DISJOINTNESS PRESERVING FREDHOLM LINEAR OPERATORS OF $C_0(X)$

JYH-SHYANG JEANG AND NGAI-CHING WONG

ABSTRACT. Let X and Y be locally compact Hausdorff spaces. We give a full description of disjointness preserving Fredholm linear operators T from $C_0(X)$ into $C_0(Y)$, and show that T is continuous if either Y contains no isolated point or T has closed range. Our task is achieved by writing T as a weighted composition operator $Tf = h \cdot f \circ \varphi$. Through the relative homeomorphism φ , the structure of the range space of T can be completely analyzed, and X and Y are homeomorphic after removing finite subsets.

1. INTRODUCTION

A (not necessarily bounded) linear operator S from a Banach space E into a Banach space F is said to be *Fredholm* if it has finite nullity and finite corank; i.e. nullity(S) = dim ker $S < \infty$ and corank(S) = dim $F/_{ran}(S) < \infty$. Fredholm composition operators between $L^2(\mu)$ spaces (see e.g. [23, 14, 24]) and Hilbert spaces of analytic functions (see e.g. [15, 25]) have been well studied and proven to have many applications.

Let X and Y be locally compact Hausdorff spaces. Let $C_0(X)$ and $C_0(Y)$ be Banach spaces of continuous (real- or complex-valued) functions defined on X and Y vanishing at infinity, respectively. A linear operator $T : C_0(X) \longrightarrow C_0(Y)$ is disjointness preserving or separating if $Tf \cdot Tg = 0$ whenever $f \cdot g = 0$. If, in addition, T is bounded then T is a (weighted) composition operators $Tf = h \cdot f \circ \varphi$ (see Theorem 2.4).

In this paper, we shall give a full description of the structure of disjointness preserving Fredholm operators $T: C_0(X) \longrightarrow C_0(Y)$ (Theorem 3.14). When such an operator exists, X and Y are homeomorphic after removing finite subsets. Moreover, T is bounded if either Y contains no isolated point or T has closed range. These extend the well-known fact that if T is bijective then X and Y are homeomorphic and T is automatically bounded (see [19, 11, 20]). As an application, the information about the range space of T, a finite co-dimensional subspace of $C_0(Y)$, given

Date: August 1, 2000; submitted to J. Operator Theory.

¹⁹⁹¹ Mathematics Subject Classification. 46J10, 47B30, 47A53.

Key words and phrases. auto-continuity, Fredholm operators, disjointness preserving operators, weighted composition operators.

Partially supported by Taiwan National Science Council: NSC 86-2115-M110-002, 37128F.

in Theorem 3.14 is utilized to give a Gleason-Kahane-Zelazko type result (Corollary 4.2). Finally, we remark that our results are very useful in the investigation of shift operators on continuous function spaces [7, 21], which is a subject attracts increasing interests from researchers recently (see e.g. [8, 17, 13, 9, 16, 26, 4]).

2. Preliminaries

Let X_{∞} (resp. Y_{∞}) be the one-point compactification $X \cup \{\infty\}$ (resp. $Y \cup \{\infty\}$) of a locally compact Hausdorff space X (resp. Y). We note that ∞ is an isolated point in X_{∞} if and only if X is compact. For each y in Y, let δ_y denote the point evaluation at y, that is, δ_y is the linear functional of $C_0(Y)$ defined by $\delta_y(g) = g(y)$.

We begin with the following two elementary observations. The first of them enables us to assume freely that the underlying field \mathbb{K} is the complex scalars \mathbb{C} , while the second suggests us a way to look into the problem of automatic continuity of a linear operator between $C_0(X)$ spaces.

Lemma 2.1. Let T_r be a real linear operator from the real Banach space $C_0(X, \mathbb{R})$ into $C_0(Y, \mathbb{R})$. Let $T_c : C_0(X, \mathbb{C}) \to C_0(Y, \mathbb{C})$ be the complexification of T_r defined by

$$T_c(f_1 + if_2) = T_r f_1 + iT_r f_2, \quad f_1, f_2 \in C_0(X, \mathbb{R}).$$

Then, we have

- 1. T_r is bounded if and only if T_c is bounded.
- 2. T_r has closed range if and only if T_c has closed range.
- 3. nullity (T_r) = nullity (T_c) and corank (T_r) = corank (T_c) .
- 4. T_r is disjointness preserving if and only if T_c is disjointness preserving.

Proof. Most of the arguments are straightforward. We just mention that if $f = f_1 + if_2$, $g = g_1 + ig_2$ with f_1, f_2, g_1 and g_2 in $C_0(X, \mathbb{R})$ then $f \cdot g = 0$ is equivalent to $f_j \cdot g_k = 0$ for j, k = 1, 2.

Lemma 2.2. Let T be a linear operator from $C_0(X)$ into $C_0(Y)$. Then T is bounded if and only if $\delta_y \circ T$ is bounded for all y in Y.

Proof. It is an easy consequence of the Uniform Boundedness Principle. Alternatively, one can make use of the Closed Graph Theorem. \Box

Definition 2.3. In view of Lemma 2.2, we divide Y into three disjoint parts, the nullity part Y_0 , the continuous part Y_c and the discontinuous part Y_d , where

$$Y_0 = \{ y \in Y : \delta_y \circ T \equiv 0 \},\$$

$$Y_c = \{ y \in Y : \delta_y \circ T \text{ is nonzero and continuous} \}$$

and

$$Y_d = \{ y \in Y \colon \delta_y \circ T \text{ is discontinuous} \}.$$

Accordingly, T is bounded if and only if $Y_d = \emptyset$.

Theorem 2.4 ([19, 20]; see also [1, 10]). Let T be a disjointness preserving linear operator from $C_0(X)$ into $C_0(Y)$. Then

- 1. Y_0 is closed and Y_d is open.
- 2. A unique continuous map φ from $Y_c \cup Y_d$ into X_∞ exists such that

 $\varphi(y) \not\in \operatorname{supp}(f) \Rightarrow T(f)(y) = 0, \quad \forall f \in C_0(X).$

- 3. $\varphi(Y_c) \subseteq X$ and $\varphi(Y_d)$ is a finite set of non-isolated points.
- 4. A unique continuous non-vanishing scalar function h on Y_c exists such that

$$Tf_{|Y_c} = h \cdot f \circ \varphi$$
$$Tf_{|Y_0} \equiv 0.$$

Theorem 2.4 can be improved if T is also Fredholm. Notations in Theorem 2.4 will be used throughout this paper. Recall that a bounded linear operator T from a Banach space E into a Banach space F is called an *injection* if there is an r > 0 such that $||Tx|| \ge r||x||$. It follows from the Open Mapping Theorem that T is an injection if and only if T is injective and has closed range. See [2] for more information.

