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Abstract. Let T be a compact disjointness preserving linear operator from C0(X) into

C0(Y ), where X and Y are locally compact Hausdorff spaces. We show that T can be

represented as a norm convergent countable sum of disjoint rank one operators. More

precisely, T =
∑

n δxn ⊗ hn for a (possibly finite) sequence {xn}n of distinct points in X

and a norm null sequence {hn}n of mutually disjoint functions in C0(Y ). Moreover, we

develop a graph theoretic method to describe the spectrum of such an operator.

1. Introduction

In the setting of Banach lattices, a linear operator is a lattice homomorphism if and

only if it is positive and disjointness preserving (see, for example, [2, p. 88]). In [1],

Abramovich developed the basic theory of such operators. The concept of disjointness

preserving operators has been widely studied in the setting of continuous functions as a

good test case (see, e.g., [17, 3, 9, 6, 11]).

Let X and Y be locally compact Hausdorff spaces, and let C0(X) be the Banach algebra of

continuous (real or complex) functions on X vanishing at infinity. In this paper, we discuss

disjointness preserving (linear) operators T from C0(X) into C0(Y ); namely, Tf · Tg = 0

in C0(Y ) whenever f · g = 0 in C0(X). Hence a disjointness preserving operator preserves

disjointness of cozeros of functions. Here the cozero of f in C0(X) is defined to be the open

set coz f = {x ∈ X : f(x) 6= 0}.

In case X is a compact Hausdorff space, utilizing the Arzela–Ascoli Theorem, Kamowitz

[12, 13] showed that every compact algebraic endomorphism, and indeed every compact
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disjointness preserving operator, of C(X) is of finite rank. For disjointness preserving

operators on locally compact spaces, however, the theory is much richer.

In Section 2, with a new approach, we show that every compact disjointness preserving

operator T from C0(X) into C0(Y ) is indeed infinite nuclear, that is, carrying a countably

infinite or finite sum decomposition T =
∑

n δxn ⊗ hn of disjoint rank one operators (The-

orem 2.6). As a consequence, compactness, weak compactness and complete continuity are

equivalent for disjointness preserving operators on continuous functions. However, we note

that this equivalences do not hold in the case of vector-valued functions as shown in [10].

In Section 3, we develop a spectral theory for compact disjointness preserving operators

on C0(X). By using our characterization of such operators T =
∑

n δxn ⊗hn on C0(X), we

associate to T a graph G with countably many vertices {∞, x1, x2, . . .}. The structure of G

gives rise to a complete description of eigenvalues and eigenfunctions of T (Theorem 3.5).

Our results extend and generalize those of Kamowitz [13] and Uhlig [16], and also apply to

power compact bounded disjointness preserving operators of C0(X) in [14].

In Section 4, we provide sufficient and necessary conditions for a disjointness preserving

operator between spaces of continuous functions to be compact. In line with the Bartle-

Dunford-Schwartz Theorem [4], Corollary 4.3 states that T is compact if and only if the

image of the dual unit ball of the range under the dual map T ∗ of T is dominated by a

positive atomic measure. Moreover, if the image of T ∗ is controlled by a positive atomic

measure whose support is discrete and has compact closure in X ∪ {∞}, Corollary 4.4

ensures that T is compact. In [7, 8], Jarchow showed that every weakly compact linear

operator T from C0(X), or more generally a C*-algebra, into a Banach space F can be

uniformly approximated by operators which factor through a Hilbert space. Some of his

tools rely on controlling and dominating measures. We hope our new results can be used

to lead to a better understanding of such operators that also preserve disjointness.

Finally, we would like to express our deep gratitude to the referees. Their suggestions

and comments help us to improve the presentation of this paper.
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2. A structure theorem for compact disjointness preserving operators

Let X be a locally compact Hausdorff space with one point compactification X ∪ {∞}.

We find the following identification useful:

C0(X) = {f ∈ C(X ∪ {∞}) : f(∞) = 0}.

Let T be a bounded disjointness preserving linear operator from C0(X) into C0(Y ). Let δy

be the point mass at y in Y ∪ {∞}, and thus δy ◦ T (f) = Tf(y) for all f in C0(X). Set

Y∞ = {y ∈ Y ∪ {∞} : δy ◦ T = 0} and YT = {y ∈ Y ∪ {∞} : δy ◦ T 6= 0}.

For each y in YT , the linear functional δy ◦ T defined by δy ◦ T (f) = Tf(y) is nonzero. By

the disjointness preserving property, the support of δy ◦T consists of a single point x in X.

Set ϕ(y) = x. By Urysohn’s Lemma, we have ker δϕ(y) ⊆ ker δy ◦T . Hence δy ◦T = h(y)δϕ(y)

for some nonzero scalar h(y). Consequently, Tf(y) = h(y)f(ϕ(y)) for all y in YT . As a

result, T is a weighted composition operator

(2.1) Tf |YT
= h · f ◦ ϕ and Tf |Y∞ = 0.

