# TWO GENERALIZED STRONG CONVERGENCE THEOREMS OF HALPERN'S TYPE IN HILBERT SPACES AND APPLICATIONS 

Wataru Takahashi, Ngai-Ching Wong* and Jen-Chih Yao


#### Abstract

Let $C$ be a closed convex subset of a real Hilbert space $H$. Let $A$ be an inverse-strongly monotone mapping of $C$ into $H$ and let $B$ be a maximal monotone operator on $H$ such that the domain of $B$ is included in $C$. We introduce two iteration schemes of finding a point of $(A+B)^{-1} 0$, where $(A+B)^{-1} 0$ is the set of zero points of $A+B$. Then, we prove two strong convergence theorems of Halpern's type in a Hilbert space. Using these results, we get new and well-known strong convergence theorems in a Hilbert space.


## 1. Introduction

Let $H$ be a Hilbert space and let $C$ be a nonempty closed convex subset of $H$. Let $\mathbb{N}$ and $\mathbb{R}$ be the sets of positive integers and real numbers, respectively. Let $f: C \times C \rightarrow \mathbb{R}$ be a bifunction and let $A$ be a nonlinear mapping of $C$ into $H$. Then, a generalized equilibrium problem (with respect to $C$ ) is to find $\hat{x} \in C$ such that

$$
\begin{equation*}
f(\hat{x}, y)+\langle A \hat{x}, y-\hat{x}\rangle \geq 0, \quad \forall y \in C \tag{1.1}
\end{equation*}
$$

The set of such solutions $\hat{x}$ is denoted by $E P(f, A)$, i.e.,

$$
E P(f, A)=\{\hat{x} \in C: f(\hat{x}, y)+\langle A \hat{x}, y-\hat{x}\rangle \geq 0, \forall y \in C\}
$$

In the case of $A=0, E P(f, A)$ is denoted by $E P(f)$. In the case of $f=0, E P(f, A)$ is also denoted by $\operatorname{VI}(C, A)$. This is the set of solutions of the variational inequality for $A$; see [15] and [19]. Let $T$ be a mapping of $C$ into $H$. We denote by $F(T)$ the set of fixed points of $T$. A mapping $T: C \rightarrow H$ is nonexpansive if

$$
\|T x-T y\| \leq\|x-y\|, \quad \forall x, y \in C
$$

[^0]For a nonexpansive mapping $T: C \rightarrow C$, the iteration procedure of Halpern's type is as follows: $u \in C, x_{1} \in C$ and

$$
x_{n+1}=\alpha_{n} u+\left(1-\alpha_{n}\right) T x_{n}, \quad \forall n \in \mathbb{N},
$$

where $\left\{\alpha_{n}\right\}$ is a sequence in [0,1]; see [10]. Let $\alpha>0$ be a given constant. A mapping $A: C \rightarrow H$ is said to be $\alpha$-inverse-strongly monotone if

$$
\langle x-y, A x-A y\rangle \geq \alpha\|A x-A y\|^{2}, \quad \forall x, y \in C .
$$

A multi-valued mapping $B$ on $H$ is said to be monotone if $\langle x-y, u-v\rangle \geq 0$ for all $x, y \in \operatorname{dom}(B), u \in B x$, and $v \in B y$, where $\operatorname{dom}(B)$ is the domain of $B$. A monotone operator $B$ on $H$ is said to be maximal if its graph is not properly contained in the graph of any other monotone operator on $H$. For a maximal monotone operator $B$ on $H$ and $r>0$, we may define a single-valued operator $J_{r}=(I+r B)^{-1}: H \rightarrow \operatorname{dom}(B)$, which is called the resolvent of $B$ for $r>0$. The resolvent of $B$ for $r>0$ is nonexpansive, see [23]. A mapping $U: C \rightarrow H$ is a strict pseudo-contraction [7] if there is $k \in \mathbb{R}$ with $0 \leq k<1$ such that

$$
\|U x-U y\|^{2} \leq\|x-y\|^{2}+k\|(I-U) x-(I-U) y\|^{2}, \quad \forall x, y \in C .
$$

We call such $U$ a $k$-strict pseudo-contraction. A $k$-strict pseudo-contraction $U: C \rightarrow H$ is nonexpansive if $k=0$. A mapping $T: C \rightarrow H$ is quasi-nonexpansive if $F(T) \neq \emptyset$ and

$$
\|T u-v\| \leq\|u-v\|, \quad \forall u \in C, v \in F(T) .
$$

If $S: C \rightarrow H$ is a nonexpansive mapping, then $I-S$ is $\frac{1}{2}$-inverse-strongly monotone, where $I$ is the identity mapping. A nonexpansive mapping $S: C \rightarrow H$ with $F(S) \neq \emptyset$ is quasi-nonexpansive; see [23]. We also know that if $U: C \rightarrow H$ is a $k$-strict pseudocontraction with $0 \leq k<1$, then $A=I-U$ is a $\frac{1-k}{2}$-inverse-strongly monotone mapping; see, for instance, Marino and Xu [14]. Zhou [29] proved the following strong convergence theorem of Halpern's type for strict pseudo-contractions in a Hilbert space.

Theorem 1. Let $H$ be a Hilbert space and let $C$ be a nonempty closed convex subset of $H$. Let $k$ be a real number with $0 \leq k<1$ and let $U: C \rightarrow H$ be a $k$-strict pseudo-contraction such that $F(U) \neq \emptyset$. Let $\left\{x_{n}\right\} \subset C$ be a sequence generated by $u \in C, x_{1}=x \in C$ and

$$
\left\{\begin{array}{l}
y_{n}=P_{C}\left[\beta_{n} x_{n}+\left(1-\beta_{n}\right) U x_{n}\right], \\
x_{n+1}=\alpha_{n} u+\left(1-\alpha_{n}\right) y_{n}, \quad \forall n \in \mathbb{N},
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\} \subset(0,1)$ and $\left\{\alpha_{n}\right\} \subset(0,1)$ satisfy

$$
\alpha_{n} \rightarrow 0, \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty, \quad \sum_{n=1}^{\infty}\left|\alpha_{n}-\alpha_{n+1}\right|<\infty,
$$

$$
k \leq \beta_{n} \leq b<1, \quad \text { and } \quad \sum_{n=1}^{\infty}\left|\beta_{n}-\beta_{n+1}\right|<\infty
$$

Then, $\left\{x_{n}\right\}$ converges strongly to $z_{0}=P_{F(U)} u$, where $P_{F(U)}$ is the metric projection of $H$ onto $F(U)$.

In this paper, motivated by the generalized equilibrium problem and Zhou's theorem (Theorem 1), we first pove a strong convergence theorem for finding a zero point of $A+B$, where $A$ is an inverse-strongly monotone mapping of $C$ into $H$ and $B$ is a maximal monotone operator on $H$ such that the domain of $B$ is included in $C$. For eample, if $A=I-U$, where $U$ is a strict pseodo-contraction, and $B$ is the indicator function of $C$, then this result generalizes Zhou's one. Furthermore, we prove another strong convergence theorem which is different from the above form in a Hilbert space. Using these results, we get new and well-known strong convergence theorems in a Hilbert space.

## 2. Preliminaries

Let $H$ be a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$, respectively. For $x, y \in H$ and $\lambda \in \mathbb{R}$, we have from [23] that

$$
\begin{equation*}
\|\lambda x+(1-\lambda) y\|^{2}=\lambda\|x\|^{2}+(1-\lambda)\|y\|^{2}-\lambda(1-\lambda)\|x-y\|^{2} \tag{2.1}
\end{equation*}
$$

All Hilbert spaces satisfy Opial's condition, that is,

$$
\liminf _{n \rightarrow \infty}\left\|x_{n}-u\right\|<\liminf _{n \rightarrow \infty}\left\|x_{n}-v\right\|
$$

if $x_{n} \rightharpoonup u$ and $u \neq v$; see [16]. Let $C$ be a nonempty closed convex subset of a Hilbert space $H$. The nearest point projection of $H$ onto $C$ is denoted by $P_{C}$, that is, $\left\|x-P_{C} x\right\| \leq\|x-y\|$ for all $x \in H$ and $y \in C$. Such $P_{C}$ is called the metric projection of $H$ onto $C$. We know that the metric projection $P_{C}$ is firmly nonexpansive, i.e.,

$$
\begin{equation*}
\left\|P_{C} x-P_{C} y\right\|^{2} \leq\left\langle P_{C} x-P_{C} y, x-y\right\rangle \tag{2.2}
\end{equation*}
$$

for all $x, y \in H$. Furthermore $\left\langle x-P_{C} x, y-P_{C} x\right\rangle \leq 0$ holds for all $x \in H$ and $y \in C$; see [21]. Let $\alpha>0$ be a given constant. A mapping $A: C \rightarrow H$ is said to be $\alpha$-inversestrongly monotone if $\langle x-y, A x-A y\rangle \geq \alpha\|A x-A y\|^{2}$ for all $x, y \in C$. It is known that $\|A x-A y\| \leq(1 / \alpha)\|x-y\|$ for all $x, y \in C$ if $A$ is $\alpha$-inverse-strongly monotone; see, for example, [25]. Let $B$ be a mapping of $H$ into $2^{H}$. The effective domain of $B$ is denoted by $\operatorname{dom}(B)$, that is, $\operatorname{dom}(B)=\{x \in H: B x \neq \emptyset\}$. A multi-valued mapping $B$ on $H$ is said to be monotone if $\langle x-y, u-v\rangle \geq 0$ for all $x, y \in \operatorname{dom}(B)$, $u \in B x$, and $v \in B y$. A monotone operator $B$ on $H$ is said to be maximal if its
graph is not properly contained in the graph of any other monotone operator on $H$. For a maximal monotone operator $B$ on $H$ and $r>0$, we may define a single-valued operator $J_{r}=(I+r B)^{-1}: H \rightarrow \operatorname{dom}(B)$, which is called the resolvent of $B$ for $r$. Let $B$ be a maximal monotone operator on $H$ and let $B^{-1} 0=\{x \in H: 0 \in B x\}$. It is known that the resolvent $J_{r}$ is firmly nonexpansive and $B^{-1} 0=F\left(J_{r}\right)$ for all $r>0$. It is also known that $\left\|J_{\lambda} x-J_{\mu} x\right\| \leq(|\lambda-\mu| / \lambda)\left\|x-J_{\lambda} x\right\|$ holds for all $\lambda, \mu>0$ and $x \in H$; see $[9,21]$ for more details. As a matter of fact, we know the following lemma [20].