Lemma 2.5. Let $Tf(y) = h(y)f(\varphi(y))$ be a weighted composition operator from $C_0(X)$ into $C_0(Y)$. Here, h is a continuous non-vanishing scalar-valued function on Y and φ is a continuous map from Y into X. Then T is continuous. If, in addition, T has closed range then there exist positive constants r and R such that

(1)
$$0 < r \le \sup_{y \in \varphi^{-1}(\{x\})} |h(y)| \le R, \quad \text{for all } x \text{ in } \varphi(Y).$$

Proof. Since $\delta_y \circ T = h(y) \cdot \delta_{\varphi(y)}$ for all y in Y, it follows from Lemma 2.2 that T is continuous. Moreover, if T is injective and has closed range then T is an injection. So there are constants r, R > 0 such that $r||f|| \leq ||Tf|| \leq R||f||$. It is obvious that $\sup_{y \in \varphi^{-1}(\{x\})} |h(y)| \leq R$ for all x in $\varphi(Y)$. On the other hand, for each x_0 in $\varphi(Y)$ let U and V be open neighborhoods of x_0 with $U \subseteq V$. Let $0 \leq f_{UV} \leq 1$ in $C_0(X)$ satisfy the conditions that $f_{UV|U} = 1 = ||f_{UV}||$, and $f_{UV}(x) = 0$ if $x \notin V$. Then

$$r = r \left\| f_{UV} \right\| \le \left\| T f_{UV} \right\| = \sup_{y \in Y} \left| T f_{UV}(y) \right|$$
$$= \sup_{y \in Y} \left| h(y) f_{UV}(\varphi(y)) \right| \le \sup_{y \in \varphi^{-1}(V)} \left| h(y) \right|$$

Therefore, we are able to choose a net $\{y_{\lambda}\}$ from Y and $\epsilon > 0$ such that

$$\varphi(y_{\lambda}) \to x_0$$
 and $|h(y_{\lambda})| > r - \epsilon > 0.$

By passing to a subnet if necessary, we can assume that $\{y_{\lambda}\}$ converges in Y_{∞} . Since $|Tf_{UV}(y_{\lambda})| = |h(y_{\lambda})| > r - \epsilon > 0$ eventually for all neighborhoods U and V of x_0 with $U \subseteq V$, we have $\{y_{\lambda}\}$ converges to some $y_0 \neq \infty$. Clearly, $\varphi(y_0) = x_0$ and we have

$$|r - \epsilon \le |h(y_0)| \le \sup_{y \in \varphi^{-1}(\{x_0\})} |h(y)|.$$

Since ϵ can be arbitrary small, the desired inequality follows.

Finally, suppose that T has closed range but not necessarily injective. Let $\varphi(Y)$ be the closure of $\varphi(Y)$ in X. Consider the disjointness preserving linear operator $\widetilde{T}: C_0(\overline{\varphi(Y)}) \to C_0(Y)$ defined by $\widetilde{T}\widetilde{f}(y) = Tf(y) = h(y) \cdot f(\varphi(y))$, where f is any Tietze extension in $C_0(X)$ of \widetilde{f} . It is plain that \widetilde{T} is injective and $\operatorname{ran}(\widetilde{T}) = \operatorname{ran}(T)$ is closed. The desired assertion thus follows from the first part of the proof. \Box

Remark 2.6. Note that "sup" cannot be dropped in (1). We would like to thank Martin Stanev for providing us a counterexample for this. Lemma 2.5 fixes a related bug in [20, Proposition 4].

The following statement is a consequence of the Open Mapping Theorem. Its proof can be found in, for example, [5, 28A].

Proposition 2.7. Let T be a bounded linear operator from a Banach space E into a Banach space F with finite corank. Then T has closed range.

3. Main Results

In the following lemmas, we always assume that T is a disjointness preserving linear operator from $C_0(X)$ into $C_0(Y)$.

Lemma 3.1. Let T have finite corank. Then there exist positive scalars r and R such that

$$0 < r \le \sup_{y \in \varphi^{-1}(\{x\}) \cap Y_c} |h(y)| \le R, \quad \text{for all } x \text{ in } \varphi(Y_c).$$

Proof. Since T has finite corank, there exist g_1, \ldots, g_n in $C_0(Y)$ such that $C_0(Y)$ is the linear span of g_1, \ldots, g_n and $\operatorname{ran}(T)$. So, for every g in $C_0(Y)$, there are scalars $\lambda_1, \ldots, \lambda_n$ and an f in $C_0(X)$ such that $g = \lambda_1 g_1 + \cdots + \lambda_n g_n + T f$.

Let $T': C_0(X) \to C_0(Y_c \cup Y_0)$ be the linear operator defined by $T'f = Tf_{|Y_c \cup Y_0}$. Then T' is continuous by Lemma 2.2. Since Y_d is an open set in $Y, Y_c \cup Y_0 \cup \{\infty\} = Y_{\infty} \setminus Y_d$ is closed in Y_{∞} . By Tietze's extension theorem, every continuous function g' in $C_0(Y_c \cup Y_0)$ can be extended to a g in $C_0(Y)$. Consequently,

$$g' = g_{|Y_c \cup Y_0} = \lambda_1 g_{1|Y_c \cup Y_0} + \dots + \lambda_n g_{n|Y_c \cup Y_0} + T f_{|Y_c \cup Y_0}$$

= $\lambda_1 g_{1|Y_c \cup Y_0} + \dots + \lambda_n g_{n|Y_c \cup Y_0} + T' f,$

for some scalars $\lambda_1, \ldots, \lambda_n$ and an f in $C_0(X)$. This shows that T' has finite corank. By Proposition 2.7, $\operatorname{ran}(T')$ is closed. Since $T'f_{|Y_0} \equiv 0$, the induced map $\widetilde{T} \colon C_0(X) \to C_0(Y_c)$ defined by $\widetilde{T}f = T'f_{|Y_c}$ has closed range as well. Then, Lemma 2.5 applies. \Box

Lemma 3.2. Let T have finite nullity m. Then $\overline{\varphi(Y_c)} \cap X = \overline{\varphi(Y_c \cup Y_d)} \cap X$, and

$$X \setminus \overline{\varphi(Y_c)} = \{x_1, \dots, x_m\}$$

consisting of exactly m isolated points, where the closure is taken in X_{∞} . Moreover,

$$\ker T = \operatorname{span}\{\chi_{\{x_1\}}, \chi_{\{x_2\}}, \dots, \chi_{\{x_m\}}\},\$$

where $\chi_{\{x_i\}}$ is the characteristic functions of $\{x_i\}$ for i = 1, 2, ..., m.

Proof. Suppose that there were distinct points $x_1, x_2, \ldots, x_{m+1}$ in $X \setminus \overline{\varphi(Y_c \cup Y_d)}$. Let $V_1, V_2, \ldots, V_{m+1}$ be disjoint compact neighborhoods of $x_1, x_2, \ldots, x_{m+1}$ in $X \setminus \overline{\varphi(Y_c \cup Y_d)}$, respectively. For each $i = 1, 2, \ldots, m+1$, let $0 \leq f_i \leq 1$ in $C_0(X)$ satisfy that $f_i(x_i) = 1$ and $f_i = 0$ outside V_i . Then $\varphi(y) \notin \operatorname{supp}(f_i)$, and thus $Tf_i(y) = 0$, for all y in $Y_c \cup Y_d$ by Theorem 2.4. Note that Tf vanishes on Y_0 for all f in $C_0(X)$. Hence $f_i \in \ker T$. Since $\{f_1, f_2, \ldots, f_{m+1}\}$ is linearly independent, we have dim(ker $T) \geq m+1$, a contradiction. So the open set $X \setminus \overline{\varphi(Y_c \cup Y_d)} = \{x_1, x_2, \ldots, x_k\}$ consists of isolated points, and $k \leq m$.