It is then routine to see that h is a non-vanishing scalar continuous function on the open

set YT and ϕ : YT → X is continuous (see, e.g., [9, 6, 11]).

In this section, we assume that T : C0(X) → C0(Y ) is a completely continuous disjoint-

ness preserving linear operator of the form (2.1). In other words, the operator T sends

weak null sequences in C0(X) to norm null sequences in C0(Y ). It is clear that compact

operators are weakly compact and completely continuous. For disjointness preserving linear

operators between continuous functions, we shall see in the following Theorem 2.6 that the

converses do hold. We start with an elementary result.

Lemma 2.1. For n ∈ N, let fn be in C0(X) with ‖fn‖ = 1. If fnfm = 0 for n 6= m, then

fn → 0 weakly.

Lemma 2.2. For n ∈ N, let xn = ϕ(yn) be distinct points in ϕ(YT ). Then lim
n→∞

h(yn) = 0.

Proof. We first make an elementary observation.

Claim. For any {un} of countably infinitely many distinct points in X, there is at most

one point u in X such that every neighborhood of u contains all but finitely many un’s.
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Indeed, if z is an other such point in X, then each neighborhood of z contains infinitely

many un’s and thus intersects with every neighborhood of u. Since X is Hausdorff, z = u.

We now lead a proof by contradiction. Suppose there was an ε > 0 such that |h(yn)| ≥ ε

for all n’s. Using the Claim and passing to a subsequence if necessary, we can assume that

each xn has a compact neighborhood Vn such that Vn ∩ Vm = ∅ whenever n 6= m. Choose

fn in C0(X) such that coz fn ⊆ Vn, fn(xn) = 1 and 0 ≤ fn ≤ 1. Then fnfm = 0 whenever

n 6= m. By Lemma 2.1, fn → 0 weakly. Since T is completely continuous, Tfn → 0 in

norm. But

‖Tfn‖ ≥ |Tfn(yn)| = |h(yn)fn(xn)| = |h(yn)| ≥ ε,

a contradiction. �

Lemma 2.3. For each x in ϕ(YT ), ϕ−1(x) is an open subset of Y .

Proof. Suppose ϕ−1(x) was not open in Y , and thus not relatively open in the open set YT ,

either. Let yλ ∈ YT \ϕ−1(x) such that yλ → y in ϕ−1(x) ⊆ YT . Then lim
λ→∞

h(yλ) = h(y) 6= 0.

By Lemma 2.2, the range of the net {ϕ(yλ)}λ consists of only finitely many points in X.

However, xλ = ϕ(yλ) → ϕ(y) = x. This forces xλ = x for all λ eventually, a contradiction.

Hence ϕ−1(x) is open in Y . �

For each x in ϕ(YT ), let

Yx = ϕ−1(x) = {y ∈ YT : ϕ(y) = x}

= {y ∈ Y ∪ {∞} : ker δy ◦ T = ker δx}.

In comparison, we remark that

Y∞ = {y ∈ Y ∪ {∞} : δy ◦ T = 0}

= {y ∈ Y ∪ {∞} : ker δy ◦ T = ker δ∞ = C0(X)}.

Note that YT =
⋃

x∈ϕ(YT ) Yx is a disjoint union.

Let hx = hχYx , where χYx is the characteristic function of the set Yx. Then hxhx′ = 0

whenever x 6= x′ in ϕ(YT ).
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Corollary 2.4. Each Yx is relatively closed and open in YT . For each x in ϕ(YT ), hx is in

C0(Y ). More precisely, hx can be extended continuously to Y ∪ {∞} = Y∞ ∪ YT by setting

hx|Y∞ = 0.

Proof. It is clear that Yx is relatively closed and open in YT by Lemma 2.3. Thus hx is

continuous on YT . Let {yλ}λ be a net in Yx such that yλ → y for some y in Y∞. If hx(yλ)

does not converge to 0 then, passing to a subnet if necessary, there is an ε > 0 such that

|Tf(yλ)| = |h(yλ)f(ϕ(yλ))| = |hx(yλ)f(x)| ≥ ε|f(x)|,

for all λ and all f in C0(X). Hence |Tf(y)| ≥ ε|f(x)|. Since y ∈ Y∞, we have Tf(y) = 0,

and hence f(x) = 0 for all f in C0(X), a contradiction. Therefore, hx can be extended

continuously to Y ∪ {∞} by setting hx|Y∞ = 0. �

Lemma 2.5. For n = 1, 2, . . ., the set {x ∈ ϕ(YT ) : ‖hx‖ > 1
n} is finite. Thus, ϕ(YT ) is

a countable set. Moreover, if there are infinitely many distinct points xn in ϕ(YT ), then

‖hxn‖ → 0.

