′ ∈ M(Y ). Clearly, µ′ satisfies the stated condition. In
case ν({x}) 6= 0 for some merged point x in ϕ(M) and ϕ−1{x} = {y1, . . . , yk}, we may set
µ′({y1}) = · · · = µ′({yk}) = ν({x})/k. Since g(y1)

h(y1) = · · · = g(yk)
h(yk) = f(x) if Tf = g, we again

have the stated condition.

Theorem 2.11. The sum of the vanishing, exception and merging indices of a corank n

linear isometry T : C0(X) −→ C0(Y ) is n. In other words,

#Y0 + #Ye + #M −#ϕ(M) = n.

In fact,

ranT =
{

g ∈ C0(X) : g|Y0
≡ 0, g(y′) =

∫

Y1

g(y)
h(y)

dµ′(y) for all y′ in Ye,

and
g(a)
h(a)

=
g(b)
h(b)

whenever a, b ∈ M such that ϕ(a) = ϕ(b)
}

,

where Tf|Y1
= h · f ◦ ϕ and µ′ is the Borel measure in M(Y ) associated to each y′ in Ye as

in Lemmas 2.2 and 2.10.

Proof. From Lemmas 2.2, 2.4 and 2.10, we have already had one side inclusion. For the
other inclusion, we suppose a g in C0(Y ) satisfies all #Y0 + #Ye + #M − #ϕ(M) linear
independent conditions stated on the right hand side. Set

f(x) =
g(y)
h(y)

whenever y ∈ Y1 and ϕ(y) = x.

By the proof of Lemma 2.4, we have f ∈ C0(X) and Tf agrees with g on Y1. It is plain
that Tf also agrees with g on Y0 and

Tf(y′) =
∫

Y1

Tf(y)
h(y)

dµ′(y) =
∫

Y1

f(ϕ(y))dµ′(y) =
∫

Y1

g(y)
h(y)

dµ′(y) = g(y′), ∀y′ ∈ Ye.

Hence g = Tf , and consequently, #Y0 + #Ye + #M −#ϕ(M) = n.

Remark 2.12. (a) In the recent literature, corank 1 linear isometries are of particular
interests. In [1], corank 1 linear isometries of function algebras are classified into three
types. Recall that a subset of C0(Y ) is said to separate points in Y (resp. Y∞) strongly
if for any distinct y and y′ in Y (resp. Y∞) there is a g in this subset such that
|g(y)| 6= |g(y′)|. In [1], a corank 1 linear isometry T : A −→ B between function
algebras is said to be of
Type I: if the range of T separates points in Y strongly, except for two of them.
Type II: if the range of T separates points in Y , but not in Y∞, strongly.
Type III: if the range of T separates points in Y∞ strongly.

In case A = C0(X) and B = C0(Y ), our structure theory (Theorem 2.11) simply says
that T is of Type I, II, or III if and only if either the merging, the vanishing, or the
exception index of T is 1. Our approach seems to be more convenient in the higher
dimensional case (cf. [7]).
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(b) By Corollary 2.7, Ye consists of isolated points. Consequently, if Y is connected then
every corank 1 linear isometry T from C0(X) into C0(Y ) must be of Type I or Type
II. In general, T is of Type I or Type II if and only if T is disjointness preserving, i.e.
fg = 0 implies TfTg = 0. Hence, we may also divide linear isometries of finite corank
into two classes: ones preserve disjointness and the others do not.

(c) If X is compact then Y0 consists of isolated points by Corollary 2.7. However, if X is
not compact then Y0 can contain non-isolated points as shown in Example 2.8. This
example provides us more insights into a result in [1, Theorem 6.1], which deals with
the preservation of Shilov boundaries of function algebras by a corank 1 linear isometry.

3. Isometric (quasi-)n-shifts on C0(X)

Recall that an isometric quasi-n-shift T on C0(X) is a corank n linear isometry from
C0(X) into itself. All results in Section 2 thus apply. In particular, we have the following
generalization of [8, Theorem 2.6].

