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Abstract. In this paper, we introduce a new class of generalized co-complementarity prob-
lems in Banach spaces. An iterative algorithm for finding approximate solutions of these
problems is considered. Some convergence results for this iterative algorithm are derived and
several existence results are obtained.

1. Introduction

Let B be a real Banach space with dual space B∗ and paring (x, f) between x ∈ B and
f ∈ B∗. Let C(B) be the family of nonempty compact subsets of B. Suppose T,A, G, m :
B → B, V : B → C(B), and X is a fixed closed convex cone of B. Define K : B → 2B by

K(x) = m(x) + X, ∀x ∈ B.

In this paper we shall study the following generalized co-complementarity problem(GCCP):
find x ∈ B, y ∈ V (x) such that Gx ∈ K(x) and

Tx + Ay ∈ (J(K(x)−Gx))∗

where J : B → B∗ is the normalized dulity mapping and (J(K(x) − Gx))∗ is the dual cone
of the set J(K(x)−Gx).

Recall that the normalized duality operator J : B → B∗ is defined for arbitrary Banach
space by the condition

‖Jx‖B∗ = ‖x‖ and (x, Jx) = ‖x‖2, ∀x ∈ B.

Some examples and properties of the mapping J can be found in [1]. When B is a Hilbert
space, Jx = x reduces to the identity mapping. Note that every nonzero x in B is weak∗
continuous and thus attains its norm on the weak∗ compact unit ball of B∗. In case B∗ is
strictly convex, the point x attains its norm on the ball of B∗ is unique, namely, Jx/‖x‖. In
this paper, we are mainly interested in uniformly smooth Banach space B. Therefore, the
construction of J is concrete to us here.

Before we proceed any further, we make a few observations. There are evidence that our
results generalize many known important complementarity problems studied in the literature.

(i) If B is a Hilbert space, then (GCCP) reduces to finding x ∈ B, y ∈ V (x) such that
Gx ∈ K(x),

Tx + Ay ∈ (K(x)−Gx)∗,
which is the generalized multi-valued complementarity problem studied by Jou and Yao
[5].

(ii) If B is a Hilbert space and G is the identity mapping, then (GCCP) reduces to finding
x ∈ K(x), y ∈ V (x) such that

Tx + Ay ∈ (K(x)− x)∗,

which is known as the generalized strongly nonlinear quasi-complementarity problem
studied by Chang and Huang [2].

(iii) If B is a Hilbert space and G as well as V are the identity mappings, then (GCCP) is
equivalent to finding x ∈ K(x) such that

Tx + Ay ∈ (K(x)− x)∗,

which is known as the strongly nonlinear quasi-complementarity problem studied by
Noor [10].
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(iv) If B is a Hilbert space, G and V are the identity mappings and A is the zero mapping,
then (GCCP) is equivalent to finding x ∈ K(x) such that

Tx + Ay ∈ (K(x)− x)∗,

which is known as the generalized quasi-complementarity problem studied by Noor [7].
(v) If B is a Hilbert space, G and V are the identity mappings and m is the zero mapping,

then (GCCP) is equivalent to finding x ∈ X such that

Tx + Ax ∈ X∗ and (Tx + Ax, x) = 0,

which is known as the mildly nonlinear complementarity problem studied by Noor [8].
(vi) If B is a Hilbert space, V is the identity mappings and A as well as m are the zero

mappings, then (GCCP) is equivalent to finding x ∈ B such that Gx ∈ X,

Tx ∈ X∗ and (Tx, Gx) = 0,

which is known as the general nonlinear complementarity problem studied by Noor [9].
(vii) If B is a Hilbert space, G and V are the identity mappings, A and m are the zero

mappings, then (GCCP) is equivalent to finding x ∈ X such that

Tx ∈ X∗ and (Tx, x) = 0,

which is known as the generalized complementarity problem studied by Habetler [4] and
Karamardian [6].

(viii) If B = Rn, G and A are the identity mappings, T and m are the zero mappings, then
(GCCP) is equivalent to finding x ∈ X and y ∈ V (x) such that

y ∈ X∗ and (x, y) = 0,

which has been studied by Saigal [11].
The aim of this paper is to construct the projection iterative methods of finding approxi-

mate solutions of (GCCP) in (especially uniformly smooth) Banach spaces. Our results are
new, interesting, and should be applicable to all those classical complementarity problems
mentioned above, with hopefully giving more insights to its algorithmic aspect.

In Section 2, we shall give some preliminaries. In Section 3, we shall derive some charac-
terization of solutions of (GCCP) by employing the sunny nonexpansive retraction method.
In the final section, we shall construct an iterative algorithm for finding the approximate
solutions of (GCCP) and derive some corresponding convergence and existence results.

2. Preliminaries

We first recall the following definitions.

Definition 2.1. Let B be a Banach space and A : B → B.
(i) A is said to be strongly accretive if there exists a constant γ > 0 such that

(Ax−Ay, J(x− y)) ≥ γ‖x− y‖2, for all x, y ∈ B.