Lemma 2. Let $H$ be a real Hilbert space and let $B$ be a maximal monotone operator on $H$. For $r>0$ and $x \in H$, define the resolvent $J_{r} x$. Then the following holds:

$$
\frac{s-t}{s}\left\langle J_{s} x-J_{t} x, J_{s} x-x\right\rangle \geq\left\|J_{s} x-J_{t} x\right\|^{2}
$$

for all $s, t>0$ and $x \in H$.
Furthermore, for a mapping $A$ of $C$ into $H$, we know that $F\left(J_{\lambda}(I-\lambda A)\right)=$ $(A+B)^{-1} 0$ for all $\lambda>0$; see [4]. We also know the following lemmas:

Lemma 3. ([18]). Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be bounded sequences in a Banach space and let $\left\{\beta_{n}\right\}$ be a sequence in $[0,1]$ such that $0<\lim \inf _{n \rightarrow \infty} \beta_{n} \leq \lim \sup _{n \rightarrow \infty} \beta_{n}<1$. Suppose $x_{n+1}=\left(1-\beta_{n}\right) y_{n}+\beta_{n} x_{n}$ for all $n \in \mathbb{N}$ and $\lim \sup _{n \rightarrow \infty}\left(\left\|y_{n+1}-y_{n}\right\|-\right.$ $\left.\left\|x_{n+1}-x_{n}\right\|\right) \leq 0$. Then, $\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0$.

Lemma 4. ([2,28]). Let $\left\{s_{n}\right\}$ be a sequence of nonnegative real numbers, let $\left\{\alpha_{n}\right\}$ be a sequence in $[0,1]$ with $\sum_{n=1}^{\infty} \alpha_{n}=\infty$, let $\left\{\beta_{n}\right\}$ be a sequence of nonnegative real numbers with $\sum_{n=1}^{\infty} \beta_{n}<\infty$, and let $\left\{\gamma_{n}\right\}$ be a sequence of real numbers with $\lim \sup _{n \rightarrow \infty} \gamma_{n} \leq 0$. Suppose that

$$
s_{n+1} \leq\left(1-\alpha_{n}\right) s_{n}+\alpha_{n} \gamma_{n}+\beta_{n}
$$

for all $n=1,2, \ldots$. Then $\lim _{n \rightarrow \infty} s_{n}=0$.

## 3. Inverse-strongly Monotone Mappings

Let $H$ be a Hilbert space and let $C$ be a nonempty closed convex subset of $H$. A mapping $U: C \rightarrow H$ is called a widely strict pseudo-contraction if there is a real number $k \in \mathbb{R}$ with $k<1$ such that

$$
\begin{equation*}
\|U x-U y\|^{2} \leq\|x-y\|^{2}+k\|(I-U) x-(I-U) y\|^{2} \tag{3.1}
\end{equation*}
$$

for all $x, y \in C$. Such a mapping $U$ is called a widely $k$-strict pseudo-contraction. We know that a widely $k$-strict pseudo-contraction is a strict pseudo-contraction [7] if $0 \leq k<1$. A widely $k$-strict pseudo-contraction is also a nonexpansive mapping if
$k=0$. Conversely, we have that if $T: C \rightarrow H$ is a nonexpansive mapping, then for any $n \in \mathbb{N}, U=\frac{1}{1+n} T+\frac{n}{1+n} I$ is a widely $(-n)$-strict pseudo-contraction. As in Zhou [29], we obtain the following result.

Lemma 5. Let $H$ be a Hilbert space and let $C$ be a nonempty closed convex subset of $H$. Let $k<1$ and let $U: C \rightarrow H$ be a widely $k$-strict pseudo-contraction such that $F(U) \neq \emptyset$ and let $P_{C}$ be the metric projection of $H$ onto $C$. Then, $F\left(P_{C} U\right)=F(U)$.

Proof. Take $z, v \in C$ with $P_{C} U z=z$ and $U v=v$. Then we obtain from (2.1) and (2.2) that

$$
\begin{aligned}
2\|z-v\|^{2} & =2\left\|P_{C} U z-P_{C} U v\right\|^{2} \\
& \leq 2\left\langle U z-U v, P_{C} U z-P_{C} U v\right\rangle \\
& =2\langle U z-v, z-v\rangle \\
& =\|U z-v\|^{2}+\|v-z\|^{2}-\|U z-z\|^{2}-\|v-v\|^{2}
\end{aligned}
$$

and hence

$$
\|z-v\|^{2}+\|U z-z\|^{2} \leq\|U z-v\|^{2}
$$

Since $U$ is a widely strict pseudo-contraction, we have that

$$
\|z-v\|^{2}+\|U z-z\|^{2} \leq\|U z-v\|^{2} \leq\|z-v\|^{2}+k\|z-U z\|^{2}
$$

and hence $(1-k)\|U z-z\|^{2} \leq 0$. From $1-k>0$, we have $\|U z-z\|^{2} \leq 0$ and then $U z=z$. This completes the proof.

We also know that a mapping $A: C \rightarrow H$ is called inverse-strongly monotone if there exisis $\alpha>0$ such that

$$
\begin{equation*}
\alpha\|A x-A y\|^{2} \leq\langle x-y, A x-A y\rangle \tag{3.2}
\end{equation*}
$$

for all $x, y \in C$. Such a mapping $A$ is called $\alpha$-inverse strongly monotone. Recently, Hojo, Takahashi and Yao [11] also introduced a class of nonlinear mappings in a Hilbert space which contains the class of generalized hybrid mappings: A mapping $U: C \rightarrow H$ is called extended hybrid if there are $\alpha, \beta, \gamma \in \mathbb{R}$ such that

$$
\begin{align*}
& \alpha(1+\gamma)\|U x-U y\|^{2}+(1-\alpha(1+\gamma))\|x-U y\|^{2} \\
& \quad \leq(\beta+\alpha \gamma)\|U x-y\|^{2}+(1-(\beta+\alpha \gamma))\|x-y\|^{2}  \tag{3.3}\\
& \quad-(\alpha-\beta) \gamma\|x-U x\|^{2}-\gamma\|y-U y\|^{2}
\end{align*}
$$

for all $x \in C$. Such a mapping $U$ is called $(\alpha, \beta, \gamma)$-extended hybrid. In [11], they proved the following theorem which represents a relation between the class of generalized hybrid mappings and the class of extended hybrid mappings in a Hilbert space; see also [12] and [26].

Theorem 6. Let $C$ be a nonempty closed convex subset of a Hilbert space $H$ and let $\alpha, \beta$ and $\gamma$ be real numbers with $\gamma \neq-1$. Let $T$ and $U$ be mappings of $C$ into $H$ such that $U=\frac{1}{1+\gamma} T+\frac{\gamma}{1+\gamma} I$. Then, for $1+\gamma>0, T: C \rightarrow H$ is an $(\alpha, \beta)$-generalized hybrid mapping if and only if $U: C \rightarrow H$ is an $(\alpha, \beta, \gamma)$-extended hybrid mapping. In this case, $F(T)=F(U)$.

Now, we deal with some properties for inverse-strongly monotone mappings in a Hilbert space.

Lemma 7. Let $H$ be a Hilbert space and let $C$ be a nonempty closed convex subset of $H$. Let $\alpha>0$ and let $A, U$ and $T$ be mappings of $C$ into $H$ such that $U=I-A$ and $T=2 \alpha U+(1-2 \alpha) I$. Then, the following are equivalent:
(a) $A$ is an $\alpha$-inverse-strongly monotone mapping, i.e.,

$$
\alpha\|A x-A y\|^{2} \leq\langle x-y, A x-A y\rangle, \quad \forall x, y \in C
$$

(b) $U$ is a widely $(1-2 \alpha)$-strict pseudo-contraction, i.e.,

$$
\|U x-U y\|^{2} \leq\|x-y\|^{2}+(1-2 \alpha)\|(I-U) x-(I-U) y\|^{2}, \quad \forall x, y \in C
$$

(c) $U$ is a $(1,0,2 \alpha-1)$-extended hybrid mapping, i.e.,

$$
\begin{aligned}
& 2 \alpha\|U x-U y\|^{2}+(1-2 \alpha)\|x-U y\|^{2} \\
& \quad \leq(2 \alpha-1)\|U x-y\|^{2}+2(1-\alpha)\|x-y\|^{2} \\
& \quad-(2 \alpha-1)\|x-U x\|^{2}-(2 \alpha-1)\|y-U y\|^{2}, \quad \forall x, y \in C
\end{aligned}
$$

(d) $T$ is a nonexpansive mapping.

In this case, $Z(A)=F(U)=F(T)$, where $Z(A)=\{u \in C: A u=0\}$.
Proof. Let us show (a) $\Longleftrightarrow$ (b). We have that for all $x, y \in C$,

$$
\begin{aligned}
& \alpha\|A x-A y\|^{2} \leq\langle x-y, A x-A y\rangle \\
& \Longleftrightarrow 2 \alpha\|A x-A y\|^{2} \leq 2\langle x-y, A x-A y\rangle \\
& \Longleftrightarrow 2 \alpha\|A x-A y\|^{2} \leq\|x-y\|^{2}+\|A x-A y\|^{2}-\|x-A x-(y-A y)\|^{2} \\
& \Longleftrightarrow\|x-A x-(y-A y)\|^{2} \leq\|x-y\|^{2}+(1-2 \alpha)\|A x-A y\|^{2} \\
& \Longleftrightarrow\|U x-U y\|^{2} \leq\|x-y\|^{2}+(1-2 \alpha)\|(I-U) x-(I-U) y\|^{2} .
\end{aligned}
$$