Proposition 3.1. Let X be a compact Hausdorff space with at most finitely many isolated
points. If C(X) admits an isometric quasi-n-shift T , then there is a finite subset M of X and
a relative homeomorphism ϕ : (X,M) −→ (X, ϕ(M)) such that n = #(M) − #(ϕ(M)).
Moreover, the induced quotient map ϕ̃ : X�∼ → X is a homeomorphism, where ∼ is the
equivalence relation on X such that x ∼ x′ if and only if ϕ(x) = ϕ(x′).

Proof. By Lemma 2.2, Tf = h · f ◦ ϕ for a continuous unimodular scalar function h on X

and a surjective continuous map ϕ from X1 onto X. By Corollary 2.7, both X0 and Xe are
empty since X is compact and contains at most finitely many isolated points; for else the
set {ϕ−n{x} : n = 1, 2, . . . } would contain infinitely many isolated points in X for any x in
X0 ∪Xe. Hence, X = X1. The assertions now follow from Theorem 2.9.

Corollary 3.2. Let X be a path-connected compact Hausdorff space in which points are
strong deformation retract of compact neighborhoods. If C(X) admits an isometric quasi-
n-shift then the first homological group H1(X) of X has infinitely many free generators.

Proof. Suppose x ∈ ϕ(M) and ϕ−1{x} = {y1, . . . , yl}. Consider the long exact sequence:

· · · → H1({y1, . . . , yl}) → H1(X) → H1(X, {y1, . . . , yl})
→ H0({y1, . . . , yl}) → H0(X) → H0(X, {y1, . . . , yl}).

Since X is path-connected and points are strong deformation retract of compact neighbor-
hoods in X, the above long exact sequence gives a short exact sequence

0 → H1(X) → H1(X�∼x
) → Zl−1 → 0,

where ∼x is the equivalence relation defined on X by identifying y1, . . . , yl. Hence,

H1(X�∼x
) ∼= H1(X)⊕ Zl−1.
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Let x′ be another point in ϕ(M) and ϕ−1{x′} = {y′1, . . . , y′k}. Applying the same argument
to X�∼x

, we get

H1(X�∼x,x′
) ∼= H1(X�∼x

)⊕ Zk−1 ∼= H1(X)⊕ Zl+k−2,

where ∼x,x′ is the equivalence relation defined on X by identifying y1, . . . , yl and identifying
y′1, . . . , y′k. In this manner, we would get

H1(X�∼) ∼= H1(X)⊕ Zn

since n = #M −#ϕ(M), where ∼ is the equivalent relation defined as in Proposition 3.1.
Because X�∼ and X are homeomorphic, the assertion follows.

We note that the first homological group of any finite-dimensional compact topological
manifold is finitely generated (see e.g. [17, p. 163]). Suggested by [8, Corollary 2.4], we
extend [6, Theorem 6.1] in the following

Corollary 3.3. There is no finite-dimensional compact topological manifold X such that
C(X) admits any isometric quasi-n-shift.

Remark 3.4. In a similar manner, results in [3] can be applied so that Corollaries 3.2 and
3.3 are also valid for disjointness preserving quasi-n-shifts.

Let T be an isometric quasi-n-shift on C0(X) such that Tf = h · f ◦ ϕ on X1 (Lemma
2.2). In the following, we discuss the structure of the range spaces of the powers T k of T .
For convenience, we extend h to X∞ be setting h ≡ 1 on X∞ \ X1. Note that h is not
necessarily continuous unless X is compact (Corollary 2.7).

Let Xe = {q1, . . . , qm} be the exceptional set of T . For each q in Xe, let µ be the bounded
regular Borel measure in M(X) supported by X1 defined as in Lemma 2.10 such that

Tf(q) =
∫

X1

Tf(y)
h(y)

dµ(y), ∀f ∈ C0(X).