Proof. Suppose our assertion was not true, then there exist n ∈ N and infinitely many

distinct x1, x2, . . . in ϕ(YT ) such that ‖hxk
‖ > 1

n for all k. For each k, let yk ∈ YT such that

|hxk
(yk)| > 1

n and thus ϕ(yk) = xk. But by Lemma 2.2, lim
k→∞

hxk
(yk) = 0, a contradiction.

Hence the set {x ∈ ϕ(YT ) : ‖hx‖ > 1
n} is finite. Consequently,

ϕ(YT ) =
∞⋃

n=1

{
x ∈ ϕ(YT ) : ‖hx‖ >

1
n

}
is countable. �

Now we are ready for a structure theory of compact disjointness preserving operators.

Theorem 2.6. Let T : C0(X) → C0(Y ) be a bounded disjointness preserving linear opera-

tor. Then the following assertions are equivalent.

(i) T is compact;

(ii) T is weakly compact;

(iii) T is completely continuous;
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(iv) There are at most countably many distinct points {xn} in X and mutually disjoint

functions {hn} in C0(Y ) such that

Tf =
∑

n

f(xn)hn for all f ∈ C0(X).

In case there are infinitely many such xn and hn, we have ‖hn‖ → 0 and thus the sum

converges uniformly.

Proof. The implications (i) ⇒ (ii) and (i) ⇒ (iii) are clear. The implication (ii) ⇒ (iii)

follows from the well known fact that C0(X) has the Dunford-Pettis Property (see, e.g., [5,

p. 494]); that is, every weakly compact operator T from C0(X) into a Banach space F is

completely continuous. Indeed, T is weakly compact on C0(X) if and only if T is completely

continuous by [15, Theorem 12]. For (iv) ⇒ (i), we note that as a countable sum of rank

one operators, T is compact.

Finally, for the implication (iii) ⇒ (iv), we assume that T is completely continuous.

In view of Lemma 2.5, we can write ϕ(YT ) = {x1, x2, . . .} (this set can be finite). Each

Yn = ϕ−1(xn) is relatively closed and open in the open set YT by Lemma 2.3. Let hn =

hχYn for all n = 1, 2, . . ., we have hnhm = 0 for all n 6= m. Moreover, hn ∈ C0(Y ) by

Corollary 2.4, and ‖hn‖ → 0 by Lemma 2.5. Observe that for each xn in ϕ(YT ) we have

(h · f ◦ ϕ)χYn = f(xn)hn. Hence

Tf |YT
= h · f ◦ ϕ =

∑
n

(h · f ◦ ϕ) χYn =
∑

n

f(xn)hn.

By Corollary 2.4 and Lemma 2.5, we can even write

Tf =
∑

n

f(xn)hn,

where the sum converges uniformly on Y . �

3. A spectral theory for compact disjointness preserving operators

In this section, denote by X a locally compact Hausdorff space of infinite cardinality and

by T : C0(X) → C0(X) a compact disjointness preserving complex linear operator. Here

we have X = Y comparing to the previous section, and in particular,

X∞ = {x ∈ X ∪ {∞} : δx ◦ T = 0} and XT = X \X∞.
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By Theorem 2.6, we have

Tf =
∑

n

f(xn)hn for all f ∈ C0(X).

Here,

Xn = coz hn

is a relatively open and closed subset of the open set XT for all n = 1, 2, . . .. Note that we

always have ∞ ∈ X∞ and that XT =
⋃

n≥1 Xn is a countable disjoint union.

We now define a graph G in X∪{∞} associated to T with the vertex set {∞, x1, x2, . . .}.

We assign a directed edge from xm to xn, denoted by xm // xn, whenever xn ∈ Xm. In

this case, we say that xm is a parent of xn (or xn is a child of xm). We call xm an ancestor

of xn, if xm is a parent of xn, or in case there are finitely many vertices xm = xm1 , xm2 , . . . ,

xmn = xn in G such that xmj is a parent of xmj−1 for all 1 ≤ j ≤ n − 1. Note that every

vertex in G has a unique parent but it may have many children or no child at all, and ∞ is

always the parent of itself. A branch B is a maximal connected family in G. Clearly, two

vertices xn, xm are in the same branch in G if and only if they have a common ancestor.

The territory XB of a branch B of G is defined to be the open set

XB =
⋃

xn∈B

Xn =
⋃

xn∈B

coz hn.

Then

XT =
⋃
B

XB

is a countable disjoint union of open sets. Write

T =
∑
B

TB,(3.1)

where

TBf = Tf |XB
=

∑
xn∈B

f(xn)hn for all f ∈ C0(X).

By Theorem 2.6, each TB is again a compact disjointness preserving linear operator on

C0(X), and the graph of TB is B ∪ {∞}. Note that TBf = 0 whenever coz f ∩ XB = ∅.