Let us show $(\mathrm{b}) \Longleftrightarrow$ (c). Since

$$
\begin{aligned}
& \|(I-U) x-(I-U) y\|^{2}=\|x-y-(U x-U y)\|^{2} \\
& \quad=\|x-y\|^{2}+\|U x-U y\|^{2}-2\langle x-y, U x-U y\rangle \\
& =\|x-y\|^{2}+\|U x-U y\|^{2} \\
& \quad-\|x-U y\|^{2}-\|y-U x\|^{2}+\|x-U x\|^{2}+\|y-U y\|^{2}
\end{aligned}
$$

for all $x, y \in C$, we have that

$$
\begin{aligned}
\|U x-U y\|^{2} \leq & \|x-y\|^{2}+(1-2 \alpha)\|(I-U) x-(I-U) y\|^{2} \\
\Longleftrightarrow & \|U x-U y\|^{2} \leq\|x-y\|^{2}+(1-2 \alpha)\left(\|x-y\|^{2}+\|U x-U y\|^{2}\right. \\
& \left.\quad\|x-U y\|^{2}-\|y-U x\|^{2}+\|x-U x\|^{2}+\|y-U y\|^{2}\right) \\
\Longleftrightarrow & 2 \alpha\|U x-U y\|^{2}+(1-2 \alpha)\|x-U y\|^{2} \\
& \leq(2 \alpha-1)\|U x-y\|^{2}+2(1-\alpha)\|x-y\|^{2} \\
& \quad-(2 \alpha-1)\|x-U x\|^{2}-(2 \alpha-1)\|y-U y\|^{2} .
\end{aligned}
$$

Let us show $(\mathrm{b}) \Longleftrightarrow(\mathrm{d})$. We have that for all $x, y \in C$,

$$
\begin{aligned}
& \|T x-T y\|^{2} \leq\|x-y\|^{2} \\
& \Longleftrightarrow\|2 \alpha U x+(1-2 \alpha) x-2 \alpha U y-(1-2 \alpha) y\|^{2} \leq\|x-y\|^{2} \\
& \Longleftrightarrow 2 \alpha\|U x-U y\|^{2}+(1-2 \alpha)\|x-y\|^{2} \\
& \quad \begin{array}{l}
\quad-2 \alpha(1-2 \alpha)\|(I-U) x-(I-U) y\|^{2}-\|x-y\|^{2} \leq 0 \\
\Longleftrightarrow
\end{array} \quad 2 \alpha\|U x-U y\|^{2}-2 \alpha\|x-y\|^{2} \\
& \quad \quad-2 \alpha(1-2 \alpha)\|(I-U) x-(I-U) y\|^{2} \leq 0 \\
& \\
& \Longleftrightarrow\|U x-U y\|^{2}-\|x-y\|^{2}-(1-2 \alpha)\|(I-U) x-(I-U) y\|^{2} \leq 0 \\
& \Longleftrightarrow\|U x-U y\|^{2} \leq\|x-y\|^{2}+(1-2 \alpha)\|(I-U) x-(I-U) y\|^{2}
\end{aligned}
$$

Finally, let us show $Z(A)=F(U)=F(T)$. In fact, we have that for $u \in C$,

$$
A u=0 \Longrightarrow U u=u-A u=u \Longrightarrow T u=2 \alpha U u+(1-2 \alpha) u=u .
$$

We can also show the reverse implication. This completes the proof.
Remark 1. Let $\alpha>0$ and let $A: C \rightarrow H$ be $\alpha$-inverse-strongly monotone. Then, it is obvious that for any $\beta \in \mathbb{R}$ with $0<\beta \leq 2 \alpha, A$ is $\frac{\beta}{2}$-inverse-strongly monotone. So, we have from Lemma 3.1 that

$$
T=I-\beta A=I-\beta(I-U)=\beta U+(1-\beta) I
$$

is nonexpansive.
Using Lemma 7, we can get the following important result.
Lemma 8. Let $H$ be a Hilbert space and let $C$ be a nonempty closed convex subset of $H$. Let $k$ be a real number with $k<1$ and let $A, U$ and $T$ be mappings of $C$ into $H$ such that $U=I-A$ and $T=(1-k) U+k I$. Then, the following are equivalent:
(a) $A$ is a $\frac{1-k}{2}$-inverse-strongly monotone mapping;
(b) $U$ is a widely $k$-strict pseudo-contraction;
(c) $U$ is a $(1,0,-k)$-extended hybrid mapping;
(d) $T$ is a nonexpansive mapping.

In this case, $Z(A)=F(U)=F(T)$.
Proof. Putting $\alpha=\frac{1-k}{2}$ for $k<1$, we have $\alpha>0$. Furthermore, we have

$$
1-2 \alpha=1-(1-k)=k
$$

This means (a) $\Longleftrightarrow$ (b). Similarly, we obtain (b) $\Longleftrightarrow$ (c) $\Longleftrightarrow$ (d).
Remark 2. Let $k$ be a real number with $k<1$. If $U$ is a widely $k$-strict pseudocontraction, then for any $t \in \mathbb{R}$ with $k \leq t<1, U$ is a widely $t$-strict pseudocontraction. So, we have from Lemma 8 that

$$
T=(1-t) U+t I
$$

is nonexpansive.

## 4. Main Results

In this section, we first prove a strong convergence theorem which generalizes Zhou's theorem (Theorem 1) in a Hilbert space.

Theorem 9. Let $H$ be a real Hilbert space and let $C$ be a closed convex subset of $H$. Let $\alpha>0$. Let $A$ be an $\alpha$-inverse-strongly monotone mapping of $C$ into $H$ and let $B$ be a maximal monotone operator on $H$ such that the domain of $B$ is included in $C$. Let $J_{\lambda}=(I+\lambda B)^{-1}$ be the resolvent of $B$ for $\lambda>0$. Suppose that $(A+B)^{-1} 0 \neq \emptyset$. Let $u \in C, x_{1}=x \in C$ and let $\left\{x_{n}\right\} \subset C$ be a sequence generated by

$$
x_{n+1}=\alpha_{n} u+\left(1-\alpha_{n}\right) J_{\lambda_{n}}\left(x_{n}-\lambda_{n} A x_{n}\right)
$$

for all $n \in \mathbb{N}$, where $\left\{\lambda_{n}\right\} \subset(0, \infty)$ and $\left\{\alpha_{n}\right\} \subset(0,1)$ satisfy

$$
\begin{aligned}
& 0<a \leq \lambda_{n} \leq 2 \alpha, \quad \sum_{n=1}^{\infty}\left|\lambda_{n}-\lambda_{n+1}\right|<\infty \\
& \lim _{n \rightarrow \infty} \alpha_{n}=0, \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty, \quad \text { and } \quad \sum_{n=1}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty
\end{aligned}
$$

Then $\left\{x_{n}\right\}$ converges strongly to a point $z_{0}$ of $(A+B)^{-1} 0$, where $z_{0}=P_{(A+B)^{-1} 0} u$.
Proof. Put $y_{n}=J_{\lambda_{n}}\left(x_{n}-\lambda_{n} A x_{n}\right)$ and let $z \in(A+B)^{-1} 0$. Then, we have from $z=J_{\lambda_{n}}\left(z-\lambda_{n} A z\right)$ that

$$
\begin{align*}
\left\|y_{n}-z\right\|^{2} & =\left\|J_{\lambda_{n}}\left(x_{n}-\lambda_{n} A x_{n}\right)-z\right\|^{2} \\
& =\left\|J_{\lambda_{n}}\left(x_{n}-\lambda_{n} A x_{n}\right)-J_{\lambda_{n}}\left(z-\lambda_{n} A z\right)\right\|^{2} \\
& \leq\left\|\left(x_{n}-\lambda_{n} A x_{n}\right)-\left(z-\lambda_{n} A z\right)\right\|^{2} \\
& =\left\|\left(x_{n}-z\right)-\lambda_{n}\left(A x_{n}-A z\right)\right\|^{2}  \tag{4.1}\\
& =\left\|x_{n}-z\right\|^{2}-2 \lambda_{n}\left\langle x_{n}-z, A x_{n}-A z\right\rangle+\lambda_{n}^{2}\left\|A x_{n}-A z\right\|^{2} \\
& \leq\left\|x_{n}-z\right\|^{2}-2 \lambda_{n} \alpha\left\|A x_{n}-A z\right\|^{2}+\lambda_{n}^{2}\left\|A x_{n}-A z\right\|^{2} \\
& =\left\|x_{n}-z\right\|^{2}+\lambda_{n}\left(\lambda_{n}-2 \alpha\right)\left\|A x_{n}-A z\right\|^{2} \\
& \leq\left\|x_{n}-z\right\|^{2} .
\end{align*}
$$

From $x_{n+1}=\alpha_{n} u+\left(1-\alpha_{n}\right) y_{n}$, we have

$$
\begin{aligned}
\left\|x_{n+1}-z\right\| & =\left\|\alpha_{n}(u-z)+\left(1-\alpha_{n}\right)\left(y_{n}-z\right)\right\| \\
& \leq \alpha_{n}\|u-z\|+\left(1-\alpha_{n}\right)\left\|x_{n}-z\right\| .
\end{aligned}
$$

Putting $K=\max \left\{\|u-z\|,\left\|x_{1}-z\right\|\right\}$, we have that $\left\|x_{n}-z\right\| \leq K$ for all $n \in \mathbb{N}$. In fact, it is obvious that $\left\|x_{1}-z\right\| \leq K$. Suppose that $\left\|x_{k}-z\right\| \leq K$ for some $k \in \mathbb{N}$. Then, we have that

$$
\begin{aligned}
\left\|x_{k+1}-z\right\| & \leq \alpha_{k}\|u-z\|+\left(1-\alpha_{k}\right)\left\|x_{k}-z\right\| \\
& \leq \alpha_{k} K+\left(1-\alpha_{k}\right) K \\
& =K .
\end{aligned}
$$

By induction, we obtain that $\left\|x_{n}-z\right\| \leq K$ for all $n \in \mathbb{N}$. Then, $\left\{x_{n}\right\}$ is bounded. Furthermore, $\left\{A x_{n}\right\}$ and $\left\{y_{n}\right\}$ are bounded. Putting $u_{n}=x_{n}-\lambda_{n} A x_{n}$, we have

$$
\begin{aligned}
x_{n+2}-x_{n+1}= & \left(\alpha_{n+1}-\alpha_{n}\right) u+\left(1-\alpha_{n+1}\right) J_{\lambda_{n+1}}\left(x_{n+1}-\lambda_{n+1} A x_{n+1}\right) \\
& -\left(1-\alpha_{n}\right) J_{\lambda_{n}}\left(x_{n}-\lambda_{n} A x_{n}\right) \\
= & \left(\alpha_{n+1}-\alpha_{n}\right) u+\left(1-\alpha_{n+1}\right)\left\{J_{\lambda_{n+1}}\left(x_{n+1}-\lambda_{n+1} A x_{n+1}\right)\right. \\
& \left.-J_{\lambda_{n+1}} u_{n}+J_{\lambda_{n+1}} u_{n}-J_{\lambda_{n}} u_{n}+J_{\lambda_{n}} u_{n}\right\}-\left(1-\alpha_{n}\right) J_{\lambda_{n}} u_{n} .
\end{aligned}
$$