(ii) A is said to be Lipschitz continuous if there exists a positive constant β such that

‖Ax−Ay‖ ≤ β‖x− y‖, for all x, y ∈ B.

(iii) A is said to be strongly accretive with respect to the point-to-set mapping V : B → C(B)
if there exists a positive constant α such that

(Au−Av, J(x− y)) ≥ 0, for all x, y ∈ B and for all u ∈ V (x), v ∈ V (y).

Definition 2.2. The mapping V : B → C(B) is said to be H-Lipschitz continuous if there
exists a constant η > 0 such that

H(V (x), V (y)) ≤ η‖x− y‖, for all x, y ∈ B,

where H(·, ·) is the Hausdorff metric on C(B).
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We remark that the uniform convexity of the space B means that for any given ε > 0 there
exists δ > 0 such that for all x, y ∈ B, ‖x‖ ≤ 1, ‖y‖ ≤ 1, and ‖x− y‖ = ε ensure the following
inequality

‖x + y‖ ≤ 2(1− δ).
The function

δB(ε) = inf{1− ‖x + y‖
2

: ‖x‖ = 1, ‖y‖ = 1, ‖x− y‖ = ε}
is called the modulus of the convexity of the space B.

The uniform smoothness of the space B means that for any given ε > 0 there exists δ > 0
such that

‖x + y‖+ ‖x− y‖
2

− 1 ≤ ε‖y‖
holds. The function

ρB(t) = sup{‖x + y‖+ ‖x− y‖
2

− 1 : ‖x‖ = 1, ‖y‖ = t}
is called the modulus of the smoothness of the space B.

We also remark that the space B is uniformly convex if and only if δB(ε) > 0 for all ε > 0
and it is uniformly smooth if and only if limt→0 t−1ρB(t) = 0. Moreover, B∗ is uniformly
convex if and only if B is uniformly smooth. In this case, B is reflexive by the Milman
Theorem. A Hilbert space is uniformly convex and uniformly smooth. The proof of the
following inequalities can be found, e.g., in [1] and hence will be omitted.

Proposition 2.3. Let B be a uniformly smooth Banach space and J the normalized duality
mapping from B into B∗. Then for all x, y ∈ B, we have

(i) ‖x + y‖2 ≤ ‖x‖2 + 2(y, J(x + y)),
(ii) (x− y, Jx− Jy) ≤ 2C2ρB(4‖x− y‖/d) where d = ((‖x‖2 + ‖y‖2)/2)1/2.

Let B be a real Banach space and Ω a nonempty closed convex subset of B. A mapping
QΩ : B → Ω is said to be a retraction on Ω if Q2

Ω = QΩ. The mapping QΩ is said to be a
nonexpansive retraction if, in addition,

‖QΩx−QΩy‖ ≤ ‖x− y‖, for all x, y ∈ B;

and QΩ is a sunny retraction if for all x ∈ B,

QΩ(QΩx + t(x−QΩx)) = QΩx, ∀t ∈ R.

The following characterization of a sunny nonexpansive retraction mapping can be found,
e.g., in [3].

Proposition 2.4. QΩ is a sunny nonexpansive retraction if and only if for all x, y ∈ B,

(x−QΩx, J(QΩx− y)) ≥ 0.

From Proposition 2.4, we have the following retraction shift equality.

Proposition 2.5. Let B be a Banach space, Ω a nonempty closed convex subset of B and
m : B → B. Then for all x, y ∈ B, we have

QΩ+m(x)x = m(x) + QΩ(x−m(x)).

3. Characterization of solutions — Algorithm and Convergence

In this section we first derive some characterizations of solutions of the generalized co-
complementarity problem.

Theorem 3.1. Let B be a Banach space and X a closed convex cone in B. Let T,G, A, m :
B → B, V : B → C(B), K : B → 2B and K(x) = m(x) + X for all x ∈ B. Then the
following statements are equivalent.

(i) x ∈ B, y ∈ V (x) are solutions of (GCCP), i.e., Gx ∈ K(x) and

Tx + Ay ∈ (J(K(x)−Gx))∗.

(ii) x ∈ B, y ∈ V (x) and for some τ > 0,

Gx = QK(x)(Gx− τ(Tx + Ay)).
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Proof. We note that Tx + Ay ∈ (J(K(x)−Gx))∗ if and only if

(Tx + Ay, J(z −Gx)) ≥ 0, for all z ∈ K(x).

The result then can be proved by the same arguments as those in [1, Theorem 8.1], [2, Theorem
3.1] and Proposition 2.4.

By combining Proposition 2.5 and Theorem 3.1, we have the following result.

Theorem 3.2. Let B be a Banach space and X a closed convex cone in B. Let T,G, A, m :
B → B, and V : B → C(B). Then the following statements are equivalent.

(i) x ∈ B, y ∈ V (x) are solutions of (GCCP).
(ii) x = x−Gx + m(x) + QX(Gx− τ(Tx + Ay)−m(x)) for some τ > 0.