As a finite set, $\varphi(Y_d)$ is closed (Theorem 2.4). Therefore,

(2)
$$X \setminus \overline{\varphi(Y_c)} \subseteq (X \setminus \overline{\varphi(Y_c \cup Y_d)}) \cup \varphi(Y_d).$$

Since both $X \setminus \overline{\varphi(Y_c \cup Y_d)}$ and $\varphi(Y_d)$ are finite, $X \setminus \overline{\varphi(Y_c)}$ is a finite open subset of X. This implies that $X \setminus \overline{\varphi(Y_c)}$ consists of isolated points. Since $\varphi(Y_d)$ contains only non-isolated points in X_{∞} (Theorem 2.4), $\varphi(Y_d) \cap X \subseteq \overline{\varphi(Y_c)}$, and thus

(3)
$$X \setminus \overline{\varphi(Y_c)} = X \setminus \overline{\varphi(Y_c \cup Y_d)} = \{x_1, x_2, \dots, x_k\}$$

by (2). Consequently, $\overline{\varphi(Y_c)} \cap X = \overline{\varphi(Y_c \cup Y_d)} \cap X$.

Finally, we prove that $X \setminus \varphi(Y_c)$ consists of exactly m isolated points whose characteristic functions span ker T. Since $Tf = h \cdot f \circ \varphi$ on Y_c and h is nonvanishing, we have $f_{|\overline{\varphi(Y_c)}} = 0$ if $f \in \ker T$. Conversely, if f vanishes on $\overline{\varphi(Y_c)}$ then $f = \sum_{i=1}^k \lambda_i \chi_{\{x_i\}}$. Therefore, $\operatorname{supp}(f) \cap \varphi(Y_d) = \{x_1, \ldots, x_k\} \cap \varphi(Y_d) = \emptyset$ by (3). By Theorem 2.4 again, $Tf_{|Y_d} = 0$. As $Tf_{|Y_c \cup Y_0} = 0$, we have $f \in \ker T$. It follows that ker $T = \operatorname{span}\{\chi_{\{x_1\}}, \ldots, \chi_{\{x_k\}}\}$. Since $\{\chi_{\{x_i\}}\}_{i=1}^k$ is linearly independent and the dimension of ker T is m, we have k = m.

Remark 3.3. In the proof of Lemma 3.2, we have shown that

$$Tf_{|Y_c} = 0$$
 implies $Tf = 0$

provided T has finite nullity.

The following result ensures that T is bounded whenever Y contains no isolated point.

Lemma 3.4. Let T be Fredholm. Then

- (i) Y_d consists of finitely many isolated points. In fact, the cardinality of Y_d is less than or equal to n, the corank of T.
- (ii) $\varphi(Y_c)$ is closed in X, and

$$\varphi(Y_c) = \varphi(Y_c \cup Y_d) \cap X.$$

Proof. (i) We first claim that if $\operatorname{supp}(g) \subseteq Y_d$ then $g \notin \operatorname{ran}(T)$, unless g = 0. In fact, it is a direct consequence of Remark 3.3. Now, suppose there were distinct $y_1, y_2, \ldots, y_{n+1}$ in Y_d . Since Y_d is open (Theorem 2.4), there are disjoint neighborhoods $V_1, V_2, \ldots, V_{n+1}$ of $y_1, y_2, \ldots, y_{n+1}$ in Y_d , respectively, which are open in Y. Let U_i be a compact neighborhood of y_i contained in V_i and let $g_i \neq 0$ be in $C_0(Y)$ with $\operatorname{supp}(g_i) \subseteq U_i \subseteq V_i$ for $i = 1, 2, \ldots, n+1$. Since $\dim \left(\overset{C_0(Y)}{\underset{i=1}{\leftarrow}} \lambda_i g_i \in \operatorname{ran}(T) \right) = n$, there are some not all zero scalars $\lambda_1, \ldots, \lambda_{n+1}$ such that $0 \neq \sum_{i=1}^{n+1} \lambda_i g_i \in \operatorname{ran}(T)$. But $\operatorname{supp}(\sum_{i=1}^{n+1} \lambda_i g_i) \subseteq \bigcup_{i=1}^{n+1} V_i \subseteq Y_d$. Consequently, $\sum_{i=1}^{n+1} \lambda_i g_i \notin \operatorname{ran}(T)$, a contradiction. Hence the cardinality of Y_d is at most n. Being finite and open, Y_d consists of isolated points.

(ii) By Lemma 3.2, it suffices to show that $\varphi(Y_c)$ is closed in X. To this end, let $x_0 \in \overline{\varphi(Y_c)} \cap X$. First, we note that $x_0 \neq \infty$. If x_0 is isolated in $\overline{\varphi(Y_c)} \cap X$ then $x_0 \in \varphi(Y_c)$. So we assume there exist y_λ in Y_c such that $\varphi(y_\lambda) \neq x_0$ and $\varphi(y_\lambda) \to x_0$. It follows from Lemma 3.1 that we can assume $h(y_\lambda)$ is away from zero. By passing to a subnet, if necessary, we can also assume $y_\lambda \to y_0$ in Y_∞ . Since all points in Y_d are isolated by (i), we have $y_0 \notin Y_d$. Suppose that $y_0 \in Y_0$ or $y_0 = \infty$. We have

$$0 = \lim_{\lambda \to \infty} Tf(y_{\lambda}) = \lim_{\lambda \to \infty} h(y_{\lambda})f(\varphi(y_{\lambda})), \quad \forall f \in C_0(X).$$

Since $h(y_{\lambda})$ is away from zero,

$$f(x_0) = \lim_{\lambda \to \infty} f(\varphi(y_\lambda)) = 0, \quad \forall f \in C_0(X)$$

This implies $x_0 = \infty$, a contradiction. So $y_0 \in Y_c$, and then $x_0 = \varphi(y_0) \in \varphi(Y_c)$. Hence $\varphi(Y_c) = \overline{\varphi(Y_c)} \cap X$ is closed in X.

Let #(S) denote the cardinality of a set S.

Definition 3.5. We define an equivalence relation \sim on Y_c such that $y \sim y'$ if and only if $\varphi(y') = \varphi(y)$; or equivalently, ker $\delta_y \circ T = \ker \delta_{y'} \circ T$ (Theorem 2.4). Let y be a point in Y_c . Denote by [y] the equivalence class in Y_c represented by y. We call ya *merging point* of T if [y] contains more than one points. In this case, we call $\varphi(y)$ the merged point of T in X for the class [y]. Let M be the set of all merging points of T and

$$m(T) = \sum \{ \#([y]) - 1 : [y] \in Y_{\mathcal{C}} \} = \#(M) - \#(\varphi(M)).$$

We call $\#(Y_d)$ the discontinuity index, $\#(Y_0)$ the vanishing index and m(T) the merging index of T, respectively.

Remark 3.6. It is easy to see that if $g \in \operatorname{ran}(T)$ then

1. g(y) = 0 for all y in Y_0 ;

2. g(y) = 0 for some y in Y_c if and only if g(y') = 0 for all y' in [y].