Moreover,

coz TBf ⊆ XB for all f ∈ C0(X).(3.2)
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Hence TB1 , TB2 are disjoint whenever B1 6= B2, i.e.,

TB1TB2 = TB2TB1 = 0;

moreover,

TB1f · TB2g = 0 for any f, g ∈ C0(X).

By Lemma 2.5, the disjoint sum in (3.1) is norm convergent.

Lemma 3.1. The spectrum of T is the union of the spectra of TB for all branches B of the

graph of T . That is,

σ(T ) =
⋃
B

σ(TB).

Proof. We first note that 0 belongs to both sides of the equality since a compact operator

of the infinite dimensional space C0(X) cannot be invertible. Let λ ∈ σ(T ) \ {0}. Then

there is a nonzero f in C0(X) with λf = Tf =
∑

n f(xn)hn. In particular, we have a

decomposition f =
∑

B fB, where

fB =
1
λ

∑
xn∈B

f(xn)hn.

Clearly, coz fB ⊆
⋃

xn∈B coz hn = XB. Note also that the (possibly finite) disjoint sum

converges uniformly on X by Lemma 2.5. Since f 6= 0, there is at least one fB 6= 0. It

follows from TBfB = TBf = Tf |XB
= λfB that λ ∈ σ(TB).

On the other hand, suppose TBf = λf 6= 0. For any other branch B′ 6= B, we have

TB′f = 1
λTB′TBf = 0. Consequently, Tf = λf and λ ∈ σ(T ). �

Definition 3.2. A vertex x in G is called noble if it has infinitely many ancestors or it has

∞ as an ancestor. It is easy to see that, if a branch has a noble vertex, all its vertices are

noble. We call such a branch a noble branch. A branch is called active if it is not noble.

Lemma 3.3. For each noble branch B of G, we have σ(TB) = {0}.

Proof. Suppose on the contrary that there was a nonzero eigenvalue λ of TB such that

λf = TBf =
∑
x∈B

f(x)hx for some f 6= 0 in C0(X).
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Then there is z1 6= ∞ in B such that f(z1) 6= 0 and f(z2)hz2(z1) = λf(z1) 6= 0, where

∞ 6= z2
// z1, and we have f(z2) 6= 0. Similarly, λf(z2) = f(z3)hz3(z2) 6= 0, where

∞ 6= z3
// z2 // z1 and f(z3) 6= 0. Continuing this process, we have

λf(zn) = f(zn+1)hzn+1(zn) 6= 0,

where zn+1 // zn // · · · // z2 // z1 is a chain in the noble branch B consisting of

distinct vertices none of which is ∞. On the other hand,

λnf(z1) = λn−1f(z2)hz2(z1)

= λn−2f(z3)hz3(z2)hz2(z1)

= · · ·

= f(zn+1)hzn+1(zn) · · ·hz2(z1).

Consequently, |f(z1)| = |f(zn+1)
hzn+1 (zn)

λ · · · hz2 (z1)
λ | ≤ ‖f‖‖hzn+1‖

|λ| · · · ‖hz2‖
|λ| . As all zn are

distinct, ‖hzn‖ → 0 as n → ∞ by Lemma 2.5. It forces f(z1) = 0, a contradiction. Hence

σ(TB) = {0}. �

In an active branch B of the graph G of T , every vertex has finitely many ancestors

and none of which is ∞. It is not difficult to see that there are finitely many vertices

x1, x2, . . . , xn, say, in B such that xk+1 is the parent of xk for k = 1, 2, . . . , n− 1 and x1 is

the parent of xn. We say that they form the (unique) primitive cycle of B and denote it

by [x1;x2; . . . ;xn], which can be depicted as

x2
ll x3

WW

x1

tt

...

88
xn

��

xn−1,, .

Definition 3.4. Suppose B is an active branch of the graph G of T . Let [x1;x2; . . . ;xn] be

its primitive cycle. All vertices in the cycle are said to be of the 0th generation. A vertex

in B which is not in the primitive cycle is said to be of the first generation if it is a child of

a 0th generation vertex. For m ≥ 1, a vertex in B is said to be of the (m + 1)th generation

if it is a child of an mth generation vertex.
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We now introduce a grading to B. Write

B = B0 ∪B1 ∪B2 ∪ · · · ,(3.3)

where

B0 = {x1, x2, . . . , xn} and Bm = {xm1, xm2, . . .}(3.4)

are sets of all 0th generation and mth generation vertices for m ≥ 1, respectively. Similarly,

we decompose the territory XB of B into a possibly finite disjoint union

XB = XB0 ∪XB1 ∪XB2 ∪ · · · ,

where the subterritory is defined by

XBk
=

⋃
{coz hx : x is a kth generation vertex in B}

for k = 0, 1, 2, . . ..

