INNER PRODUCTS AND MODULE MAPS OF HILBERT C^{*}-MODULES

MING-HSIU HSU AND NGAI-CHING WONG

Abstract

Let E and F be two Hilbert C^{*}-modules over C^{*}-algebras A and B, respectively. Let T be a surjective linear isometry from E onto F and φ a map from A into B. We will prove in this paper that if the C^{*}-algebras A and B are commutative, then T preserves the inner products and T is a module map, i.e., there exists a *-isomorphism φ between the C^{*}-algebras such that

$$
\langle T x, T y\rangle=\varphi(\langle x, y\rangle),
$$

and

$$
T(x a)=T(x) \varphi(a) .
$$

In case A or B is noncommutative C^{*}-algebra, T may not satisfy the equations above in general. We will also give some condition such that T preserves the inner products and T is a module map.

1. Introduction

A (right) Hilbert C^{*}-module over a C^{*}-algebra A is a right A-module E equipped with A-valued inner product $\langle\cdot, \cdot\rangle$ which is conjugate A-linear in the first variable and A-linear in the second variable such that E is a Banach space with respect to the norm $\|x\|=\|\langle x, x\rangle\|^{1 / 2}$.

Let X be a locally compact Hausdorff space and H a Hilbert space, the Banach space $C_{0}(X, H)$ of all continuous H-valued functions vanishing at infinity is a Hilbert C^{*}-module over the C^{*}-algebra $C_{0}(X)$ with inner product $\langle f, g\rangle(x):=\langle f(x), g(x)\rangle$ and module operation $(f \phi)(x)=f(x) \phi(x)$, for all $f \in C_{0}(X, H)$ and $\phi \in C_{0}(X)$. Every C^{*}-algebra A is a Hilbert C^{*}-module over itself with inner product $\langle a, b\rangle:=$ $a^{*} b$.

Let X and Y be two locally compact Hausdorff spaces, the Banach-Stone theorem states that every surjective linear isometry between $C_{0}(X)$ and $C_{0}(Y)$ is a weighted composition operator. More precisely, let T be a surjective linear isometry from $C_{0}(X)$ onto $C_{0}(Y)$, then there exists a continuous function $h \in C_{0}(Y)$ with $|h(y)|=$ 1, for all y in Y, and a homeomorphism φ from Y onto X such that T is of the form:

$$
\begin{equation*}
T f(y)=h(y) f(\varphi(y)), \forall f \in C_{0}(X), \forall y \in Y . \tag{1}
\end{equation*}
$$

Let H_{1} and H_{2} be two Hilbert spaces. In [7], Jerison characterizes surjective linear isometries between $C_{0}\left(X, H_{1}\right)$ and $C_{0}\left(Y, H_{2}\right)$, see also [12, 6]. It is said that every surjective linear isometry T from $C_{0}\left(X, H_{1}\right)$ onto $C_{0}\left(Y, H_{2}\right)$ is also of the form (1)

[^0]in which $h(y)$ is a unitary operator from H_{1} onto H_{2} and h is continuous from Y into ($B\left(H_{1}, H_{2}\right), S O T$), the space of all bounded linear operators with the strong operator topology. In this case, we can find a relationship of inner products of $C_{0}\left(X, H_{1}\right)$ and $C_{0}\left(Y, H_{2}\right)$ by a simple calculation:
\[

$$
\begin{aligned}
\langle T f, T g\rangle(y) & =\langle T f(y), T g(y)\rangle=\langle h(y)(f(\varphi(y))), h(y)(f(\varphi(y)))\rangle \\
& =\langle f(\varphi(y)), f(\varphi(y))\rangle=\langle f, g\rangle \circ \varphi(y) .
\end{aligned}
$$
\]

i.e.

$$
\langle T f, T g\rangle=\langle f, g\rangle \circ \varphi .
$$

Let $R_{\varphi}: C_{0}(X) \rightarrow C_{0}(Y)$ be the $*$-isomorphism defined by $R_{\varphi}(\phi)=\phi \circ \varphi$. Then T preserves the inner products with respect to R_{φ}, i.e.,

$$
\langle T f, T g\rangle=R_{\varphi}(\langle f, g\rangle)
$$

By (1), it is easy to see that T is a module map with respect to R_{φ} in the sense

$$
T(f \phi)=T(f) R_{\varphi}(\phi), \text { for all } f \in C_{0}\left(X, H_{1}\right) \text { and } \phi \in C_{0}(X) .
$$

It is natural to ask if these properties are true for surjective linear isometries between Hilbert C^{*}-modules over C^{*}-algebras. We will show in this paper that the answer is yes if the C^{*}-algebras are commutative. Unfortunately, if one of the C^{*}-algebras is noncommutative, the answer is more complicated. We will give an example (see Example 3) to explain this is not true in general. And we will give a condition on T (see Theorem 9) such that T is a module map and preserves the inner products.