Lemma 3.7. Let T be continuous and Fredholm and have finite corank n. Then the sum of the merging and vanishing indices of T is equal to n, i.e.,

$$m(T) + \#(Y_0) = n.$$

Proof. Suppose first that the inequality

$$(4) m(T) + \#(Y_0) \le n$$

does not hold, i.e., there exist $y_1^{(0)}, \ldots, y_{l_0}^{(0)}$ in Y_0 and merged points x_1, \ldots, x_k in $\varphi(Y_c)$ with corresponding merging points $y_1^{(i)}, \ldots, y_{l_i}^{(i)}$ in $\varphi^{-1}(x_i) \cap Y_c$ for $i = 1, \ldots, k$, such that

$$\sum_{i=1}^{k} (l_i - 1) + l_0 \ge n + 1.$$

For i = 0, 1, 2, ..., k, let $g_j^{(i)}$ be in $C_0(Y)$ such that $g_j^{(i)}(y_j^{(i)}) = 1$ and $g_j^{(i)}(y_{j'}^{(i')}) = 0$ whenever $i' \neq i$ or $j' \neq j$ for $1 \leq j \leq l_i - 1$ $(1 \leq j \leq l_0$ when i = 0). Without loss of generality, we can assume all $g_j^{(i)}$'s have disjoint supports. Then we have at least n + 1 such $g_j^{(i)}$ in $C_0(Y)$. By Remark 3.6, all $g_1^{(0)}, \ldots, g_{l_0}^{(0)}, g_1^{(1)}, \ldots, g_{l_{1-1}}^{(1)},$ $g_1^{(2)}, \ldots, g_{l_{2-1}}^{(2)}, \ldots, g_1^{(k)}, \ldots, g_{l_{k-1}}^{(k)}$ are not in $\operatorname{ran}(T)$. Moreover, they are linear independent in $C_0(Y)$ modulo $\operatorname{ran}(T)$. In fact, if $g = \sum \lambda_j^{(i)} g_j^{(i)} \in \operatorname{ran}(T)$, we shall show $\lambda_j^{(i)} = 0$ for all i, j. Note that $g(y_{l_i}^{(i)}) = 0$ for $1 \leq i \leq k$. Then, by Remark 3.6 again, $\lambda_j^{(0)} = g(y_j^{(0)}) = 0$ for $j = 1, \ldots, l_0$, and $\lambda_j^{(i)} = g(y_j^{(i)}) = 0$ for all indices (i, j) with $1 \leq i \leq k$ and $1 \leq j \leq l_i - 1$. So dim $\binom{C_0(Y)}{\operatorname{ran}(T)} \geq n + 1$. This contradiction says that inequality (4) holds.

Since T is continuous, $Y_d = \emptyset$. Let $Y_0 = \{y_1^{(0)}, \ldots, y_{l_0}^{(0)}\}$, and $\varphi(M) = \{x_1, \ldots, x_k\}$ with $\varphi^{-1}(x_i) \cap Y_c = \{y_1^{(i)}, \ldots, y_{l_i}^{(i)}\}$ for $i = 1, \ldots, k$. Let $g_j^{(i)}$ be defined as above. Let \mathcal{A} be the span of $g_j^{(i)}$'s. As shown in the first paragraph, $\operatorname{ran}(T) \cap \mathcal{A} = \{0\}$. We will show that $C_0(Y) = \operatorname{ran}(T) \oplus \mathcal{A}$, and thus $m(T) + \#(Y_0) = \dim(\mathcal{A}) = n$. For each g in $C_0(Y)$, choose $\lambda_j^{(i)}$'s in \mathbb{C} such that $g' = g - \sum_{i,j} \lambda_j^{(i)} g_j^{(i)}$ satisfying g'(y) = 0 for all y in Y_0 , and $\frac{g'(y_1^{(i)})}{h(y_1^{(i)})} = \cdots = \frac{g'(y_l^{(i)})}{h(y_l^{(i)})}$ for $i = 1, \ldots, k$. Define a scalarvalued function f' by setting $f'(\varphi(y)) = \frac{g'(y)}{h(y)}$ for all y in Y_c . Then f' is continuous and well-defined on $\varphi(Y_c)$ which is closed in X by Lemma 3.4(ii). By Tietze's Extension Theorem, there is a continuous function f in $C_0(X)$ such that f(x) = f'(x) for all xin $\varphi(Y_c)$. Note that $Tf_{|Y_0|} = 0$ and $Tf(y) = h(y)f(\varphi(y)) = g'(y)$ for y in Y_c . Since $Y_d = \emptyset$, we have g' = Tf. That is,

$$g = Tf + \sum_{i,j} \lambda_j^{(i)} g_j^{(i)} \in \operatorname{ran}(T) \oplus \mathcal{A}.$$

Lemma 3.8. Let T be Fredholm (but not necessarily continuous) and have finite corank n. Then

(5)
$$m(T) + \#(Y_0) + \#(Y_d) = n$$

Proof. By Lemma 3.4(i), $Y_d = \{y_1, \ldots, y_k\}$ consists of $k \leq n$ isolated points. Let $\tilde{T}: C_0(X) \to C_0(Y_0 \cup Y_c)$ be a disjointness preserving linear operator defined by

$$Tf = Tf_{|Y_0 \cup Y_c|}$$

Then \tilde{T} is continuous. By Remark 3.3, ker $T = \ker \tilde{T}$. We claim that \tilde{T} has finite corank. Since y_1, \ldots, y_k are isolated points in Y, all $\chi_{\{y_1\}}, \ldots, \chi_{\{y_k\}}$ are functions in $C_0(Y)$. By Remark 3.3, $\chi_{\{y_i\}} \notin \operatorname{ran}(T)$ for all $i = 1, \ldots, k$ and they are linear independent. Without lose of generality, we can assume that g_1, \ldots, g_n form a basis of $C_0(Y)$ modulo $\operatorname{ran}(T)$, where $g_i = \chi_{\{y_i\}}$ for all $i = 1, \ldots, k$. That is, for all g in $C_0(Y), g = \lambda_1 g_1 + \cdots + \lambda_n g_n + Tf$ for some f in $C_0(X)$ and scalars λ_i . Now, for all \tilde{g} in $C_0(Y_0 \cup Y_c)$,

$$\tilde{g} = g_{|Y_0 \cup Y_c} = \lambda_1 g_{1|Y_0 \cup Y_c} + \dots + \lambda_n g_{n|Y_0 \cup Y_c} + T f_{|Y_0 \cup Y_c} = \lambda_{k+1} g_{k+1|Y_0 \cup Y_c} + \dots \lambda_n g_{n|Y_0 \cup Y_c} + \tilde{T} f,$$

where g is any Tietze extension of \tilde{g} . This implies $\operatorname{corank}(\tilde{T}) \leq n - \#(Y_d)$. By Lemma 3.7, we have $\operatorname{corank}(\tilde{T}) = m(\tilde{T}) + \#(Y_0) = m(T) + \#(Y_0)$. Hence $m(T) + \#(Y_0) + \#(Y_d) \leq n$. The equality (5) then follows in the same manner as in the proof of Lemma 3.7.

Lemma 3.9. Let T be Fredholm. Then h is bounded and away from zero, that is, there exist positive constants r and R such that

$$0 < r \leq |h(y)| \leq R$$
 for all y in Y_c .

Proof. It follows from Lemma 3.8 that the merging index m(T) of T is finite. By Lemma 3.1, we see that the non-vanishing scalar function h is bounded and away from zero.

Recall that a map φ from Y into X is said to be *proper* if preimages of compact subsets of X under φ are compact in Y. It is obvious that φ is proper if and only if $\lim_{y\to\infty}\varphi(y) = \infty$. As a consequence, a proper continuous map φ from Y onto X is a quotient map, i.e. $\varphi^{-1}(O)$ is open in Y if and only if O is open in X.