In a similar manner, we can construct a sequence {µk} of bounded regular Borel measures
in M(X) supported by X1 such that T ∗(µk+1

h ) = µk for k = 0, 1, . . . . Here we set µ0 = T ∗δq

and µ1 = µ. In general, let µk+1(B) = µk(ϕ(B ∩X1)) for all Borel subsets B of X disjoint
from the merging set M , and for each merged point x in ϕ(M) we let µk+1({y1}) = · · · =
µk+1({yk}) = µk({x})/k if ϕ−1{x} = {y1, . . . , yk}. Moreover, we identify points x in X

with point evaluations δx in M(X), and ∞ with the zero measure.

Definition 3.5. A T -branch originated at a point x in X∞ is defined to be the set

Bx =
⋃ {

ϕ−n(x) : n = 0, 1, 2, . . .
}

,

where ϕ0(x) = {x} and ϕ−n(x) = {y ∈ X : ϕn(y) = x} for n = 1, 2, . . . . We note that
x = ϕ(y) if and only if T ∗( δy

h ) = δx. Suppose µ is the bounded Borel measure in M(X)
associated simultaneously to q1, q2, . . . , qr in Xe, i.e. T ∗δqi = µ for i = 1, 2, . . . , r. We
define the T -branch Bµ originated at µ to be the union of the sequence {µk} and Bqi for
i = 1, 2, . . . , r. The T -tree is a directed graph, whose vertex set is the union of all T -
branches Bx originated at some point x in ϕ(M) (and also at x = ∞ if Y0 6= ∅) and all
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T -branches Bµ originated at some µ associated to a point q in Xe. There is a directed edge
from µ to ν if and only if T ∗(µ/h) = ν. In case µ and ν are point masses at y and x in X∞
respectively, we will write x ← y instead. Note that this is equivalent to ϕ(y) = x.

The branch of the T -tree originated at µ may look like:

µ1

¨¨³³
³³
³³
³³
³³

µ2oo µ3oo · · ·oo

q1

¢¢££
££

£
ϕ−1(q1)oo ϕ−2(q1)oo · · ·oo

µ q2oo ϕ−1(q2)oo ϕ−2(q2)oo · · ·oo

qr

]]<<<<<

ϕ−1(qr)oo ϕ−2(qr)oo · · ·oo

.(2)

This T -branch has at least r “joints” (and maybe more “joints” at some subsequent vertex
ϕ−1(qj)). In general, the whole T -tree has exactly n “joints” if T is a quasi-n-shift.

Example 3.6. Let `∞ be the Banach space of bounded scalar sequences. We can identify
`∞ as C(βN), where βN is the Stone-Cech compactification of the natural numbers N.
Define an isometric shift T on `∞ be T (x1, x2, . . . ) = (0, x1, x2, . . . ). The T -tree is

∞µµ 1oo 2oo · · ·oo .

Note that the T -tree is dense in X = βN.

Example 3.7. Let c0 = C0(N) be the Banach space of null sequences. Let T : c0 → c0 be
defined by

T
(
(x1, x2, x3, . . . )

)
=

(
x1,−x1 + x2

2
, x2, x3, . . .

)
.

Then T is an isometric quasi-shift on c0. In this case, X = N, X0 = ∅, Xe = {2},
X1 = N \ {2}, h ≡ 1 on N \ {2}, and ϕ : N \ {2} → N is a homeomorphism defined by
ϕ(1) = 1 and ϕ(n + 1) = n for n = 2, 3, . . . . Moreover, we have M = ϕ(M) = ∅ and

µ = T ∗δ2 = −δ1 + δ2

2
,

where δm is the point evaluation at m in N. The T -tree is

µ1

~~}}
}}

µ2oo µ3oo µ4oo · · ·oo

µ

2

``AAAAA
3oo 4oo 5oo · · ·oo

,

where

µ1 = µ ◦ ϕ = −δϕ−1(1) + δϕ−1(2)

2
= −δ1 + δ3

2
,

µ2 = µ ◦ ϕ2 = −δϕ−2(1) + δϕ−2(2)

2
= −δ1 + δ4

2
,

...
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and, in general, for m = 1, 2, . . . ,

µm = µ ◦ ϕm = −δϕ−m(1) + δϕ−m(2)

2
= −δ1 + δm+2

2
.