So, we have from Lemma 2 that

$$
\begin{aligned}
&\left\|x_{n+2}-x_{n+1}\right\| \\
& \leq\left|\alpha_{n+1}-\alpha_{n}\right|\|u\|+\left(1-\alpha_{n+1}\right)\left\|x_{n+1}-\lambda_{n+1} A x_{n+1}-\left(x_{n}-\lambda_{n} A x_{n}\right)\right\| \\
& \quad+\left(1-\alpha_{n+1}\right)\left\|J_{\lambda_{n+1}} u_{n}-J_{\lambda_{n}} u_{n}\right\|+\left|\alpha_{n+1}-\alpha_{n}\right|\left\|J_{\lambda_{n}} u_{n}\right\| \\
& \leq\left|\alpha_{n+1}-\alpha_{n}\right|\|u\|+\left(1-\alpha_{n+1}\right) \|\left(I-\lambda_{n+1} A\right) x_{n+1}-\left(I-\lambda_{n+1} A\right) x_{n} \\
&+\left(I-\lambda_{n+1} A\right) x_{n}-\left(x_{n}-\lambda_{n} A x_{n}\right) \| \\
& \quad+\left(1-\alpha_{n+1}\right)\left\|J_{\lambda_{n+1}} u_{n}-J_{\lambda_{n}} u_{n}\right\|+\left|\alpha_{n+1}-\alpha_{n}\right|\left\|J_{\lambda_{n}} u_{n}\right\| \\
& \leq\left|\alpha_{n+1}-\alpha_{n}\right|\|u\|+\left(1-\alpha_{n}\right)\left\|x_{n+1}-x_{n}\right\|+\left|\lambda_{n+1}-\lambda_{n}\right|\left\|A x_{n}\right\| \\
& \quad+\left|\alpha_{n+1}-\alpha_{n}\right|\left\|J_{\lambda_{n}} u_{n}\right\|+\left\|J_{\lambda_{n+1}} u_{n}-J_{\lambda_{n}} u_{n}\right\| \\
& \leq\left|\alpha_{n+1}-\alpha_{n}\right|\|u\|+\left(1-\alpha_{n}\right)\left\|x_{n+1}-x_{n}\right\|+\left|\lambda_{n+1}-\lambda_{n}\right|\left\|A x_{n}\right\| \\
&+\left|\alpha_{n+1}-\alpha_{n}\right|\left\|J_{\lambda_{n}} u_{n}\right\|+\frac{\left|\lambda_{n+1}-\lambda_{n}\right|}{\lambda_{n+1}}\left\|J_{\lambda_{n+1}} u_{n}-u_{n}\right\| \\
& \leq\left|\alpha_{n+1}-\alpha_{n}\right|\|u\|+\left(1-\alpha_{n}\right)\left\|x_{n+1}-x_{n}\right\|+\left|\lambda_{n+1}-\lambda_{n}\right|\left\|A x_{n}\right\| \\
&+\left|\alpha_{n+1}-\alpha_{n}\right|\left\|J_{\lambda_{n}} u_{n}\right\|+\frac{\left|\lambda_{n+1}-\lambda_{n}\right|}{a}\left\|J_{\lambda_{n+1}} u_{n}-u_{n}\right\| .
\end{aligned}
$$

Using Lemma 4, we obtain that

$$
\begin{equation*}
\left\|x_{n+2}-x_{n+1}\right\| \rightarrow 0 \tag{4.2}
\end{equation*}
$$

We also have from (2.1) that

$$
\begin{aligned}
\left\|x_{n+1}-x_{n}\right\|^{2} & =\left\|\alpha_{n}\left(u-x_{n}\right)+\left(1-\alpha_{n}\right)\left(y_{n}-x_{n}\right)\right\|^{2} \\
& =\alpha_{n}\left\|u-x_{n}\right\|^{2}+\left(1-\alpha_{n}\right)\left\|y_{n}-x_{n}\right\|^{2}-\alpha_{n}\left(1-\alpha_{n}\right)\left\|u-y_{n}\right\|^{2}
\end{aligned}
$$

and hence

$$
\begin{aligned}
\left(1-\alpha_{n}\right)\left\|y_{n}-x_{n}\right\|^{2}= & \left\|x_{n+1}-x_{n}\right\|^{2} \\
& -\alpha_{n}\left\|u-x_{n}\right\|^{2}+\alpha_{n}\left(1-\alpha_{n}\right)\left\|u-y_{n}\right\|^{2}
\end{aligned}
$$

From $\alpha_{n} \rightarrow 0$, we get

$$
\begin{equation*}
y_{n}-x_{n} \rightarrow 0 \tag{4.3}
\end{equation*}
$$

From $\sum_{n=1}^{\infty}\left|\lambda_{n}-\lambda_{n+1}\right|<\infty$, we have that $\left\{\lambda_{n}\right\}$ is a Cauchy sequence. So, we have $\lambda_{n} \rightarrow \lambda_{0} \in[a, 2 \alpha]$. Putting $u_{n}=x_{n}-\lambda_{n} A x_{n}$ and $y_{n}=J_{\lambda_{n}}\left(I-\lambda_{n} A\right) x_{n}$, we have from Lemma 2 that

$$
\begin{align*}
& \left\|J_{\lambda_{0}}\left(I-\lambda_{0} A\right) x_{n}-y_{n}\right\|=\left\|J_{\lambda_{0}}\left(I-\lambda_{0} A\right) x_{n}-J_{\lambda_{n}}\left(I-\lambda_{n} A\right) x_{n}\right\| \\
= & \| J_{\lambda_{0}}\left(I-\lambda_{0} A\right) x_{n}-J_{\lambda_{0}}\left(I-\lambda_{n} A\right) x_{n} \\
& +J_{\lambda_{0}}\left(I-\lambda_{n} A\right) x_{n}-J_{\lambda_{n}}\left(I-\lambda_{n} A\right) x_{n} \|  \tag{4.4}\\
\leq & \left\|\left(I-\lambda_{0} A\right) x_{n}-\left(I-\lambda_{n} A\right) x_{n}\right\|+\left\|J_{\lambda_{0}} u_{n}-J_{\lambda_{n}} u_{n}\right\| \\
\leq & \left|\lambda_{0}-\lambda_{n}\right|\left\|A x_{n}\right\|+\frac{\left|\lambda_{0}-\lambda_{n}\right|}{\lambda_{0}}\left\|J_{\lambda_{0}} u_{n}-u_{n}\right\| \rightarrow 0 .
\end{align*}
$$

We also have from (4.3) and (4.4) that

$$
\begin{equation*}
\left\|x_{n}-J_{\lambda_{0}}\left(I-\lambda_{0} A\right) x_{n}\right\| \leq\left\|x_{n}-y_{n}\right\|+\left\|y_{n}-J_{\lambda_{0}}\left(I-\lambda_{0} A\right) x_{n}\right\| \rightarrow 0 \tag{4.5}
\end{equation*}
$$

We will use (4.4) and (4.5) later.
Put $z_{0}=P_{(A+B)^{-1} 0} u$. Let us show that $\lim \sup _{n \rightarrow \infty}\left\langle u-z_{0}, y_{n}-z_{0}\right\rangle \leq 0$. Put $A=\limsup \operatorname{sum}_{n \rightarrow \infty}\left\langle u-p_{0}, y_{n}-p_{0}\right\rangle$. Then without loss of generality, there exists a subsequence $\left\{y_{n_{i}}\right\}$ of $\left\{y_{n}\right\}$ such that $A=\lim _{i \rightarrow \infty}\left\langle u-p_{0}, y_{n_{i}}-p_{0}\right\rangle$ and $\left\{y_{n_{i}}\right\}$ converges weakly some point $w \in C$. From $\left\|x_{n}-y_{n}\right\| \rightarrow 0$, we also have that $\left\{x_{n_{i}}\right\}$ converges weakly to $w \in C$. On the other hand, from $\lambda_{n} \rightarrow \lambda_{0} \in[a, 2 \alpha]$, we have $\lambda_{n_{i}} \rightarrow \lambda_{0} \in[a, 2 \alpha]$. Using (4.4), we have that

$$
\left\|J_{\lambda_{0}}\left(I-\lambda_{0} A\right) x_{n_{i}}-y_{n_{i}}\right\| \rightarrow 0
$$

Furthermore, using (4.5), we have that

$$
\left\|x_{n_{i}}-J_{\lambda_{0}}\left(I-\lambda_{0} A\right) x_{n_{i}}\right\| \rightarrow 0
$$

Since $J_{\lambda_{0}}\left(I-\lambda_{0} A\right)$ is nonexpansive, we have $w=J_{\lambda_{0}}\left(I-\lambda_{0} A\right) w$. This means that $0 \in A w+B w$. So, we have

$$
A=\lim _{i \rightarrow \infty}\left\langle u-z_{0}, y_{n_{i}}-z_{0}\right\rangle=\left\langle u-z_{0}, w-z_{0}\right\rangle \leq 0
$$

Since $x_{n+1}-z_{0}=\alpha_{n}\left(u-z_{0}\right)+\left(1-\alpha_{n}\right)\left(y_{n}-z_{0}\right)$, we have

$$
\begin{align*}
\left\|x_{n+1}-z_{0}\right\|^{2} \leq & \left(1-\alpha_{n}\right)^{2}\left\|y_{n}-z_{0}\right\|^{2}+2\left\langle\alpha_{n}\left(u-z_{0}\right), x_{n+1}-z_{0}\right\rangle  \tag{4.6}\\
\leq & \left(1-\alpha_{n}\right)\left\|y_{n}-z_{0}\right\|^{2} \\
& +2 \alpha_{n}\left\langle u-z_{0}, x_{n+1}-x_{n}+x_{n}-y_{n}+y_{n}-z_{0}\right\rangle .
\end{align*}
$$

Putting $s_{n}=\left\|x_{n}-z_{0}\right\|^{2}, \gamma_{n}=2\left\langle u-z_{0}, x_{n+1}-x_{n}+x_{n}-y_{n}+y_{n}-z_{0}\right\rangle$ and $\beta_{n}=0$ in Lemma 4, from $\sum_{n=1}^{\infty} \alpha_{n}=\infty$ and (4.6) we have that $x_{n} \rightarrow z_{0}$. This completes the proof.