Lemma 3.10. Let T be Fredholm. Then φ is proper. More precisely, φ has a continuous extension from Y_{∞} to X_{∞} by setting $\varphi_{|Y_0} \equiv \infty$ and $\varphi(\infty) = \infty$. If, in addition, X is compact then the finite set Y_0 consists of isolated points.

Proof. It is enough to show that if $y_{\lambda} \in Y_c$ such that $y_{\lambda} \to p \in Y_0 \cup \{\infty\}$ then $\varphi(y_{\lambda}) \to \infty$ in X_{∞} . For f in $C_0(X)$, we have

$$0 = Tf(p) = \lim Tf(y_{\lambda}) = \lim_{\lambda \to \infty} h(y_{\lambda})f(\varphi(y_{\lambda})).$$

Since h is away from zero by Lemma 3.9, we have

$$\lim_{\lambda \to \infty} f(\varphi(y_{\lambda})) = 0, \quad \forall f \in C_0(X).$$

This implies $\varphi(y_{\lambda}) \to \infty$ in X_{∞} . Finally, we note that ∞ is an isolated point in X_{∞} when X is compact. Thus, $\varphi^{-1}(\infty)$ is open in Y_{∞} in this case. Since $Y_0 \subseteq \varphi^{-1}\{\infty\} \subseteq Y_d \cup Y_0 \cup \{\infty\}$ are all finite (the last inclusion is provided by Theorem 2.4), the open set $\varphi^{-1}\{\infty\}$ consists of isolated points. \Box

In the following example, we shall see that Y_0 may contain non-isolated points when X is not compact.

Example 3.11. Let c_0 (resp. c) be the Banach space of null (resp. convergent) sequences. In other words, $c_0 = C_0(\mathbb{N})$ and $c = C(\mathbb{N}_\infty)$. Let T be the canonical embedding from c_0 into c. In this case, $X = \mathbb{N}$, $Y = \mathbb{N}_\infty$, $Y_c = \mathbb{N}$, $Y_0 = \{\infty\}$ and $\varphi \colon \mathbb{N} \to \mathbb{N}$ is the identity map. We note that ∞ is the unique cluster point in \mathbb{N}_∞ . \Box

With a little more efforts, we have a similar example in which X = Y and φ is a homeomorphism.

Example 3.12. Let X be the disjoint union in \mathbb{R}^2 of $I_n^+ = \{(n,t): 0 < t \leq 1\}$ and $I_n^- = \{(n,t): -1 < t < 0\}$ for $n = 1, 2, \ldots$. Let p be the point (1,1) and let $X_1 = X \setminus \{p\}$. Let φ be the homeomorphism from X_1 onto X by sending the intervals $I_1^+ \setminus \{p\}$ onto I_1^-, I_{n+1}^+ onto I_n^+ , and I_n^- onto I_{n+1}^- in a canonical way for $n = 1, 2, \ldots$. Then the corank one disjointness preserving linear isometry $Tf = f \circ \varphi$ from $C_0(X)$ into $C_0(X)$ has exactly one vanishing point, i.e., p. We note that p is not an isolated point in X. In a similar manner, one can even construct an example in which X is connected (by adjoining each I_n^{\pm} a common base point, for example). In view of Theorem 2.4 and Lemmas 3.2, 3.4 and 3.8, the following result implies that X and Y are homeomorphic after removing finite subsets. This extends the wellknown fact that if there is a disjointness preserving bijective linear operator between $C_0(X)$ and $C_0(Y)$ then X and Y are homeomorphic (see [19, 11, 20]).

Lemma 3.13. Let T be Fredholm. Then $\varphi : (Y_c, M) \to (\varphi(Y_c), \varphi(M))$ is a relative proper homeomorphism. More precisely, $\varphi : Y_c \setminus M \to \varphi(Y_c) \setminus \varphi(M)$ is a proper homeomorphism, and the induced map $\tilde{\varphi} : Y_{c'} \to \varphi(Y_c)$ is also an homeomorphism, where "~" is the equivalence relation such that $y_1 \sim y_2$ if and only if $\varphi(y_1) = \varphi(y_2)$.

Proof. It follows from Lemma 3.10 that $\varphi \colon Y_c \setminus M \to \varphi(Y_c) \setminus \varphi(M)$ is bijective, proper and continuous. We claim that $\varphi^{-1} \colon \varphi(Y_c) \setminus \varphi(M) \to Y_c \setminus M$ is continuous, i.e., $y_{\lambda} \to y_0$ in $Y_c \setminus M$ whenever $\varphi(y_{\lambda}) \to \varphi(y_0)$ in $\varphi(Y_c) \setminus \varphi(M)$. Without loss of generality, we can assume that y_{λ} converge to a non-isolated point y' in Y_{∞} . If $y' \in Y_0$ or $y' = \infty$, then

$$0 = \lim_{\lambda \to \infty} Tf(y_{\lambda}) = \lim_{\lambda \to \infty} h(y_{\lambda})f(\varphi(y_{\lambda})), \quad f \in C_0(X).$$

Since h is away from zero (Lemma 3.9), we have $f(\varphi(y_{\lambda})) \to 0$ as $\lambda \to \infty$ for all f in $C_0(X)$. This implies that $\varphi(y_0) = \infty$. It is impossible as $\varphi(Y_c) \subseteq X$ (Theorem 2.4). By Lemma 3.4(i), we thus have $y' \in Y_c$ and $\varphi(y_0) = \varphi(y')$. Since y_0 is not a merging point of T in Y_c , we have $y_0 = y'$. Hence φ^{-1} is continuous, as asserted.

Next, we claim that $\tilde{\varphi} \colon Y_{\mathscr{Y}_{\sim}} \to \varphi(Y_c)$ is an open map. Let \widetilde{U} be an open set in $Y_{\mathscr{Y}_{\sim}}$, which lifts to an open set U in Y_c . Since $\varphi \colon Y_c \setminus M \to \varphi(Y_c) \setminus \varphi(M)$ is a homeomorphism, it suffices to show that if $c \in \widetilde{\varphi}(\widetilde{U})$ for some merged point c of T in X, then c is an interior point of $\widetilde{\varphi}(\widetilde{U})$. Suppose not, and there were z_{λ} in $\varphi(Y_c) \setminus \widetilde{\varphi}(\widetilde{U})$ such that z_{λ} converge to the non-isolated point c in $\varphi(Y_c)$. Without lose of generality, we can assume that all z_{λ} 's are not in the finite set $\varphi(M)$. Let $y_{\lambda} = \varphi^{-1}(z_{\lambda})$ in Y_c . As the equivalence classes $[y_{\lambda}] \notin \widetilde{U}$ imply $y_{\lambda} \notin U$, there exists a convergent subnet $y_{\lambda_{\alpha}}$ of y_{λ} in Y_{∞} such that $y' = \lim y_{\lambda_{\alpha}} \notin U$. If $y' \in Y_c$ then $y' \notin U$ implies $[y'] \notin \widetilde{U}$. But, $\widetilde{\varphi}([y']) = \varphi(y') = \lim_{\lambda \to \infty} \varphi(y_{\lambda}) = \lim_{\lambda \to \infty} z_{\lambda} = c \in \widetilde{\varphi}(\widetilde{U})$, a contradiction. It is also plain that $y' \notin Y_d$ since Y_d contains only isolated points by Lemma 3.4(i). So $y' \in Y_0$ or $y' = \infty$. Therefore,

$$0 = \lim Tf(y_{\lambda_{\alpha}}) = \lim h(y_{\lambda_{\alpha}})f(\varphi(y_{\lambda_{\alpha}})).$$

Since h is away from zero by Lemma 3.9, we have $f(z_{\lambda_{\alpha}}) = f(\varphi(y_{\lambda_{\alpha}})) \to 0$. Thus, f(c) = 0 for all f in $C_0(X)$. This is a contradiction again. So c is an interior point of $\widetilde{\varphi}(\widetilde{U})$. This shows that $\widetilde{\varphi}(\widetilde{U})$ is an open set. Consequently, $\widetilde{\varphi} \colon Y_{\mathcal{C}} \to \varphi(Y_c)$ is an homeomorphism as asserted.