Suppose f is an eigenfunction of TB associated with a nonzero eigenvalue λ arising from

an active branch B of the graph of T . We have

λf = TBf =
∑
xi∈B

f(xi)hi.

Using (3.3) and (3.4), we write

f =
∑
xi∈B

1
λ

f(xi)hi =
n∑

j=1

1
λ

f(xj)hj +
∑
i≥1

∑
xij∈Bi

1
λ

f(xij)hij .

We can thus decompose f as a disjoint sum

f = f0 + f1 + f2 + · · · ,(3.5)

where

f0 =
n∑

j=1

1
λ

f(xj)hj and fi =
∑

xij∈Bi

1
λ

f(xij)hij

have cozeros contained in XBi for each i = 0, 1, 2, . . .. Note that the sum in (3.5) converges

in norm by Lemma 2.5. We call (3.5) the generation decomposition of the eigenfunction f .

Moreover, we have

coz TBf0 ⊆ XB0 ∪XB1 and coz TBfn ⊆ XBn+1 for n ≥ 1.(3.6)
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Remark that hm(xn) 6= 0 exactly when xm // xn. Hence

Thm =
∑

xm // xn

hm(xn)hn.(3.7)

Theorem 3.5. Let T be a compact disjointness preserving complex linear operator on

C0(X). A nonzero complex number λ is an eigenvalue of T if and only if there is an active

branch B of the graph of T with the primitive cycle [x1; . . . ;xn] such that

λn = h1(xn)h2(x1) · · ·hn(xn−1).

Here, we assume TB =
∑

i δxi⊗hi as in Theorem 2.6. In this case, a nonzero eigenfunction

f of T associated to λ with a generation decomposition f = f0 + f1 + f2 + · · · can be

constructed as follows.

f0 =
hn(xn−1) · · ·h3(x2)h2(x1)

λn−1
h1 +

hn(xn−1) · · ·h3(x2)
λn−2

h2 + · · ·+ hn,

fk =
T k−1(T − λ)

λk
f0 for all k ≥ 1.

In fact, every eigenfunction of T associated to λ must have this form up to scalar multiples.

Proof. If λ 6= 0 is an eigenvalue of T , then λ is an eigenvalue of TB for some active branch

B of the graph G of T by Lemmas 3.1 and 3.3. Let B0 = [x1;x2; . . . ;xn] be the primitive

cycle of B. Write TB = T0 + T∞, where T0 =
∑n

i=1 δxi ⊗ hi is the part arising from

all 0th generation vertices x1, x2, . . . , xn, and T∞ =
∑

x∈B\B0
δx ⊗ hx is the part arising

from all other vertices in B. Note that T0 and T∞ are disjoint by (3.2), and are both

compact disjointness preserving linear operators on C0(X) by Theorem 2.6. As a result,

σ(TB) = σ(T0) ∪ σ(T∞). By Lemma 3.3, σ(T∞) = {0} since the graph of T∞ consists of a

single noble branch. Hence,

σ(TB) = σ(T0) ∪ {0}.

Consequently, the nonzero eigenvalue λ of T is also an eigenvalue of T0.

Let f0 6= 0 be an eigenfunction of T0 associated with λ. Write f0 =
∑n

i=1 aihi. By setting

x0 = xn and h0 = hn, we have

T0f0 =
n∑

i=1

aihi(xi−1)hi−1 = λf0 =
n∑

i=1

λaihi.
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It follows from the disjointness of hi’s that
0 h2(x1) · · · 0
...

...
. . .

...

0 0 · · · hn(xn−1)

h1(xn) 0 · · · 0




a1

a2

...

an

 = λ


a1

a2

...

an

 .

Therefore,

λn = h1(xn) h2(x1) · · · hn(xn−1),

and up to scalar multiples we must have

f0 =
hn(xn−1) · · ·h3(x2)h2(x1)

λn−1
h1 +

hn(xn−1) · · ·h3(x2)
λn−2

h2 + · · ·+ hn.(3.8)

Let f be nonzero in C0(X) such that TBf = λf . Assume that f has the generation

decomposition form, then by (3.6) and the disjointness of hn, up to scalar multiples,

f = f0 + f1 + f2 + · · ·

as asserted in the statement of this theorem. Clearly, we have Tf = λf .

Conversely, suppose B is an active branch of the graph of T with the primitive cycle

[x1;x2; . . . , xn] and λn = h1(xn) h2(x1) · · · hn(xn−1). Then the nonzero function f0 given

by (3.8) is an eigenfunction of T0 =
∑n

i=1 δxi ⊗ hi. Define

fk =
T k−1(T − λ)

λk
f0 for all k = 1, 2, . . . .