2. Preliminaries

Let E be a Hilbert C^{*}-module over C^{*}-algebra A. We set $\langle E, E\rangle$ to be the linear span of elements of the form $\langle x, y\rangle, x, y \in E . E$ is said to be full if the closed two-sided ideal $\overline{\langle E, E\rangle}$ equal A.

A $J B^{*}$-triple is a complex vector space V with a continuous mapping $V^{3} \rightarrow$ $V,(x, y, z) \rightarrow\{x, y, z\}$, called a Jordan triple product, which is symmetric and linear in x, z and conjugate linear in y such that for x, y, z, u, v in V, we have
(1) $\{x, y,\{z, u, v\}\}=\{\{x, y, z\}, u, v\}-\{z,\{y, x, u\}, v\}+\{z, u,\{x, y, v\}\}$;
(2) the mapping $z \rightarrow\{x, x, z\}$ is hermitian and has non-negative spectrum;
(3) $\|\{x, x, x\}\|=\|x\|^{3}$.

In [5], J. M. Isidro shows that every Hilbert C^{*}-module is a JB*-triple with the Jordan triple product

$$
\{x, y, z\}=\frac{1}{2}(x\langle y, z\rangle+z\langle y, x\rangle) .
$$

A well-known theorem of Kaup [10] (see also [1]) states that every surjective linear isometry between JB*-triples is a Jordan triple homomorphism, i.e., it preserves the Jordan triple product

$$
T\{x, y, z\}=\{T x, T y, T z\}, \forall x, y, z \in E
$$

Hence, if T is a surjective linear isometry between Hilbert C^{*}-modules, then

$$
\begin{equation*}
T(x\langle y, z\rangle+z\langle y, x\rangle)=T x\langle T y, T z\rangle+T z\langle T y, T x\rangle, \forall x, y, z \in E . \tag{2}
\end{equation*}
$$

The equation (2) holds if and only if

$$
\begin{equation*}
T(x\langle x, x\rangle)=T x\langle T x, T x\rangle, \forall x \in E \tag{3}
\end{equation*}
$$

by triple polarization

$$
2\{x, y, z\}=\frac{1}{8} \sum_{\alpha^{4}=\beta^{2}=1} \alpha \beta\langle x+\alpha y+\beta z, x+\alpha y+\beta z\rangle(x+\alpha y+\beta z) .
$$

A ternary ring of operators (TRO) between two Hilbert spaces H and K is a linear subspace \mathfrak{R} of $B(H, K)$, the space of all bounded linear operators from H into K, satisfying $A B^{*} C \in \mathfrak{R}$. Zettl shows in [17] that every Hilbert C^{*}-module is isomorphic to a norm closed TRO. In this case, Hilbert C^{*}-modules have another triple product, i.e.,

$$
\{x, y, z\}:=x\langle y, z\rangle
$$

A map between TROs is said to be a triple homomorphism if it preserves the triple products. In the case of Hilbert C^{*}-modules, a map T is a triple homomorphism if it satisfies

$$
\begin{equation*}
T(x\langle y, z\rangle)=T x\langle T y, T z\rangle, \forall x, y, z \tag{4}
\end{equation*}
$$

We have known every surjective linear isometry is a Jordan triple homomorphism, but it could not be a triple homomorphism, see Example 3.

Let \mathcal{R} be a TRO. Then $M_{n}(\mathcal{R})$, the space of all $n \times n$ matrices whose entries are in \mathcal{R}, has a TRO-structure. Let T be a map between TROs \mathcal{R}_{1} and \mathcal{R}_{2}. For all positive integer n, define maps $T^{(n)}: M_{n}\left(\mathcal{R}_{1}\right) \rightarrow M_{n}\left(\mathcal{R}_{2}\right)$ by $T^{(n)}\left(\left(x_{i j}\right)_{i j}\right)=\left(T\left(x_{i j}\right)\right)_{i j}$. We call $T n$-isometry if $T^{(n)}$ is isometric and complete isometry if each $T^{(n)}$ is isometric for all n. It has been shown that a surjective linear isometry between TROs is a triple homomorphism if and only if it is completely isometric. More details about TROs mentioned above, we refer to [17], see also [14, 3]. In fact, Solel shows in [16] that every surjective 2 -isometry between two full Hilbert C^{*}-modules is necessarily completely isometric.

3. Results

Note that in the case of a commutative C^{*}-algebra $A=C_{0}(X)$, for some locally compact Hausdorff space X, Hilbert C^{*}-modules over $C_{0}(X)$ are the same as Hilbert bundles, or equivalently, continuous fields of Hilbert spaces, over X.

We showed the following theorem in [4].
Theorem 1. Let E and F be two Hilbert C^{*}-modules over commutative C^{*}-algebras $C_{0}(X)$ and $C_{0}(Y)$, respectively. Then every surjective linear isometry from E onto F is a weighted composition operator

$$
T f(y)=h(y)(f(\varphi(y))), \forall f \in E, \forall y \in Y
$$

Here, φ is a homeomorphism from Y onto $X, h(y)$ is a unitary operator between the corresponding fibers of E and F, for all y in Y.