Now we are ready to state the main result in this paper.

Theorem 3.14. Let T be a disjointness preserving Fredholm linear operator from $C_0(X)$ into $C_0(Y)$ with nullity m and corank n. Then Y is a disjoint union

$$Y = Y_c \cup Y_d \cup Y_0,$$

where the continuous part Y_c is open, the discontinuous part Y_d is finite and consists of isolated points, and the nullity part Y_0 is finite (and consists of isolated points when X is compact). There is a unique bounded and away from zero continuous scalar function h on Y_c and a unique continuous map φ from Y_∞ into X_∞ with $\varphi(\infty) = \infty$ such that

- (1) $Tf = h \cdot f \circ \varphi$ on Y_c and Tf vanishes on $Y_0, \forall f \in C_0(X)$.
- (2) $\varphi(Y_0) = \{\infty\}, \ \varphi(Y_c) \subseteq X \text{ and } X \setminus \varphi(Y_c) = \{x_1, x_2, \dots, x_m\} \text{ consists of } m \text{ isolated points.}$
- (3) $\ker(T) = \operatorname{span}\{\chi_{\{x_1\}}, \chi_{\{x_2\}}, \dots, \chi_{\{x_m\}}\}\$ is a closed ideal of $C_0(X)$ of dimension m.
- (4) Let M be the finite set of all merging points of T in Y_c . Then

$$\varphi \colon (Y_c, M) \to (\varphi(Y_c), \varphi(M))$$

is a relative proper homeomorphism. The induced map

$$\widetilde{\varphi} \colon \overset{Y_c}{\sim} \to \varphi(Y_c)$$

is an homeomorphism, where $y \sim y'$ if and only if $\varphi(y) = \varphi(y')$.

- (5) $n = m(T) + \#(Y_0) + \#(Y_d)$, where the merging index $m(T) = \#(M) \#(\varphi(M))$.
- (6) If, in addition, Y contains no isolated point or T has closed range then T is bounded. In this case, $Y_d = \emptyset$ and

$$\operatorname{ran}(T) = \left\{ g \in C_0(Y) \colon g(p_1) = g(p_2) = \dots = g(p_k) = 0 \text{ and} \\ \frac{g(a_1^{(i)})}{h(a_1^{(i)})} = \frac{g(a_2^{(i)})}{h(a_2^{(i)})} = \dots = \frac{g(a_{l_i}^{(i)})}{h(a_{l_i}^{(i)})}, \forall i = 1, 2, \dots, j \right\}.$$

Here $Y_0 = \{p_1, p_2, \ldots, p_k\}$, and $\varphi(M) = \{c_1, c_2, \ldots, c_j\}$ is the set of merged points of T in X when $\varphi^{-1}(c_i) = \{a_1^{(i)}, a_2^{(i)}, \ldots, a_{l_i}^{(i)}\}$ consists of the corresponding merging points of T in Y_c for $i = 1, 2, \ldots, j$.

Proof. We first note that assertions (1), (2), (3), (4) and (5) are included in previous lemmas. Moreover, the description of the range space of T in (6) follows from the continuity of T and Lemma 3.7 (and its proof). When Y contains no isolated points, T is automatically bounded by Lemma 3.4(i). By Lemma 2.2, it is then enough to verify $Y_d = \emptyset$ when T has closed range.

In view of Lemma 3.4(i), we might suppose, on the contrary, that the open set

$$Y_d = \{y_1, \ldots, y_l\} \neq \emptyset$$

and $l \leq n$. By Lemma 3.4(ii), either there exists a y'_i in Y_c such that $\varphi(y_i) = \varphi(y'_i) \neq \infty$, or $\varphi(y_i) = \infty$ in which we set $y'_i = \infty$, for each $i = 1, 2, \ldots, l$. For those $y'_i = \infty$, we let V_i be any open set in Y_c such that $Y_c \setminus V_i$ is compact and V_i is disjoint from the finite set M. For the others, we let V_i be any open set in Y_c containing $\varphi^{-1}(\varphi(y_i)) \cap Y_c$. It follows from Lemma 3.13 that $\varphi(V_i)$ is open in $\varphi(Y_c) = X \setminus \{x_1, x_2, \ldots, x_m\}$, and thus open in X since x_1, x_2, \ldots, x_m are isolated points in X, for $i = 1, 2, \ldots, l$.

Claim 1. Let g in $C_0(Y)$ satisfy that g vanishes on $\bigcup_{i=1}^l V_i$ and Y_0 , and $\frac{g(z_1)}{h(z_1)} = \frac{g(z_2)}{h(z_2)}$ whenever $z_1 \sim z_2$ in Y_c . Then $g \in \operatorname{ran}(T)$ if and only if g vanishes on Y_d .

Let $g = Tf \in \operatorname{ran}(T)$. Note that g vanishes on $\bigcup_{i=1}^{l} V_i$, and h is away from zero by Lemma 3.9. So f vanishes on the open set $\bigcup_{i=1}^{l} \varphi(V_i)$, and thus, $\varphi(y_i) \notin \operatorname{supp}(f)$ for $i = 1, 2, \ldots, l$. By Theorem 2.4, we have $g(y_i) = Tf(y_i) = 0$.

On the other hand, if g vanishes on Y_d we define $f(\varphi(y)) = \frac{g(y)}{h(y)}$, $\forall y \in Y_c$, and f(x) = 0, $\forall x \in X \setminus \varphi(Y_c)$. By Lemmas 3.2 and 3.4(i), $f \in C_0(X)$ and Tf(y) = g(y), $\forall y \in Y_c \cup Y_0$. Note that Tf vanishes on $\bigcup_{i=1}^l V_i$. By an argument similar to above, $Tf(y_i) = 0$ for all $i = 1, 2, \ldots, l$. Hence $g = Tf \in \operatorname{ran}(T)$.

Claim 2. Let g be in $C_0(Y)$ such that g vanishes on $Y_d \cup Y_0$, and $\frac{g(z_1)}{h(z_1)} = \frac{g(z_2)}{h(z_2)}$ whenever $z_1 \sim z_2$ in Y_c . Suppose that g(y) = 0 whenever $y \in Y_c$ and $\varphi(y) = \varphi(y_i)$ for some i = 1, 2, ..., l. Then $g \in \operatorname{ran}(T)$.