We verify that T is a shift on c0, i.e.,
⋂∞

m=1 ranTm = {0}. It follows from Theorem 2.11
that the range space of T is

ranT =
{

g = (gm)∞m=1 ∈ c0 : g2 = −g1 + g3

2

}
.

It is also easy to see that

T 2f(3) = Tf(ϕ(3)) = Tf(2) =
∫

f(x)dµ(x)

=
∫

f(ϕ(y))dµ(ϕ(y)) =
∫

Tf(y)dµ1(y) =
∫

Tf(ϕ(z))dµ1(ϕ(z)) =
∫

T 2f(z)dµ2(z)

for all f in c0. Hence,

ranT 2 =
{

g = (gm)∞m=1 ∈ c0 : g2 = −g1 + g3

2
and g3 = −g1 + g4

2

}
.

In this manner, for any g = (gm) in c0, we have

g ∈
∞⋂

m=1

ranTm ⇔ g(m + 1) =
∫

g dµm, ∀m = 1, 2, . . . .

⇔ gm+1 = −g1 + gm+2

2
, ∀m = 1, 2, . . . .

⇔ g1 = −2gm+1 − gm+2, ∀m = 1, 2, . . . .

As a result, g1 = 0 and thus

2gm+1 + gm+2 = 0, ∀m = 1, 2, . . . .

Consequently,

|gm+1| = |gm+2|
2

=
|gm+3|

22
= · · · = |gm+k|

2k
→ 0, as k →∞.

Hence, g = 0, and thus
⋂∞

m=1 ranTm = {0}.

Suppose T is an isometric quasi-n-shift on C0(X) and Tf = h · f ◦ ϕ on X1. Denote by

h ◦ ϕk!(x) = h(x)h
(
ϕ(x)

) · · ·h
(
ϕk−1(x)

)
, ∀x ∈ X∞, ∀k = 1, 2, . . . .

We set h|X∞\X1
= 1 for convenience.

Definition 3.8. A g in C0(X) is said to be h-equipotential on the T -tree at level k if we
have ∫

g

h ◦ ϕk!
dµk =

∫
g

h ◦ ϕk!
dνk

whenever the two vertices µk and νk in the T -tree are connected forward by k directed
edges to the same vertex. Note that points x in X are identified with point masses δx in
M(X).

The following result is obtained by the same argument given in Example 3.7.
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Proposition 3.9. Let T be an isometric quasi-n-shift on C0(X). The range space of the
power Tm is given by

ranTm =
{

g ∈ C0(X) : g is h-equipotential on the T -tree at levels 1, 2, . . . , m
}

.

Corollary 3.10. The T -tree is weak* total in M(X) whenever T is an isometric n-shift
on C0(X).

We remark that the converse of Corollary 3.10 is not true. For example, consider the
isometric quasi-shift T (x1, x2, x3, . . . ) = (x1, x1, x2, x3, . . . ) on c = C(N∪{∞}). The T -tree

1
µµ

2oo 3oo · · ·oo

is dense in X = N ∪ {∞} although T is not a shift.

Example 3.11. Let

X =
{

1, 2, 3, . . . ,∞,∞+ 1,∞+ 2, . . . ,∞+ l
}

be the disjoint union of N∞ = N∪{∞} and a discrete set of l points. Let T : C(X) → C(X)
be the isometric shift defined by

T
(
(x1, x2, x3, . . . , x∞, x∞+1, . . . , x∞+l−1, x∞+l)

)

= (x∞+1, x1, x2, . . . , x∞, x∞+2, . . . , x∞+l,−x∞+1).

Then Tf = h · f ◦ ϕ for all f in C(X). Here, h(∞ + l) = −1 and h ≡ 1 elsewhere. The
relative homeomorphism ϕ : (X, {1,∞+l}) −→ (X, {∞+1}) is represented by the following
T -tree, which is the branch originated at the merged point ∞ + 1. Here, a ← b indicates
ϕ(b) = a. Moreover, ϕ(∞) = ∞.

∞+ 3

¯¯

∞+ 2
ss

...