It follows from (3.7) that f1 = (T−λ)f0

λ is a linear sum of finitely many disjoint functions

h1j of the first generation, and f2 = Tf1

λ =
∑

j≥1
1
λf1(x2j)h2j is a linear sum of disjoint

functions of the second generation. In general, fk is a linear sum of disjoint functions of

the kth generation. Let

Ck = max{‖hkj‖ : hkj is of the kth generation} for every k = 0, 1, 2, . . . .

From the disjointness of hkj
, we have ‖T k−1f1‖ ≤ aC1C2 · · ·Ck for some constant a > 0

and all k ≥ 1. By Lemma 2.5, Ck → 0 as k →∞. For every ε > 0 there is an i0 such that

Ci < |λ|
2 ε for all i > i0. We obtain

‖T k−1f1‖
|λ|k−1

≤ aC1C2 · · ·Ck

|λ|k−1
≤ A

( ε

2

)k−i0
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for some positive constant A and all k > i0 + 1. Therefore,
∑

k≥1
T k−1(T−λ)

λk f0 converges in

norm in C0(X). And it is clear that

f = f0 +
∑
k≥1

fk =

I +
∑
k≥1

T k−1(T − λ)
λk

 f0

is an eigenfunction of T with Tf = λf . The proof is now complete. �

Remark 3.6. We note that there might be more than one (but finitely many) active

branches B of G giving rise to the same λ. All such functions constructed as above for all

these branches form a basis of the (finite dimensional) eigenspace of T associated with this

nonzero eigenvalue λ.

Example 3.7. Let T : C0(N) → C0(N) be defined by

T (x1, x2, x3, x4, x5, x6, x7, x8, x9, . . .)

= (x2,
x3
2 , x1

3 , x1
4 , x2

5 , x3
6 , x4

7 , x5
8 , x6

9 , . . .).

Then Tf =
∑∞

n=1 f(n)hn is a compact disjointness preserving linear operator on C0(N),

where

h1 =
1
3

χ3 +
1
4

χ4, h2 = χ1 +
1
5

χ5, h3 =
1
2

χ2 +
1
6

χ6,

and

hn =
1

n + 3
χn+3 for all n ≥ 4.

As usual, χn denotes the (continuous) characteristic function of the closed and open subset

{n} of N. Here the graph of T consists of two branches — the noble branch {∞} and the

active branch B

1

OO

4// 7// · · ·//

2

OO

5// 8// · · ·//

3

��

6// 9// · · · .//

We note that the primitive cycle of the unique active branch B depicted above is [1; 2; 3],

Theorem 3.5 ensures that all nonzero eigenvalues λ of T arise from the equation

λ3 = h1(3)h2(1)h3(2) = 1/6.
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For each one of those three λ, we may set

f0 = h3(2)h2(1)
λ2 h1 + h3(2)

λ h2 + h3 = 1
2λ2 h1 + 1

2λh2 + h3

= 1
2λ χ1 + 1

2 χ2 + 1
6λ2 χ3 + 1

8λ2 χ4 + 1
10λ χ5 + 1

6 χ6,

and, for n ≥ 1,

fn = 3
4·7···(3n+1)λn−1 h3n+1 + 1

2·5·8···(3n+2)λn+1 h3n+2 + 1
6·9···(3n+3)λn h3n+3

= 3
4·7···(3n+4)λn−1 χ3n+4 + 1

2·5·8···(3n+5)λn+1 χ3n+5 + 1
6·9···(3n+6)λn χ3n+6.

Consequently, the eigenspace of T associated with this eigenvalue λ is spanned by

f =
∑∞

n=0 fn

= 1
2λ χ1 + 1

2 χ2 + 1
6λ2 χ3 + 1

8λ2 χ4 + 1
10λ χ5 + 1

6 χ6

+
∑∞

n=1

[
3

4·7···(3n+4)λn−1 χ3n+4 + 1
2·5·8···(3n+5)λn+1 χ3n+5 + 1

6·9···(3n+6)λn χ3n+6

]
=

(
1
2λ , 1

2 , 1
6λ2 , 1

8λ2 , 1
10λ , 1

6 , 3
28 , 1

80λ2 , 1
54λ , . . .

)
.

4. More properties of compact disjointness preserving operators

Let T : E → F be a bounded linear operator between Banach spaces. It is well known

that T is compact if and only if T has a compact factorization through a closed subspace

of c0 (see, e.g., [18, Theorem 19.4]). A result of Terzioglu states that T has a compact

factorization through the whole of c0 if and only if there exists a sequence (ηn) in c0, an

equicontinuous sequence {fn}n in the dual space E∗ of E and a summable sequence {yn}n

in F such that

Tx =
∑

n

ηn 〈x, fn〉 yn for all x ∈ E,

where 〈·, ·〉 is the dual pair of E and E∗ (see, e.g., [18, Theorem 19.6]).