For all $\epsilon > 0$, we note that $U_{\epsilon} = \{y \in Y_{\infty} : |g(y)| < \epsilon\}$ is an open subset of Y_{∞} . We choose some open sets V_i , described as in the paragraph just before Claim 1, such that $V_i \subseteq U_{\frac{\epsilon}{2}}$ for i = 1, 2, ..., l. Let $0 \leq h_{\epsilon} \leq 1$ be a continuous function in Y such that $h_{\epsilon} \equiv 1$ outside U_{ϵ} and $h_{\epsilon}(y) = 0$ for y in $U_{\frac{\epsilon}{2}}$. Let $g_{\epsilon} = g \cdot h_{\epsilon}$ in $C_0(Y)$. Then g_{ϵ} vanishes on $U_{\frac{\epsilon}{2}}$ and Y_0 . Since the merging index m(T) is finite, we can even assume that $\frac{g_{\epsilon}(z_1)}{h(z_1)} = \frac{g_{\epsilon}(z_2)}{h(z_2)}$, whenever $z_1 \sim z_2$ in Y_c , if ϵ is small enough. By Claim 1, we have $g_{\epsilon} \in \operatorname{ran}(T)$. Clearly, $||g_{\epsilon} - g|| \leq 2\epsilon$. Since $\operatorname{ran}(T)$ is closed, we have $g \in \operatorname{ran}(T)$.

Claim 3. Let f be in $C_0(X)$ such that $Tf(y'_i) = 0$ for all i = 1, 2, ..., l. Then $Tf(y_i) = 0$ for all i = 1, 2, ..., l.

Note that the assumption Tf vanishes at y'_i implies that $Tf(y) = h(y)f(\varphi(y))$ also vanishes at all other y in Y_c with $\varphi(y) = \varphi(y'_i) = \varphi(y_i)$ for i = 1, 2, ..., l. Define a scalar-valued function g on Y by g(y) = Tf(y) for $y \neq y_1, y_2, ..., y_l$, and g(y) = 0for $y = y_1, y_2, ..., y_l$. Note that $y_1, y_2, ..., y_l$ are isolated points (Lemma 3.4(i)). So $g \in C_0(Y)$. By Claim 2, we have $g \in \operatorname{ran}(T)$, and $\sum_{i=1}^l \lambda_i \chi_{\{y_i\}} = Tf - g \in \operatorname{ran}(T)$ for some scalars λ_i . But $\sum_{i=1}^l \lambda_i \chi_{\{y_i\}} \notin \operatorname{ran}(T)$ unless all λ_i 's are zero by Remark 3.3. Therefore, $Tf(y_i) = 0$ for all i = 1, 2, ..., l. We now define linear operators $S_1, S_2: C_0(X) \to \mathbb{F}^l$ by

$$S_1(f) = \begin{pmatrix} Tf(y_1) \\ \vdots \\ Tf(y_l) \end{pmatrix} \text{ and } S_2(f) = \begin{pmatrix} Tf(y'_1) \\ \vdots \\ Tf(y'_l) \end{pmatrix},$$

where \mathbb{F} is the underlying scalar field. Let $A \colon \mathbb{F}^l \to \mathbb{F}^l$ be a linear operator satisfying that

$$A\begin{pmatrix} Tf(y'_1)\\ \vdots\\ Tf(y'_l) \end{pmatrix} = \begin{pmatrix} Tf(y_1)\\ \vdots\\ Tf(y_l) \end{pmatrix}.$$

Since $\bigcap \ker(\delta_{y'_i} \circ T) \subseteq \bigcap \ker(\delta_{y_i} \circ T)$ by Claim 3, such a linear operator A exists. Moreover, A can be represented as an $l \times l$ matrix $(a_{ij})_{l \times l}$, and $S_1 = AS_2$. As a result, $\delta_{y_i} \circ T = \sum_j a_{ij} \cdot \delta_{y'_j} \circ T$ for all $i = 1, 2, \ldots, l$. Note that $y'_j \in Y_c \cup \{\infty\}$ for all $j = 1, 2, \ldots, l$. Thus, $\delta_{y_i} \circ T$ is continuous, but $y_i \in Y_d$ for $i = 1, 2, \ldots, l$. This contradiction says that $Y_d = \emptyset$.

As a consequence of Proposition 2.7 and Theorem 3.14, we have

Corollary 3.15. Let T be a disjointness preserving Fredholm linear operator from $C_0(X)$ into $C_0(Y)$. Then T is bounded if and only if T has closed range.

Remark 3.16. One can find an example of an unbounded disjointness preserving linear operator in [19]. Consequently, there is an unbounded disjointness preserving linear functional ρ on some $C_0(X)$ (Lemma 2.2). Let $Y = X \cup \{y\}$ be a disjoint union. Define $T: C_0(X) \to C_0(Y)$ by setting $Tf_{|X} = f$ and $Tf(y) = \rho(f)$ for each fin $C_0(X)$. Then, T is an injective disjointness preserving linear map of corank 1. But, T is unbounded. It is easy to see that T does not have closed range. For example, let f_n be a null sequence in $C_0(X)$ such that $\rho(f_n)$ approaches 1. The Cauchy sequence $\{Tf_n\}$ does not converge in ran(T). Note also that Y contains an isolated point in this case (cf. Lemma 3.4).

In [3], Araujo showed that an injective disjointness preserving linear operator on a class of continuous vector-valued function spaces is bounded if it has closed range. Compare this with the following result.

Corollary 3.17. Let T be a disjointness preserving linear operator from $C_0(X)$ into $C_0(Y)$ with finite corank. Then T is bounded if and only if T has closed range and the kernel of T is a closed ideal of $C_0(X)$. In this case, the conclusions in Theorem 3.14, except for possibly (2) and (3), are valid for T. Instead, we have $\varphi(Y_c)$ is closed in X and ker $T = \{f \in C_0(X) : f \text{ vanishes on } \varphi(Y_c)\}.$

Proof. By Lemma 2.1, we can assume that the underlying field is the complex scalars. The necessity follows from Theorem 2.4 and Proposition 2.7. For the sufficiency, we

note that if ker T is a closed ideal then it must be in the form of $\{f \in C_0(X) : f \text{ vanishes on } \tilde{X}\}$ for some closed subset \tilde{X} of X. Consequently, the quotient algebra of $C_0(X)$ by ker T is isomorphic to $C_0(\tilde{X})$. The induced injective linear operator \tilde{T} from $C_0(\tilde{X})$ into $C_0(Y)$ also has closed range and finite corank. We shall show that \tilde{T} is disjointness preserving. To this end we note that if \tilde{f} and \tilde{g} are non-negative functions in $C_0(\tilde{X})$ with $\tilde{f} \cdot \tilde{g} = 0$, we can extend them to f and g in $C_0(X)$ with $f \cdot g = 0$, too. In fact, we can set $\tilde{h} = \tilde{f} - \tilde{g}$ and extend it to an h in $C_0(X)$ by Tietze's Extension Theorem. Then the desired disjoint extensions are $f = \max\{h, 0\}$ and $g = \max\{-h, 0\}$, respectively. Consequently, $\tilde{T}\tilde{f} \cdot \tilde{T}\tilde{g} = Tf \cdot Tg = 0$ for all nonnegative \tilde{f} , \tilde{g} in $C_0(\tilde{X})$ with $\tilde{f} \cdot \tilde{g} = 0$. By writing each function in $C_0(\tilde{X})$ as a linear sum of at most four non-negative functions, we can conclude that \tilde{T} is disjointness preserving (cf. the proof of Lemma 2.1). The other assertions follows from Theorem 3.14. In particular, $\tilde{X} = \varphi(Y_c)$ in this case.