Next we shall construct an iterative algorithm for finding approximate solutions of (GCCP).
Let τ > 0 be fixed. Given x0 ∈ B, take any y0 ∈ V (x0) and let

x1 = x0 −Gx0 + m(x0) + QX(Gx0 − τ(Tx0 + Ay0)−m(x0)).

Since V (x0) is a nonempty and compact set, there exists y1 ∈ V (x1) such that

‖y0 − y1‖ ≤ H(V (x0), V (x1)).

Let
x2 = x1 −Gx1 + m(x1) + QX(Gx1 − τ(Tx1 + Ay1)−m(x1)).

By continuing the above process inductively, we can get sequences {xn} and {yn} such that
yn ∈ V (xn),

‖yn − yn+1‖ ≤ H(V (xn), V (xn+1))(3.1)

and

xn+1 = xn −Gxn + m(xn) + QX(Gxn − τ(Txn + Ayn)−m(xn)).(3.2)

Now we have the following convergence and existence result.

Theorem 3.3. Let B be a uniformly smooth Banach space with ρB(t) ≤ Ct2 for some C > 0.
Let X be a closed convex cone of B. Suppose T,A, G, m : B → B, V : B → C(B), K : B → 2B

such that K(x) = m(x) + X for all x ∈ B and the following conditions.
(i) T,G, A and m are Lipschitz continuous with constants β, δ, λ and θ, respectively.
(ii) G is strongly accretive with constant γ and V is H-Lipschitz continuous with constant

η.
(iii) (1− 2γ + 64Cδ2)1/2 + 2θ + δ + τ(β + λη) < 1 for some τ > 0.
Then for any given x0 ∈ B and y0 ∈ V (x0), the sequences xn and yn generated by (3.2) and
(3.1), respectively, converge strongly to some x ∈ B and y ∈ V (x) which solve the (GCCP).

Proof. By the iterative schemes (3.1) and (3.2), we have

‖xn+1 − xn‖(3.3)

= ‖xn −Gxn + m(xn) + QX(Gxn − τ(Txn + Ayn)−m(xn))

− (xn−1 −Gxn−1 + m(xn−1))−QX(Gxn−1 − τ(Txn−1 + Ayn−1)−m(xn−1))‖
≤ ‖xn − xn−1 − (Gxn −Gxn−1)‖+ 2‖m(xn)−m(xn−1)‖

+ ‖(Gxn −Gxn−1)‖+ τ‖Txn − Txn−1‖+ τ‖Ayn −Ayn−1‖.
By Proposition 2.3, we have

‖xn − xn−1 − (Gxn −Gxn−1)‖2(3.4)

≤ ‖xn − xn−1‖2 + 2(−(Gxn −Gxn−1), J(xn − xn−1 − (Gxn −Gxn−1)))

= ‖xn − xn−1‖2 + 2(−(Gxn −Gxn−1), J(xn − xn−1))

+ 2(−(Gxn −Gxn−1), J(xn − xn−1 − (Gxn −Gxn−1))− J(xn − xn−1))

≤ ‖xn − xn−1‖2 − 2γ‖xn − xn−1‖2 + 4d2ρB(4‖Gxn −Gxn−1‖/d)

≤ ‖xn − xn−1‖2 − 2γ‖xn − xn−1‖2 + 64C‖Gxn −Gxn−1‖2

≤ (1− 2γ + 64Cδ2)‖xn − xn−1‖2.
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It follows from the Lipschitz property of the corresponding functions that

‖m(xn)−m(xn−1)‖ ≤ θ‖xn − xn−1‖,(3.5)

‖Txn − Txn−1‖ ≤ β‖xn − xn−1‖,(3.6)

‖Ayn −Ayn−1‖ ≤ λη‖xn − xn−1‖,(3.7)

and

‖Gxn −Gxn−1‖ ≤ δ‖xn − xn−1‖.(3.8)

From (3.3)-(3.8), we have the following inequality

‖xn+1 − xn‖ ≤ κ‖xn − xn−1‖,
where

κ = (1− 2γ + 64Cδ2)1/2 + 2θ + δ + τ(β + λη)
and 0 < κ < 1 by (iii).

Consequently, {xn} is a Cauch sequence and thus converges to some x ∈ B. By (3.1), we
have

‖yn − yn−1‖ ≤ H(V (xn), V (xn−1)) ≤ η‖xn − xn−1‖,
and hence {yn} is also a Cauchy sequence in B. Let {yn} converge to some y ∈ B. Since
QX , G, T, A, V and m are all continuous, we have

x = x−Gx + m(x) + QX(Gx− τ(Tx + Ay)−m(x)).

It remains to show that y ∈ V (x). In fact,

d(y, V (x)) ≤ ‖y − yn‖+ d(yn, V (x))
≤ ‖y − yn‖+ H(V (xn), V (x))
≤ ‖y − yn‖+ η‖x− xn‖,

where d(y, V (x)) = inf{‖y − z‖ : z ∈ V (x)}. Letting n go to infinity, we have d(y, V (x)) = 0
and therefore y ∈ V (x). The result then follows from Theorem 3.2.
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