Next, we prove another strong convergence theorem which is related to [19].
Theorem 10. Let $C$ be a closed convex subset of a real Hilbert space $H$. Let $\alpha>0$ and let $A$ be an $\alpha$-inverse-strongly monotone mapping of $C$ into $H$ and let $B$ be a maximal monotone operator on $H$ such that the domain of $B$ is included in $C$. Let $J_{\lambda}=(I+\lambda B)^{-1}$ be the resolvent of $B$ for $\lambda>0$. Suppose that $(A+B)^{-1} 0 \neq \emptyset$. Let $u \in C, x_{1}=x \in C$ and let $\left\{x_{n}\right\} \subset C$ be a sequence generated by

$$
x_{n+1}=\beta_{n} x_{n}+\left(1-\beta_{n}\right)\left(\alpha_{n} u+\left(1-\alpha_{n}\right) J_{\lambda_{n}}\left(x_{n}-\lambda_{n} A x_{n}\right)\right)
$$

for all $n \in \mathbb{N}$, where $\left\{\lambda_{n}\right\} \subset(0, \infty),\left\{\beta_{n}\right\} \subset(0,1)$ and $\left\{\alpha_{n}\right\} \subset(0,1)$ satisfy

$$
\begin{gathered}
0<a \leq \lambda_{n} \leq 2 \alpha, \quad \lim _{n \rightarrow \infty}\left(\lambda_{n}-\lambda_{n+1}\right)=0, \\
0<c \leq \beta_{n} \leq d<1, \quad \lim _{n \rightarrow \infty} \alpha_{n}=0 \quad \text { and } \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty .
\end{gathered}
$$

Then $\left\{x_{n}\right\}$ converges strongly to a point $z_{0}$ of $(A+B)^{-1} 0$, where $z_{0}=P_{(A+B)^{-1} 0} u$.
Proof. Let $z \in(A+B)^{-1} 0$. From $z=J_{\lambda_{n}}\left(z-\lambda_{n} A z\right)$, we obtain that

$$
\begin{align*}
& \left\|J_{\lambda_{n}}\left(x_{n}-\lambda_{n} A x_{n}\right)-z\right\|^{2} \\
= & \left\|J_{\lambda_{n}}\left(x_{n}-\lambda_{n} A x_{n}\right)-J_{\lambda_{n}}\left(z-\lambda_{n} A z\right)\right\|^{2} \\
\leq & \left\|\left(x_{n}-\lambda_{n} A x_{n}\right)-\left(z-\lambda_{n} A z\right)\right\|^{2} \\
= & \left\|\left(x_{n}-z\right)-\lambda_{n}\left(A x_{n}-A z\right)\right\|^{2}  \tag{4.7}\\
= & \left\|x_{n}-z\right\|^{2}-2 \lambda_{n}\left\langle x_{n}-z, A x_{n}-A z\right\rangle+\lambda_{n}^{2}\left\|A x_{n}-A z\right\|^{2} \\
\leq & \left\|x_{n}-z\right\|^{2}-2 \lambda_{n} \alpha\left\|A x_{n}-A z\right\|^{2}+\lambda_{n}^{2}\left\|A x_{n}-A z\right\|^{2} \\
= & \left\|x_{n}-z\right\|^{2}+\lambda_{n}\left(\lambda_{n}-2 \alpha\right)\left\|A x_{n}-A z\right\|^{2} \\
& \leq\left\|x_{n}-z\right\|^{2} .
\end{align*}
$$

Let $y_{n}=\alpha_{n} u+\left(1-\alpha_{n}\right) J_{\lambda_{n}}\left(x_{n}-\lambda_{n} A x_{n}\right)$. Then we have

$$
\begin{aligned}
\left\|y_{n}-z\right\| & =\left\|\alpha_{n}(u-z)+\left(1-\alpha_{n}\right)\left(J_{\lambda_{n}}\left(x_{n}-\lambda_{n} A x_{n}\right)-z\right)\right\| \\
& \leq \alpha_{n}\|u-z\|+\left(1-\alpha_{n}\right)\left\|x_{n}-z\right\| .
\end{aligned}
$$

Using this, we get

$$
\begin{aligned}
& \left\|x_{n+1}-z\right\| \\
= & \left\|\beta_{n}\left(x_{n}-z\right)+\left(1-\beta_{n}\right)\left(y_{n}-z\right)\right\| \\
\leq & \beta_{n}\left\|x_{n}-z\right\|+\left(1-\beta_{n}\right)\left\|y_{n}-z\right\| \\
\leq & \beta_{n}\left\|x_{n}-z\right\|+\left(1-\beta_{n}\right)\left(\alpha_{n}\|u-z\|+\left(1-\alpha_{n}\right)\left\|x_{n}-z\right\|\right) \\
= & \left(1-\alpha_{n}\left(1-\beta_{n}\right)\right)\left\|x_{n}-z\right\|+\alpha_{n}\left(1-\beta_{n}\right)\|u-z\| .
\end{aligned}
$$

Putting $K=\max \left\{\left\|x_{1}-z\right\|,\|u-z\|\right\}$, we have that $\left\|x_{n}-z\right\| \leq K$ for all $n \in \mathbb{N}$. In fact, it is obvious that $\left\|x_{1}-z\right\| \leq K$. Suppose that $\left\|x_{k}-z\right\| \leq K$ for some $k \in \mathbb{N}$. Then, we have that

$$
\begin{aligned}
\left\|x_{k+1}-z\right\| & \leq\left(1-\alpha_{k}\left(1-\beta_{k}\right)\right)\left\|x_{k}-z\right\|+\alpha_{k}\left(1-\beta_{k}\right)\|u-z\| \\
& \leq\left(1-\alpha_{k}\left(1-\beta_{k}\right)\right) K+\alpha_{k}\left(1-\beta_{k}\right) K=K .
\end{aligned}
$$

By induction, we obtain that $\left\|x_{n}-z\right\| \leq K$ for all $n \in \mathbb{N}$. Then, $\left\{x_{n}\right\}$ is bounded. Furthermore, $\left\{A x_{n}\right\},\left\{y_{n}\right\}$ and $\left\{J_{\lambda_{n}}\left(x_{n}-\lambda_{n} A x_{n}\right)\right\}$ are bounded. Putting $u_{n}=$ $x_{n}-\lambda_{n} A x_{n}$, we have

$$
\begin{aligned}
y_{n+1}-y_{n}= & \left(\alpha_{n+1}-\alpha_{n}\right) u+\left(1-\alpha_{n+1}\right) J_{\lambda_{n+1}}\left(x_{n+1}-\lambda_{n+1} A x_{n+1}\right) \\
& -\left(1-\alpha_{n}\right) J_{\lambda_{n}}\left(x_{n}-\lambda_{n} A x_{n}\right) \\
= & \left(\alpha_{n+1}-\alpha_{n}\right) u+\left(1-\alpha_{n+1}\right)\left\{J_{\lambda_{n+1}}\left(x_{n+1}-\lambda_{n+1} A x_{n+1}\right)\right. \\
& \left.-J_{\lambda_{n+1}} u_{n}+J_{\lambda_{n+1}} u_{n}-J_{\lambda_{n}} u_{n}+J_{\lambda_{n}} u_{n}\right\}-\left(1-\alpha_{n}\right) J_{\lambda_{n}} u_{n} .
\end{aligned}
$$

So, we have from Lemma 2 that

$$
\begin{aligned}
\left\|y_{n+1}-y_{n}\right\| \leq & \left|\alpha_{n+1}-\alpha_{n}\right|\|u\| \\
& +\left(1-\alpha_{n+1}\right)\left\|x_{n+1}-\lambda_{n+1} A x_{n+1}-\left(x_{n}-\lambda_{n} A x_{n}\right)\right\| \\
& +\left(1-\alpha_{n+1}\right)\left\|J_{\lambda_{n+1}} u_{n}-J_{\lambda_{n}} u_{n}\right\|+\left|\alpha_{n+1}-\alpha_{n}\right|\left\|J_{\lambda_{n}} u_{n}\right\| \\
\leq & \left|\alpha_{n+1}-\alpha_{n}\right|\|u\|+\left\|x_{n+1}-x_{n}\right\|+\left|\lambda_{n+1}-\lambda_{n}\right|\left\|A x_{n}\right\| \\
& +\left|\alpha_{n+1}-\alpha_{n}\right|\left\|J_{\lambda_{n}} u_{n}\right\|+\left\|J_{\lambda_{n+1}} u_{n}-J_{\lambda_{n}} u_{n}\right\| \\
\leq & \left|\alpha_{n+1}-\alpha_{n}\right|\|u\|+\left\|x_{n+1}-x_{n}\right\|+\left|\lambda_{n+1}-\lambda_{n}\right|\left\|A x_{n}\right\| \\
& +\left|\alpha_{n+1}-\alpha_{n}\right|\left\|J_{\lambda_{n}} u_{n}\right\|+\frac{\left|\lambda_{n+1}-\lambda_{n}\right|}{\lambda_{n+1}}\left\|J_{\lambda_{n+1}} u_{n}-u_{n}\right\| .
\end{aligned}
$$

It follows that

$$
\limsup _{n \rightarrow \infty}\left(\left\|y_{n+1}-y_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0
$$

From Lemma 3, we get

$$
\begin{equation*}
y_{n}-x_{n} \rightarrow 0 \tag{4.8}
\end{equation*}
$$

Consequently, we obtain

$$
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=\lim _{n \rightarrow \infty}\left(1-\beta_{n}\right)\left\|y_{n}-x_{n}\right\|=0
$$