4. An application

The results of this paper are important tools in the study of shift operators [7, 21]. Besides, we provide a supplement to the following interesting Gleason-Kahane-Zelazko type result of Chang-Pao Chen [6] (see also Jarosz [18]) as an application. Recall that a subspace A of $C_0(Y)$ is said to be an Z_n -subspace if every g in A has at least n distinct zeroes in Y. If every (closed) n-codimensional Z_n -subspace of $C_0(Y)$ is of the form $\bigcap \{\ker \delta_{y_i} : i = 1, 2, ..., n\}$ for n distinct points $y_1, y_2, ..., y_n$ in Y then $C_0(Y)$ is said to have the (closed) I_n -property. If Y is compact then the classical Gleason-Kahane-Zelazko Theorem [12, 22] states that C(Y) has I_1 -property.

Theorem 4.1 ([6, Corollary 4.4]). Let Y be a locally compact Hausdorff space and let n be a positive integer greater than 1. Then every closed Z_n -subspace of $C_0(Y)$ is the intersection of n maximal ideals of $C_0(Y)$ if and only if Y is σ -compact and every point in Y is a G_{δ} set.

The σ -compactness and G_{δ} conditions on Y ensure that for every point y in Y_{∞} there is an f in $C_0(Y)$ vanishing exactly at y (and ∞). As a consequence of this fact and Theorem 3.14 (without assuming Theorem 4.1, though), we have

Corollary 4.2. Let A be an n-codimensional subspace of $C_0(Y)$, which is the range of a bounded disjointness preserving linear operator T. If A is an ideal then A is a closed Z_n -subspace. In this case, A is the intersection of n maximal ideals of $C_0(Y)$. The converse holds if Y is σ -compact and every point in Y is a G_{δ} set.

Proof. In view of the proof of Corollary 3.17, we may assume that T is injective. By Theorem 3.14(6), we see that $A = \operatorname{ran}(T)$ is a closed Z_n -subspace of $C_0(Y)$ if $\operatorname{ran}(T)$ is an ideal of $C_0(Y)$. In fact, $\operatorname{ran}(T)$ is the intersection of n maximal ideals of $C_0(Y)$ in this case. Conversely, suppose that $\operatorname{ran}(T)$ is an Z_n -subspace of $C_0(Y)$. We let g be a continuous scalar function on Y vanishing exactly at p_1, p_2, \ldots, p_k and ∞ . In particular, g does not vanish in a neighborhood of each $a_j^{(i)}$ in the notation of Theorem 3.14(6). Note that there exists an everywhere positive continuous function f in $C_0(Y)$. For each $a_j^{(i)}$, one by one, let $f_j^{(i)}$ be a non-negative continuous function on Y such that $f_j^{(i)}(a_j^{(i)}) = \frac{1}{2} \frac{h(a_j^{(i)})}{g(a_j^{(i)})}$ and $f_j^{(i)}$ vanishes outside a neighborhood of $a_j^{(i)}$, which does not contain any of p_1, \ldots, p_k or other $a_{j'}^{(i')}$. Replace g by $g \cdot \left(f_j^{(i)} + \frac{1}{2} \frac{h(a_j^{(i)})}{g(a_j^{(i)})} \frac{f}{f(a_j^{(i)})}\right)$, recursively. Then $g(p_1) = \cdots = g(p_k) = 0$ and $\frac{g(a_j^{(i)})}{h(a_j^{(i)})} = 1$. In this way, we can redefine g locally at each $a_j^{(i)}$ such that g satisfies the remaining n - k linear equations stated in Theorem 3.14(6) without introducing additional zeroes to g. Then g is in the range of T having exactly k zeroes. This implies that n = k and thus $\operatorname{ran}(T)$ is an ideal. \Box

References

- Y. A. Abramovich, Multiplicative representations of disjointness preserving operators, *Indag. Math.*, 45 (1983), 265–279.
- [2] Y. A. Abramovich, C. D. Aliprantis and I. A. Polyrakis, Some remarks on surjective and bounded below operators, Atti Sem. Mat. Fis. Univ. Modena, 44 (1996), 455–464.
- [3] J. Araujo, Separating maps and linear isometries between some spaces of continuous functions, J. Math. Anal. Appl., 226 (1998), 23–39.
- [4] J. Araujo and J. J. Font, Codimension 1 linear isometries on function algebras, Proc. Amer. Math. Soc., 127 (1999), 2273–2281.
- [5] R. A. Bonic, *Linear functional Analysis*, Gordon and Breach Science Publishers, New York, 1969.
- [6] C. P. Chen, Z_n-subspaces of a commutative Banach algebra, Ph. D. Dissertation, Stanford University, 1987.
- [7] Li-Shu Chen, Jyh-Shyang Jeang and Ngai-Ching Wong, Disjointness preserving n-shifts on $C_0(X)$, preprint.
- [8] R. M. Crownover, commutants of shifts on Banach spaces, Michigan Math. J., 19 (1972), 233-247.
- [9] F. O. Farid and K. Varadarajan, Isometric shift operators on C(X), Can. J. Math., 46 (1994), 532–542.
- [10] W. A. Feldman and J. F. Porter, Operators on Banach lattices as weighted compositions, J. Lond. Math. Soc., 35 (1986), 149-167.
- [11] J. J. Font and S. Herández, On separating maps between locally compact spaces, Arch. Math. (Basel), 63 (1994), 158–165.
- [12] A. M. Gleason, A characterization of maximal ideals, J. Analyse Math., 19 (1967), 171–172.
- [13] A. Gutek, D. Hart, J. Jamison and M. Rajagopalan, Shift operators on Banach spaces, J. Funct. Anal., 101 (1991), 97–119.
- [14] D. J. Harrington, Co-rank of a composition operator, Canad. Math. Bull., 29 (1986), 33–36.
- [15] B. D. Hatori, Fredholm composition operators on spaces of holomorphic functions, J. Integral Equations Operator Theory, 18 (1994), 202–210.
- [16] R. Haydon, Isometric shifts on C(K), J. Funct. Anal., **135** (1996), 157–162.
- [17] J. R. Holub, On shift operators, Canad. Math. Bull., **31** (1988), 85–94.
- [18] K. Jarosz, Finite codimensional ideals in Banach algebras, Proc. Amer. Math. Soc., 101 (1987), 313–316.
- [19] K. Jarosz, Automatic continuity of separating linear isomorphisms, Canad. Math. Bull., 33 (1990), 139–144.

- [20] Jyh-Shyang Jeang and Ngai-Ching Wong, Weighted composition operators of $C_0(X)$'s, J. Math. Anal. Appl., **201** (1996), 981–993.
- [21] Jyh-Shyang Jeang and Ngai-Ching Wong, Isometric *n*-shifts on $C_0(X)$, preprint.
- [22] J. P. Kahane and W. Zelazko, A characterization of maximal ideals in commutative Banach algebras, *Studia Math.*, **29** (1968), 339–343.
- [23] A. Kumar, Fredholm composition operators, Proc. Amer. Math. Soc., 79 (1980), 233–236.
- [24] A. Kumar, On composition operators, Acta Sci. Math. (Szeged), 56 (1992), 335–345.
- [25] B. D. Maccluer, Fredholm composition operators, Proc. Amer. Math. Soc., 125 (1997), 163–166.
- [26] M. Rajagopalan, Backward shifts on Banach spaces C(X), J. Math. Anal. Appl., **202** (1996), 485–491.

DEPARTMENT OF APPLIED MATHEMATICS, NATIONAL SUN YAT-SEN UNIVERSITY, KAOHSIUNG, TAIWAN, 80424, REPUBLIC OF CHINA.

E-mail address: wong@math.nsysu.edu.tw