Corollary 4.1. Let T : C0(X) → C0(Y ) be a bounded disjointness preserving linear oper-

ator. Then T is compact if and only if T has a compact factorization through c0.

Proof. Let T be a compact disjointness preserving linear operator of C0(X). The case that

T is of finite rank is trivial. Therefore, by Theorem 2.6, we suppose Tf =
∑∞

n=1 f(xn)hn,

where xn 6= xm in X, hnhm = 0 in C0(Y ) whenever n 6= m, and hn is nonzero but convergent
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to zero in norm. Let

S(f) = (f(xn)‖hn‖1/2) for all f ∈ C0(X),

R(z) =
∞∑

n=1

zn
hn

‖hn‖1/2
for all z = (zn) ∈ c0.

Then T = RS factors through c0. The other direction is trivial. �

Corollary 4.2. Let T : C0(X) → C0(Y ) be a bounded disjointness preserving operator of

the form (2.1). Then T is compact if and only if the following conditions hold.

(i) The image of ϕ is a countable set ϕ(YT ) = {x1, x2, . . .} such that each Yn = ϕ−1(xn)

is open; and

(ii) h ∈ C0(YT ), that is, h can be continuously extended to the whole of Y ∪{∞} by setting

h = 0 outside YT .

Proof. The necessity follows from Theorem 2.6. We verify the sufficiency. For each n =

1, 2, . . ., let hn(y) = h(y) on Yn and 0 on Y ∪{∞}\Yn. Then hn = hχYn is continuous on Y ∪

{∞} and Tf(y) =
∑

n f(xn)hn(y) pointwise on Y . We claim that the sum T =
∑

n δxn⊗hn

converges uniformly. To this end, let ε > 0 and observe that the set {y ∈ YT : |h(y)| ≥ ε} is

a compact subset of YT =
⋃

n Yn. Hence there is a positive integer N such that |h(y)| < ε

whenever y /∈
⋃N

n=1 Yn. In other words, ‖hn‖ < ε for all n > N . Thus the sum converges

uniformly, and so T is compact. �

Let M(X) denote the Banach dual space of C0(X) consisting of bounded Radon measures

on X. A subset S of M(X) is said to be controlled by a finite positive measure µ on X if

every ν in S is absolutely continuous with respect to µ. The set S is said to be dominated

by µ if for all ε > 0 there is a δ > 0 such that for any Borel subset B of X with µ(B) < δ,

we have |ν(B)| < ε for all ν in S. It is clear that a dominating measure of S is also a

controlling measure of S. By the Bartle-Dunford-Schwartz Theorem [4], a bounded linear

operator T from C0(X) into a Banach space F is weakly compact if and only if the image

T ∗UF ∗ of the dual unit ball of F under the dual map T ∗ has a dominating measure.

Corollary 4.3. Let T : C0(X) → C0(Y ) be a bounded disjointness preserving linear oper-

ator. The following two assertions are equivalent.

(i) T is compact;
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(ii) T ∗UC0(Y )∗ is dominated by a positive bounded atomic measure on X.

Proof. Assume T is compact. By Theorem 2.6, we write Tf =
∑∞

n=1 f(xn)hn. Without

loss of generality, we can assume ‖T‖ < 1 and thus 0 < ‖hn‖ < 1 for all n. Let

Pm = {xn : 2−m < ‖hn‖ ≤ 2−m+1},

and pm = #Pm be the finite cardinality of Pm (Lemma 2.5). Define a bounded atomic

measure on X by

µ =
∑

pm 6=0

1
2mpm

∑
xn∈Pm

δxn .

For all ε > 0, there is a positive integer N such that
∑∞

m=N+1
1

2m−1 < ε. Let 0 < δ ≤ 1
2npn

for all 1 ≤ n ≤ N with pn 6= 0. Then for all Borel subsets A of X with µ(A) < δ, we have

A ∩ Pm = ∅ for all 1 ≤ m ≤ N.(4.1)

On the other hand, let ν be any Borel measure on Y with ‖ν‖ ≤ 1 and f ∈ C0(X). We

have

(T ∗ν)(f) =
∫

Y
Tf dν =

∫
Y

∑
n

f(xn)hn dν

=
∑

n

f(xn)
∫

Y
hn dν =

∑
pm 6=0

∑
xn∈Pm

f(xn)
∫

Y
hn dν.