Take $\lambda_{0} \in[a, 2 \alpha]$. Putting $u_{n}=x_{n}-\lambda_{n} A x_{n}$ and $y_{n}=\alpha_{n} u+\left(1-\alpha_{n}\right) J_{\lambda_{n}}\left(I-\lambda_{n} A\right) x_{n}$, we have from Lemma 2 that

$$
\begin{align*}
& \left\|\alpha_{n} u+\left(1-\alpha_{n}\right) J_{\lambda_{0}}\left(I-\lambda_{0} A\right) x_{n}-y_{n}\right\| \\
= & \left(1-\alpha_{n}\right)\left\|J_{\lambda_{0}}\left(I-\lambda_{0} A\right) x_{n}-J_{\lambda_{n}}\left(I-\lambda_{n} A\right) x_{n}\right\| \\
= & \left(1-\alpha_{n}\right) \| J_{\lambda_{0}}\left(I-\lambda_{0} A\right) x_{n}-J_{\lambda_{0}}\left(I-\lambda_{n} A\right) x_{n} \\
& +J_{\lambda_{0}}\left(I-\lambda_{n} A\right) x_{n}-J_{\lambda_{n}}\left(I-\lambda_{n} A\right) x_{n} \|  \tag{4.9}\\
\leq & \left(1-\alpha_{n}\right)\left\{\left\|\left(I-\lambda_{0} A\right) x_{n}-\left(I-\lambda_{n} A\right) x_{n}\right\|+\left\|J_{\lambda_{0}} u_{n}-J_{\lambda_{n}} u_{n}\right\|\right\} \\
\leq & \left(1-\alpha_{n}\right)\left\{\left|\lambda_{0}-\lambda_{n}\right|\left\|A x_{n}\right\|+\frac{\left|\lambda_{0}-\lambda_{n}\right|}{\lambda_{0}}\left\|J_{\lambda_{0}} u_{n}-u_{n}\right\|\right\} .
\end{align*}
$$

We also have

$$
\begin{align*}
& \left\|x_{n}-J_{\lambda_{0}}\left(I-\lambda_{0} A\right) x_{n}\right\| \\
\leq & \left\|x_{n}-y_{n}\right\|+\left\|y_{n}-\left(\alpha_{n} u+\left(1-\alpha_{n}\right) J_{\lambda_{0}}\left(I-\lambda_{0} A\right) x_{n}\right)\right\| \\
& +\left\|\alpha_{n} u+\left(1-\alpha_{n}\right) J_{\lambda_{0}}\left(I-\lambda_{0} A\right) x_{n}-J_{\lambda_{0}}\left(I-\lambda_{0} A\right) x_{n}\right\|  \tag{4.10}\\
= & \left\|x_{n}-y_{n}\right\|+\left\|y_{n}-\left(\alpha_{n} u+\left(1-\alpha_{n}\right) J_{\lambda_{0}}\left(I-\lambda_{0} A\right) x_{n}\right)\right\| \\
& +\alpha_{n}\left\|u-J_{\lambda_{0}}\left(I-\lambda_{0} A\right) x_{n}\right\| .
\end{align*}
$$

We will use (4.9) and (4.10) later.
Put $z_{0}=P_{(A+B)^{-1} 0} u$. Let us show that $\lim \sup _{n \rightarrow \infty}\left\langle u-z_{0}, y_{n}-z_{0}\right\rangle \leq 0$. Put $A=\lim \sup _{n \rightarrow \infty}\left\langle u-p_{0}, y_{n}-p_{0}\right\rangle$. Then without loss of generality, there exists a subsequence $\left\{y_{n_{i}}\right\}$ of $\left\{y_{n}\right\}$ such that $A=\lim _{i \rightarrow \infty}\left\langle u-p_{0}, y_{n_{i}}-p_{0}\right\rangle$ and $\left\{y_{n_{i}}\right\}$ converges weakly some point $w \in C$. From $\left\|x_{n}-y_{n}\right\| \rightarrow 0$, we also have that $\left\{x_{n_{i}}\right\}$ converges weakly to $w \in C$. On the other hand, since $\left\{\lambda_{n}\right\} \subset(0, \infty)$ satisfies $0<a \leq \lambda_{n} \leq 2 \alpha$, there exists a subsequence $\left\{\lambda_{n_{i_{j}}}\right\}$ of $\left\{\lambda_{n_{i}}\right\}$ such that $\left\{\lambda_{n_{i_{j}}}\right\}$ converges to a number $\lambda_{0} \in[a, 2 \alpha]$. Using (4.9), we have that

$$
\left\|\alpha_{n_{i_{j}}} u+\left(1-\alpha_{n_{i_{j}}}\right) J_{\lambda_{0}}\left(I-\lambda_{0} A\right) x_{n_{i_{j}}}-y_{n_{i_{j}}}\right\| \rightarrow 0
$$

Furthermore, using (4.10), we have that

$$
\begin{aligned}
& \left\|x_{n_{i_{j}}}-J_{\lambda_{0}}\left(I-\lambda_{0} A\right) x_{n_{i_{j}}}\right\| \\
\leq & \left\|x_{n_{i_{j}}}-y_{n_{i_{j}}}\right\|+\left\|y_{n_{i_{j}}}-\left\{\alpha_{n_{i_{j}}} u+\left(1-\alpha_{n_{i_{j}}}\right) J_{\lambda_{0}}\left(I-\lambda_{0} A\right) x_{n_{i_{j}}}\right\}\right\| \\
& +\alpha_{n_{i_{j}}}\left\|u-J_{\lambda_{0}}\left(I-\lambda_{0} A\right) x_{n_{i_{j}}}\right\| \rightarrow 0 .
\end{aligned}
$$

Since $J_{\lambda_{0}}\left(I-\lambda_{0} A\right)$ is nonexpansive, we have $w=J_{\lambda_{0}}\left(I-\lambda_{0} A\right) w$. This means that $0 \in A w+B w$. So, we have

$$
A=\lim _{j \rightarrow \infty}\left\langle u-z_{0}, y_{n_{i_{j}}}-z_{0}\right\rangle=\left\langle u-z_{0}, w-z_{0}\right\rangle \leq 0 .
$$

Since $y_{n}-p_{0}=\alpha_{n}\left(u-p_{0}\right)+\left(1-\alpha_{n}\right)\left(J_{\lambda_{n}}\left(x_{n}-\lambda_{n} A x_{n}\right)-p_{0}\right)$, we have

$$
\begin{aligned}
& \left\|y_{n}-p_{0}\right\|^{2}-2 \alpha_{n}\left\langle u-p_{0}, y_{n}-p_{0}\right\rangle \\
= & \left(1-\alpha_{n}\right)^{2}\left\|J_{\lambda_{n}}\left(x_{n}-\lambda_{n} A x_{n}\right)-p_{0}\right\|^{2}-\alpha_{n}^{2}\left\|u-p_{0}\right\|^{2} \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|J_{\lambda_{n}}\left(x_{n}-\lambda_{n} A x_{n}\right)-p_{0}\right\|^{2}
\end{aligned}
$$

and hence

$$
\left\|y_{n}-p_{0}\right\|^{2} \leq\left(1-\alpha_{n}\right)^{2}\left\|J_{\lambda_{n}}\left(x_{n}-\lambda_{n} A x_{n}\right)-p_{0}\right\|^{2}+2 \alpha_{n}\left\langle x-p_{0}, y_{n}-p_{0}\right\rangle
$$

From (4.7), we have

$$
\left\|y_{n}-p_{0}\right\|^{2} \leq\left(1-\alpha_{n}\right)^{2}\left\|x_{n}-p_{0}\right\|^{2}+2 \alpha_{n}\left\langle x-p_{0}, y_{n}-p_{0}\right\rangle
$$

This implies that

$$
\begin{aligned}
& \left\|x_{n+1}-p_{0}\right\|^{2} \\
\leq & \beta_{n}\left\|x_{n}-p_{0}\right\|^{2}+\left(1-\beta_{n}\right)\left\|y_{n}-p_{0}\right\|^{2} \\
\leq & \beta_{n}\left\|x_{n}-p_{0}\right\|^{2}+\left(1-\beta_{n}\right)\left(\left(1-\alpha_{n}\right)^{2}\left\|x_{n}-p_{0}\right\|^{2}+2 \alpha_{n}\left\langle x-p_{0}, y_{n}-p_{0}\right\rangle\right) \\
= & \left(\beta_{n}+\left(1-\beta_{n}\right)\left(1-\alpha_{n}\right)^{2}\right)\left\|x_{n}-p_{0}\right\|^{2}+2\left(1-\beta_{n}\right) \alpha_{n}\left\langle x-p_{0}, y_{n}-p_{0}\right\rangle \\
\leq & \left(1-\left(1-\beta_{n}\right) \alpha_{n}\right)\left\|x_{n}-p_{0}\right\|^{2}+2\left(1-\beta_{n}\right) \alpha_{n}\left\langle x-p_{0}, y_{n}-p_{0}\right\rangle .
\end{aligned}
$$

By Lemma 4, we obtain that $x_{n} \rightarrow p_{0}$. This completes the proof.

## 5. Applications

Let $H$ be a Hilbert space and let $f$ be a proper lower semicontinuous convex function of $H$ into $(-\infty, \infty]$. Then, the subdifferential $\partial f$ of $f$ is defined as follows:

$$
\partial f(x)=\{z \in H: f(x)+\langle z, y-x\rangle \leq f(y), y \in H\}
$$

for all $x \in H$; see, for instance, [23]. From Rockafellar [17], we know that $\partial f$ is maximal monotone. Let $C$ be a nonempty closed convex subset of $H$ and let $i_{C}$ be the indicator function of $C$, i.e.,

$$
i_{C}(x)= \begin{cases}0, & x \in C \\ \infty, & x \notin C\end{cases}
$$

Then, $i_{C}$ is a proper lower semicontinuous convex function of $H$ into $(-\infty, \infty]$ and then the subdifferential $\partial i_{C}$ of $i_{C}$ is a maximal monotone operator. So, we can define the resolvent $J_{\lambda}$ of $\partial i_{C}$ for $\lambda>0$, i.e.,

$$
J_{\lambda} x=\left(I+\lambda \partial i_{C}\right)^{-1} x
$$

for all $x \in H$. We have that for any $x \in H$ and $z \in C$,

$$
\begin{aligned}
z=J_{\lambda} x & \Longleftrightarrow x \in z+\lambda \partial i_{C} z \\
& \Longleftrightarrow x \in z+\lambda N_{C} z \\
& \Longleftrightarrow x-z \in \lambda N_{C} z \\
& \Longleftrightarrow \frac{1}{\lambda}\langle x-z, v-z\rangle \leq 0, \forall v \in C \\
& \Longleftrightarrow\langle x-z, v-z\rangle \leq 0, \forall v \in C \\
& \Longleftrightarrow z=P_{C} x
\end{aligned}
$$

where $N_{C} z$ is the normal cone to $C$ at $z$, i.e.,

$$
N_{C} z=\{x \in H:\langle x, v-z\rangle \leq 0, \forall v \in C\}
$$

Now, using Theorems 9 and 10, we can obtain strong convergence theorems for finding a solution of the variational inequality in a Hilbert space.