ÃÃ

∞+ 1

bb

1oo 2oo 3oo · · ·oo

∞+ l − 1 33 ∞+ l

LL

We verify that ∩∞m=1 ranTm = ∅. By Proposition 3.9,

ranT = {g ∈ C(X) : g(1) = −g(∞+ l)},
ranT 2 = {g ∈ C(X) : g(1) = −g(∞+ l), g(2) = −g(∞+ l − 1)},

....
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In fact, a g in C(X) is h-equipotential on the T -tree at level k if and only if
g(k)

h ◦ ϕk!(k)
=

g(∞+ l − k1)
h ◦ ϕk!(∞+ l − k1)

,

or
g(k) = (−1)rg(∞+ l − k1),

where k = rl− k1 and 0 ≤ k1 < l. This makes g(k) = 0 for k = 1, 2, . . . ,∞. It then in turn
forces g(∞+ k) = 0 for k = 1, 2, . . . , l. Hence, g = 0 as asserted.

Note that the T -tree has exactly one joint at ∞+ 1, and it is dense in X. In fact, only
the limit point ∞ is missing from the T -tree above.

Remark 3.12. In [8] and [6], the authors considered the notion of types. Example 3.11
was used in [6] to show that there is a type I isometric 1-shift T such that T is a weighted
composition operator on X \ {q} and the set

D =
{
q, ϕ−1(q), ϕ−2(q), . . .

}

is not dense in X. In this case, q = 1 and D = N. But we have seen above that the T -tree
is dense in X, indeed. It seems to us that the notions of types of shifts and the set D (and
F in their notations) can be misleading in some situations.

Note that the unilateral shift defined only on separable Hilbert spaces. The action of the
unilateral shift can be thought of a shift on a countable orthonormal basis. Although it is
now a basis free theory for isometric shifts T on C0(X), the T -tree can be considered as a
“basis” for the shift T . Corollary 3.10 says this countable “basis” is total in M(X). Thus
M(X) is weak* separable. We are interested in knowing when X is separable. Recall that
a measure µ in M(X) is separately supported if the support supp(µ) of µ is a separable
subset of X.

Theorem 3.13. Suppose C0(X) admits an isometric n-shift T . If all measures µ′ = δy′ ◦T

arising from points y′ in Xe are separately supported then X is separable.

Proof. We first note that the assumption implies all measures appearing in the T -tree are
separately supported. In fact, every such measure is either a point mass or the one obtained
by successively composing those µ′ with ϕ in a finite steps. For the latter, the supports is
separable since ϕ : (X1,M) −→ (X, ϕ(M)) is a relative homeomorphism and M is a finite
set. Let S be the countable union of the supports of all the measures appearing in the
T -tree. Then S has a countable dense subset. Finally, we claim S is dense in X. It is plain
that every g in C0(X) vanishing on S is zero at each vertex in the T -tree. By Corollary
3.9, all such g are in the range of Tm for m = 1, 2, . . . . This forces g being constantly zero
since T is an n-shift. Hence S is dense in X, as asserted.

Corollary 3.14. Suppose C0(X) admits an isometric n-shift T . Then X is separable if
any one of the following holds.

1. X does not contain infinitely many isolated points.
2. The range space of T cannot strongly separate points in X∞ unless at least n points

are removed.
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3. T is disjointness preserving.
4. Xe is empty.
5. The T -tree is contained in X∞.

Proof. It follows from the structure of the range space of T (Theorem 2.11) that T is
disjointness preserving, if and only if, Xe is empty, if and only if, the T -tree is contained
in X∞. On the other hand, if q is a point in Xe then q is isolated by Corollary 2.7.
Consequently, the T -branch originated at q consists of infinitely many isolated points in X.
Hence the first condition also implies Xe is empty. Finally, the second condition ensures
that the merging index #M −#ϕ(M) of T is exactly n. Thus Xe = ∅ again. In all cases,
Theorem 3.13 applies.

To end this paper, we remark that Araujo and Font [2] recently showed that if X is a
(not necessarily compact) metrizable space such that the Banach space Cb(X) of bounded
continuous functions on X admits an isometric shift then X is separable.
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