Hence,

|(T ∗ν)(A)| =
∣∣∣∣∫

X
χA d(T ∗ν)

∣∣∣∣ =

∣∣∣∣∣∣
∑

pm 6=0

∑
xn∈Pm

χA(xn)
∫

Y
hn dν

∣∣∣∣∣∣
≤

∑
pm 6=0

∑
xn∈Pm

χA(xn)
|ν|(coz hn)

2m−1

=
∑

pm 6=0

1
2m−1

∑
xn∈A∩Pm

|ν|(coz hn)

≤
∑

A∩Pm 6=∅

1
2m−1

since hn has disjoint cozeros and ‖ν‖ ≤ 1. If µ(A) < δ, then

|(T ∗ν)(A)| ≤
∞∑

m=N+1

1
2m−1

< ε
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by (4.1). Therefore, the sufficiency is verified. The converse follows from Theorem 2.6 and

the theorem of Bartle, Dunford and Schwartz [4]. �

Corollary 4.4. Let T : C0(X) → C0(Y ) be a bounded disjointness preserving linear opera-

tor. Suppose the range of the dual map T ∗ is controlled by a finite positive atomic measure

µ =
∑

n λnδxn. If {x1, x2, . . .} is a discrete subset of X with compact closure in X, then T

is compact.

Proof. By assumption, for every y in Y , we have T ∗δy � µ. The Radon-Nikodym Theorem

ensures T ∗δy =
∑∞

n=1 hn(y)δxn for some scalars hn(y). So we have

Tf =
∞∑

n=1

f(xn)hn.

Since T is disjointness preserving and {x1, x2, . . .} is discrete, we obtain hn ∈ C0(Y ) and

hnhm = 0 for n 6= m by the complete regularity of X. Let f ∈ C0(X) such that f ≡ 1 on

suppµ = {xn : n = 1, 2, . . .}. Then Tf =
∑∞

n=1 hn ∈ C0(Y ). For ε > 0, the compact set

{y ∈ Y : |Tf(y)| ≥ ε} ⊆ {y ∈ Y : Tf(y) 6= 0} =
⋃∞

n=1 coz hn. Thus there is an integer N

such that

{y ∈ Y : sup
n
|hn(y)| ≥ ε} ⊆

N⋃
n=1

coz hn.

Since coz hn ∩ coz hm = ∅ for n 6= m, we have
⋃

n>N coz hn ⊆ {y ∈ Y : supn |hn(y)| < ε}.

Hence, ‖hn‖ < ε for all n > N . Consequently, {hn}n converges to zero in norm. Therefore,

T =
∑∞

n=1 δxn ⊗ hn is compact from C0(X) into C0(Y ). �

We close the paper with some examples. The first two examples show that both the

discreteness and the compactness in Corollary 4.4 are essential. The second one also shows

that Corollary 4.2 is sharp. The third one shows that the converse of Corollary 4.4 does

not hold.

Example 4.5. (a) Let X = [0, 1] and Y =
⋃∞

n=1[
1
2n , 1

2n−1 ] ∪ {0}. Let ϕ : Y → X be the

continuous map defined by

ϕ(y) =

 1
2n , y ∈ [ 1

2n , 1
2n−1 ];

0, y = 0.
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Define T : C(X) → C(Y ) by

Tf(y) = f(ϕ(y)) =

 f( 1
2n), 1

2n ≤ y ≤ 1
2n−1 ;

f(0), y = 0.

Then T is bounded and disjointness preserving with T ∗ν � δ0+
∑

n
δ1/2n

2n for all bounded

Borel measures ν on Y . It is easy to see that YT = Y, h ≡ 1 ∈ C(YT ), and ϕ(YT ) =

{0, 1/2, 1/4, 1/6, . . .} with 0 as its unique cluster point. Set h0 = χ{0} and hn =

χ[ 1
2n

, 1
2n−1

] ∈ C(Y ) for n = 1, 2, . . .. Note that h0 /∈ C(Y ), ϕ−1(0) = {0} is not open in

Y , and Tf = f(0)h0 +
∑∞

n=1 f(1/2n)hn pointwise. But T is not compact.

(b) Let T : C0(R) → C0(R) be defined by

Tf(x) =
∞∑

n=1

f(n)(sinπx)χ(n,n+1)(x) for all x ∈ R.

Then T is disjointness preserving such that T ∗ν �
∑∞

n=1
δn
2n for all bounded Borel

measures ν on R. But T is not compact on C0(R). Note that {1, 2, . . .} does not have

compact closure in R and h = sinπx /∈ C0(R).

(c) Enumerate the rational numbers Q = {r1, r2, . . .}. Let {hn}n be a sequence of disjoint

nonzero functions in C0(R) with lim
n→∞

‖hn‖ = 0. As a uniformly convergent sum of rank

one operators,

T =
∞∑

n=1

δrn ⊗ hn

is a compact disjointness preserving operator on C0(R). Note that

T ∗ν =
∞∑

n=1

(∫
hndν

)
δrn for all ν ∈ C0(R)∗.

It is easy to see that neither the condition {x1, x2, . . .} being discrete nor the closure of

{x1, x2, . . .} in R being compact is satisfied by any atomic controlling measure
∑

n λnδxn

of the range of T ∗. �
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