Theorem 11. Let $C$ be a closed convex subset of a real Hilbert space H. Let $\alpha>0$ and let $A$ be an $\alpha$-inverse-strongly monotone mapping of $C$ into $H$ such that $V I(C, A) \neq \emptyset$. Let $u \in C, x_{1}=x \in C$ and let $\left\{x_{n}\right\}$ be a sequence in $C$ generated by

$$
x_{n+1}=\alpha_{n} u+\left(1-\alpha_{n}\right) P_{C}\left(x_{n}-\lambda_{n} A x_{n}\right)
$$

for all $n \in \mathbb{N}$, where $\left\{\lambda_{n}\right\} \subset(0, \infty)$ and $\left\{\alpha_{n}\right\} \subset(0,1)$ satisfy

$$
\begin{aligned}
& 0<a \leq \lambda_{n} \leq 2 \alpha, \quad \lim _{n \rightarrow \infty} \sum_{n=1}^{\infty}\left|\lambda_{n}-\lambda_{n+1}\right|<\infty \\
& \lim _{n \rightarrow \infty} \alpha_{n}=0, \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty \quad \text { and } \quad \lim _{n \rightarrow \infty} \sum_{n=1}^{\infty}\left|\alpha_{n}-\alpha_{n+1}\right|<\infty
\end{aligned}
$$

Then $\left\{x_{n}\right\}$ converges strongly to a point $z_{0}$ of $V I(C, A)$, where $z_{0}=P_{V I(C, A)} u$.

Proof. Setting $B=\partial i_{C}$ in Theorem 9, we know that $J_{\lambda_{n}}=P_{C}$ for all $\lambda_{n}>0$. Furthermore, we have

$$
\begin{aligned}
z \in\left(A+\partial i_{C}\right)^{-1} 0 & \Longleftrightarrow 0 \in A z+\partial i_{C} z \\
& \Longleftrightarrow 0 \in A z+N_{C} z \\
& \Longleftrightarrow-A z \in N_{C} z \\
& \Longleftrightarrow\langle-A z, v-z\rangle \leq 0, \forall v \in C \\
& \Longleftrightarrow\langle A z, v-z\rangle \geq 0, \forall v \in C \\
& \Longleftrightarrow z \in V I(C, A)
\end{aligned}
$$

So we obtain the desired result by Theorem 10 .
As in the proof of Theorem 11, we get the following theorem.
Theorem 12. Let $C$ be a closed convex subset of a real Hilbert space H. Let $\alpha>0$ and let $A$ be an $\alpha$-inverse-strongly monotone mapping of $C$ into $H$ such that $V I(C, A) \neq \emptyset$. Let $u \in C, x_{1}=x \in C$ and let $\left\{x_{n}\right\}$ be a sequence in $C$ generated by

$$
x_{n+1}=\beta_{n} x_{n}+\left(1-\beta_{n}\right)\left\{\alpha_{n} u+\left(1-\alpha_{n}\right) P_{C}\left(x_{n}-\lambda_{n} A x_{n}\right)\right\}
$$

for all $n \in \mathbb{N}$, where $\left\{\lambda_{n}\right\} \subset(0, \infty),\left\{\beta_{n}\right\} \subset(0,1)$ and $\left\{\alpha_{n}\right\} \subset(0,1)$ satisfy

$$
\begin{aligned}
& 0<a \leq \lambda_{n} \leq 2 \alpha, \quad \lim _{n \rightarrow \infty}\left(\lambda_{n}-\lambda_{n+1}\right)=0 \\
& 0<c \leq \beta_{n} \leq d<1, \quad \lim _{n \rightarrow \infty} \alpha_{n}=0 \quad \text { and } \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty
\end{aligned}
$$

Then $\left\{x_{n}\right\}$ converges strongly to a point $z_{0}$ of $V I(C, A)$, where $z_{0}=P_{V I(C, A)} u$.
Using Theorems 11 and 12, we can obtain strong convergence theorems for widely strict pseudo-contractions in a Hilbert space.

Theorem 13. Let $H$ be a real Hilbert space and let $C$ be a closed convex subset of $H$. Let $k<1$. Let $U$ be a widely $k$-strict pseudo-contraction of $C$ into $H$ such that $F(U) \neq \emptyset$. Let $u \in C, x_{1}=x \in C$ and let $\left\{x_{n}\right\} \subset C$ be a sequence generated by

$$
x_{n+1}=\alpha_{n} u+\left(1-\alpha_{n}\right) P_{C}\left\{\left(1-t_{n}\right) U x_{n}+t_{n} x_{n}\right\}
$$

for all $n \in \mathbb{N}$, where $\left\{t_{n}\right\} \subset(-\infty, 1)$ and $\left\{\alpha_{n}\right\} \subset(0,1)$ satisfy

$$
\begin{array}{ll}
k \leq t_{n} \leq b<1, & \sum_{n=1}^{\infty}\left|t_{n}-t_{n+1}\right|<\infty \\
\lim _{n \rightarrow \infty} \alpha_{n}=0, \quad & \sum_{n=1}^{\infty} \alpha_{n}=\infty, \quad \text { and } \quad \sum_{n=1}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty
\end{array}
$$

Then $\left\{x_{n}\right\}$ converges strongly to a point $z_{0}$ of $F(U)$, where $z_{0}=P_{F(U)} u$.

Proof. We know from Lemma 8 that $I-U$ is $\frac{1-k}{2}$-inverse-strongly monotone. Setting $A=I-U, a=1-b, \lambda_{n}=1-t_{n}$ and $2 \alpha=1-k$ in Theorem 11, we get from $k \leq t_{n} \leq b<1$ that $0<a \leq \lambda_{n} \leq 2 \alpha$,

$$
\sum_{n=1}^{\infty}\left|\lambda_{n+1}-\lambda_{n}\right|=\sum_{n=1}^{\infty}\left|t_{n+1}-t_{n}\right|<\infty
$$

and

$$
I-\lambda_{n} A=I-\left(1-t_{n}\right)(I-U)=\left(1-t_{n}\right) U+t_{n} I
$$

Furthermore, putting $B=\partial i_{C}$, we have from Lemma 5 that

$$
\begin{aligned}
z \in\left(A+\partial i_{C}\right)^{-1} & \Longleftrightarrow 0 \in A z+\partial i_{C} z \\
& \Longleftrightarrow 0 \in z-U z+N_{C} z \\
& \Longleftrightarrow U z-z \in N_{C} z \\
& \Longleftrightarrow\langle U z-z, v-z\rangle \leq 0, \forall v \in C \\
& \Longleftrightarrow P_{C} U z=z \\
& \Longleftrightarrow U z=z .
\end{aligned}
$$

So, we obtain $\left(A+\partial i_{C}\right)^{-1} 0=\mathrm{F}(U)$. Thus, we obtain the desired result by using Theorem 11.

We obtain Zhou's theorem (Theorem 1) by assumming $0 \leq k<1$ in Theorem 13. As in the proof of Theorem 13, we also get the following theorem.

Theorem 14. Let $H$ be a real Hilbert space and let $C$ be a closed convex subset of $H$. Let $k<1$. Let $U$ be a widely $k$-strict pseudo-contraction of $C$ into $H$ such that $F(U) \neq \emptyset$. Let $u \in C, x_{1}=x \in C$ and let $\left\{x_{n}\right\} \subset C$ be a sequence generated by

$$
x_{n+1}=\beta_{n} x_{n}+\left(1-\beta_{n}\right)\left(\alpha_{n} u+\left(1-\alpha_{n}\right) P_{C}\left\{\left(1-t_{n}\right) U x_{n}+t_{n} x_{n}\right\}\right.
$$

for all $n \in \mathbb{N}$, where $\left\{t_{n}\right\} \subset(-\infty, 1),\left\{\beta_{n}\right\} \subset(0,1)$ and $\left\{\alpha_{n}\right\} \subset(0,1)$ satisfy

$$
\begin{aligned}
& k \leq t_{n} \leq b, \quad \lim _{n \rightarrow \infty}\left(t_{n}-t_{n+1}\right)=0, \\
& 0<c \leq \beta_{n} \leq d<1, \quad \lim _{n \rightarrow \infty} \alpha_{n}=0 \quad \text { and } \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty .
\end{aligned}
$$

Then $\left\{x_{n}\right\}$ converges strongly to a point $z_{0}$ of $F(U)$, where $z_{0}=P_{F(U)} u$.
Next, using Theorems 9 and 10 , we consider the problem for finding a solution of the generalized equilibrium problem in a Hilbert space. For solving the equilibrium problem, let us assume that the bifunction $f: C \times C \rightarrow \mathbb{R}$ satisfies the following conditions:
(A1) $f(x, x)=0$ for all $x \in C$;
(A2) $f$ is monotone, i.e., $f(x, y)+f(y, x) \leq 0$ for all $x, y \in C$;
(A3) for all $x, y, z \in C$,

$$
\limsup _{t \downarrow 0} f(t z+(1-t) x, y) \leq f(x, y)
$$

(A4) for all $x \in C, f(x, \cdot)$ is convex and lower semicontinuous.
The following lemma appears implicitly in Blum and Oettli [5].
Lemma 15. ([Blum and Oettli]). Let $C$ be a nonempty closed convex subset of $H$ and let $f$ be a bifunction of $C \times C$ into $\mathbb{R}$ satisfying $(A 1)-(A 4)$. Let $r>0$ and $x \in H$. Then, there exists $z \in C$ such that

$$
f(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0, \forall y \in C
$$

The following lemma was also given in Combettes and Hirstoaga [8].
Lemma 16. Assume that $f: C \times C \rightarrow \mathbb{R}$ satisfies $(A 1)-(A 4)$. For $r>0$ and $x \in H$, define a mapping $T_{r}: H \rightarrow C$ as follows:

$$
T_{r} x=\left\{z \in C: f(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0, \forall y \in C\right\}
$$

for all $x \in H$. Then, the following hold:
(1) $T_{r}$ is single-valued;
(2) $T_{r}$ is a firmly nonexpansive mapping, i.e., for all $x, y \in H$,

$$
\left\|T_{r} x-T_{r} y\right\|^{2} \leq\left\langle T_{r} x-T_{r} y, x-y\right\rangle
$$

(3) $F\left(T_{r}\right)=E P(f)$;
(4) $E P(f)$ is closed and convex.

We call such $T_{r}$ the resolvent of $f$ for $r>0$. Using Lemmas 15 and 16, we know the following lemma [20]. See [1] for a more general result.

Lemma 17. Let $H$ be a Hilbert space and let $C$ be a nonempty closed convex subset of $H$. Let $f: C \times C \rightarrow \mathbb{R}$ satisfy $(A 1)-(A 4)$. Let $A_{f}$ be a set-valued mapping of $H$ into itself defined by

$$
A_{f} x=\left\{\begin{array}{l}
\{z \in H: f(x, y) \geq\langle y-x, z\rangle, \forall y \in C\}, x \in C \\
\emptyset, x \notin C
\end{array}\right.
$$

Then, $E P(f)=A_{f}^{-1} 0$ and $A_{f}$ is a maximal monotone operator with $\operatorname{dom}\left(A_{f}\right) \subset C$. Furthermore, for any $x \in H$ and $r>0$, the resolvent $T_{r}$ of $f$ coincides with the resolvent of $A_{f}$, i.e.,

$$
T_{r} x=\left(I+r A_{f}\right)^{-1} x
$$

Using Lemma 17, we obtain the following result.
Theorem 18. Let $C$ be a nonempty closed convex subset of a real Hilbert space H. Let $\alpha>0$ and let $A$ be an $\alpha$-inverse- strongly monotone mapping of $C$ into $H$. Let $f$ be a bifunction from $C \times C$ to $\mathbb{R}$ satisfying $(A 1)-(A 4)$ and let $T_{\lambda}$ be the resolvent of $f$ for $\lambda>0$. Suppose that $E P(f, A) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence in $C$ generated by $u \in C, x_{1}=x \in C$ and

$$
x_{n+1}=\alpha_{n} u+\left(1-\alpha_{n}\right) T_{\lambda_{n}}\left(I-\lambda_{n} A\right) x_{n}, \forall n \in \mathbb{N}
$$

where $\left\{\alpha_{n}\right\} \subset(0,1)$ and $\left\{\lambda_{n}\right\} \subset(0, \infty)$ satisfy

$$
\begin{aligned}
& 0<a \leq \lambda_{n} \leq 2 \alpha, \lim _{n \rightarrow \infty} \sum_{n=1}^{\infty}\left|\lambda_{n}-\lambda_{n+1}\right|<\infty \\
& \lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty, \text { and } \sum_{n=1}^{\infty}\left|\alpha_{n}-\alpha_{n+1}\right|<\infty
\end{aligned}
$$

Then, $\left\{x_{n}\right\}$ converges strongly to $P_{E P(f, A)} u$.
Proof. For the bifunction $f$, we can define $A_{f}$ in Lemma 17. Putting $B=A_{f}$ in Theorem 9, we obtain from Lemma 17 that $J_{\lambda_{n}}=T_{\lambda_{n}}$ for all $n \in \mathbb{N}$. Furthermore, we have that for $\lambda>0$,

$$
\begin{aligned}
z \in\left(A+A_{f}\right)^{-1} 0 & \Longleftrightarrow 0 \in A z+A_{f} z \\
& \Longleftrightarrow 0 \in \lambda A z+\lambda A_{f} z \\
& \Longleftrightarrow z-\lambda A z \in z+\lambda A_{f} z \\
& \Longleftrightarrow z=T_{\lambda}(z-\lambda A z) \\
& \Longleftrightarrow f(z, y)+\frac{1}{\lambda}\langle y-z, z-(z-\lambda A z)\rangle \geq 0, \forall y \in C \\
& \Longleftrightarrow f(z, y)+\langle y-z, A z\rangle \geq 0, \forall y \in C \\
& \Longleftrightarrow z \in E P(f, A)
\end{aligned}
$$

So, we obtain the desired result by Theorem 9.
As in the proof of Theorem 18, we get the following theorem which is related to [19, Theorem 4.1].

Theorem 19. Let $C$ be a nonempty closed convex subset of a real Hilbert space H. Let $\alpha>0$ and let $A$ be an $\alpha$-inverse- strongly monotone mapping of $C$ into $H$. Let $f$ be a bifunction from $C \times C$ to $\mathbb{R}$ satisfying $(A 1)-(A 4)$ and let $T_{\lambda}$ be the resolvent of $f$ for $\lambda>0$. Suppose that $E P(f, A) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence in $C$ generated by $u \in C, x_{1}=x \in C$ and

$$
x_{n+1}=\beta_{n} x_{n}+\left(1-\beta_{n}\right)\left\{\alpha_{n} u+(1-\alpha) T_{\lambda_{n}}\left(I-\lambda_{n} A\right) x_{n}\right\}, \forall n \in \mathbb{N}
$$

where $\left\{\alpha_{n}\right\} \subset(0,1),\left\{\beta_{n}\right\} \subset(0,1)$ and $\left\{\lambda_{n}\right\} \subset(0, \infty)$ satisfy

$$
\begin{aligned}
& 0<a \leq \lambda_{n} \leq 2 \alpha, \lim _{n \rightarrow \infty}\left(\lambda_{n}-\lambda_{n+1}\right)=0 \\
& 0<c \leq \beta_{n} \leq d<1, \quad \lim _{n \rightarrow \infty} \alpha_{n}=0 \text { and } \sum_{n=1}^{\infty} \alpha_{n}=\infty
\end{aligned}
$$

Then, $\left\{x_{n}\right\}$ converges strongly to $P_{E P(f, A)} u$.

## Acknowledgment

The work of N. C. Wong was partially supported by the Grant NSC 99-2115-M-110-007-MY3. The work of J. C. Yao was partially supported by the Grant NSC 99-2115-M-037-002-MY3.

## References

1. K. Aoyama, Y. Kimura and W. Takahashi, Maximal monotone operators and maximal monotone functions for equilibrium problems, J. Convex Anal., 15 (2008), 395-409.
2. K. Aoyama, Y. Kimura, W. Takahashi and M. Toyoda, Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space, Nonlinear Anal., 67 (2007), 2350-2360.
3. K. Aoyama, Y. Kimura, W. Takahashi and M. Toyoda, Finding common fixed points of a countable family of nonexpansive mappings in a Banach space, Sci. Math. Jpn., 66 (2007), 89-99.
4. K. Aoyama, Y. Kimura, W. Takahashi and M. Toyoda, On a strongly nonexpansive sequence in Hilbert spaces, J. Nonlinear Convex Anal., 8 (2007), 471-489.
5. E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student, 63 (1994), 123-145.
6. F. E. Browder, Convergence theorems for sequences of nonlinear operators in Banach spaces, Math. Z., 100 (1967), 201-225.
7. F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl., 20 (1967), 197-228.
8. P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 6 (2005), 117-136.
9. K. Eshita and W. Takahashi, Approximating zero points of accretive operators in general Banach spaces, JP J. Fixed Point Theory Appl., 2 (2007), 105-116.
10. B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., 73 (1967), 957-961.
11. M. Hojo, W. Takahashi and J.-C. Yao, Weak and strong mean convergence theorems for supper hybrid mappings in Hilbert spaces, Fixed Point Theory, 12 (2011), 113-126.
12. P. Kocourek, W. Takahashi and J.-C. Yao, Fixed point theorems and weak convergence theorems for generalized hybrid mappings in Hilbert spaces, Taiwanese J. Math., 14 (2010), 2497-2511.
13. W. Robert Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506-510.
14. G. Marino and H.-K. Xu, Weak and strong convergence theorems for strich pseudocontractions in Hilbert spaces, J. Math. Anal. Appl., 329 (2007), 336-346.
15. A. Moudafi, Weak convergence theorems for nonexpansive mappings and equilibrium problems, J. Nonlinear Convex Anal., 9 (2008), 37-43.
16. Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 591-597.
17. R. T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pacific J. Math., 33 (1970), 209-216.
18. T. Suzuki, Strong convergence of Krasnoselskii and Mann's type sequences for oneparameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl., 305 (2005), 227-239.
19. S. Takahashi and W. Takahashi, Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space, Nonlinear Anal., 69 (2008), 1025-1033.
20. S. Takahashi, W. Takahashi and M. Toyoda, Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces, J. Optim. Theory Appl., 147 (2010), 27-41.
21. W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
22. W. Takahashi, Convex Analysis and Approximation of Fixed Points, Yokohama Publishers, Yokohama, 2000, (Japanese).
23. W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohama Publishers, Yokohama, 2009.
24. W. Takahashi and T. Tamura, Convergence theorems for a pair of nonexpansive mappings, J. Convex Anal., 5 (1998), 45-56.
25. W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., 118 (2003), 417-428.
26. W. Takahashi, N.-C. Wong and J.-C. Yao, Weak and strong mean convergence theorems for extended hybrid mappings in Hilbert spaces, J. Nonlinear Convex Anal., to appear.
27. R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math., 58 (1992), 486-491.
28. H. K. Xu, Another control condition in an iterative method for nonexpansive mappings, Bull. Austral. Math. Soc., 65 (2002), 109-113.
29. H. Zhou, Convergence theorems of fixed points fot $k$-strict pseudo-contractions in Hilbert spaces, Nonlinear Anal., 69 (2008), 456-462.

Wataru Takahashi<br>Department of Mathematical and Computing Sciences<br>Tokyo Institute of Technology<br>Tokyo 152-8552<br>Japan<br>E-mail: wataru@is.titech.ac.jp<br>Ngai-Ching Wong<br>Department of Applied Mathematics<br>National Sun Yat-sen University<br>Kaohsiung 804, Taiwan<br>E-mail: wong@math.nsysu.edu.tw<br>Jen-Chih Yao<br>Center for General Education<br>Kaohsiung Medical University<br>Kaohsiung 807, Taiwan<br>E-mail: yaojc@kmu.edu.tw


[^0]:    Received January 1, 2011, accepted July 15, 2011.
    Communicated by Mau-Hsiang Shih.
    2010 Mathematics Subject Classification: 47H05, 47H09, 47H20.
    Key words and phrases: Maximal monotone operator, Inverse-strongly monotone mapping, Zero point, Fixed point, Strong convergence theorem, Equilibrium problem.
    *Corresponding author.