By the similar argument discussed in the introduction, we have

Corollary 2. Every surjective linear isometry between Hilbert C*-modules over commutative C^{*}-algebras preserves the inner products and is a module map.

Now we discuss the case of noncommutative C^{*}-algebras. From equation (4), it seems that a surjective linear isometry T indicates that T preserves inner products and that T is a module map. We explain this could be not true in general by a example.

Example 3. Given a positive integer n. The Hilbert column space H_{c}^{n} is the subspace of $M_{n}(\mathbb{C})$ consisting of all matrices whose non-zero entries are only in the first column. Similarly, the Hilbert row space is the subspace consisting of matrices whose non-zero entries are only in the first row. Clearly, H_{c} and H_{r} are right Hilbert C^{*}-modules over C^{*}-algebras \mathbb{C} and $M_{n}(\mathbb{C})$, respectively, with the inner product $\langle A, B\rangle:=A^{*} B$. Define a surjective linear isometry $T: H_{r}^{n} \rightarrow H_{c}^{n}$ by $T(A)=A^{t}$, the transpose of A. Then $\langle T(A), T(B)\rangle=\operatorname{tr}\langle A, B\rangle$, the trace of $\langle A, B\rangle$, but T is not a module map with respect to the trace. For the surjective linear isometry $T: H_{c}^{n} \rightarrow H_{r}^{n}, T(A)=A^{t}$. Let $\varphi: \mathbb{C} \rightarrow M_{n}(\mathbb{C})$ be defined by $\varphi(\alpha)=\alpha I$. Then T is a module map with respect to φ, but the equation $\langle T A, T B\rangle=\varphi(\langle A, B\rangle)$ does not hold. It is clear that T does not satisfy the equation (4).
Remark 4. In fact, the corollary above says that there exists a $*$-isomorphism φ between the C^{*}-algebras such that

$$
\langle T x, T y\rangle=\varphi(\langle x, y\rangle)
$$

and

$$
T(x a)=T(x) \varphi(a)
$$

We have seen in the Example 3 that even if T is a module map or preserves the inner products, the map φ might be just a linear map.

In the following, E and F stand for two Hilbert C^{*}-modules over C^{*}-algebras A and B, respectively. T is a map from E into F and φ is a map from A into B. The following lemmas explain the relations of T, φ, when T preserves the inner products and when T is a module map, see also [8].
Lemma 5. If φ is linear, every map T from E into F which preserves the inner products with respect to φ is linear.

Proof. Since T preserves the inner products with respect to φ. Then for all x, y and z in E, α in \mathbb{C},

$$
\langle T(\alpha x+y), T z\rangle=\varphi(\langle\alpha x+y, z\rangle)=\alpha \varphi(\langle x, z\rangle)+\varphi(\langle y, z\rangle)=\langle\alpha T x+T y, T z\rangle .
$$

Similarly, we have

$$
\langle T x, T(\alpha y+z)\rangle=\langle T x, \alpha T y+T z\rangle .
$$

It is easy to show that

$$
\langle T(\alpha x+y)-(\alpha T x+T y), T(\alpha x+y)-(\alpha T x+T y)\rangle=0 .
$$

This proves $T(\alpha x+y)=\alpha T x+T y$ and hence T is linear.
Lemma 6 ([8]). Let T be a surjective linear map which preserves the inner products and is a module map w.r.t. φ. If F is full, then φ is a $*$-homomorphism.

Proof. Let a_{1}, a_{2} in A and α in \mathbb{C}. It is easy to show that

$$
\begin{aligned}
& T(x)\left(\varphi\left(\alpha a_{1}+a_{2}\right)-\alpha \varphi\left(a_{1}\right)-\varphi\left(a_{2}\right)\right) \\
= & T(x) \varphi\left(\alpha a_{1}+a_{2}\right)-\alpha T(x) \varphi\left(a_{1}\right)-T(x) \varphi\left(a_{2}\right) \\
= & T\left(\alpha x a_{1}+x a_{2}\right)-\alpha T\left(x a_{1}\right)-T\left(x a_{2}\right)=0 .
\end{aligned}
$$

and

$$
\begin{aligned}
& T(x)\left(\varphi\left(a_{1} a_{2}\right)-\varphi\left(a_{1}\right) \varphi\left(a_{2}\right)\right) \\
= & T(x) \varphi\left(a_{1} a_{2}\right)-T(x) \varphi\left(a_{1}\right) \varphi\left(a_{2}\right) \\
= & T\left(x a_{1} a_{2}\right)-T\left(x a_{1} a_{2}\right)=0 .
\end{aligned}
$$

Since T is surjective and F is full, we have $\varphi\left(\alpha a_{1}+a_{2}\right)=\alpha \varphi\left(a_{1}\right)+\varphi\left(a_{2}\right)$ and $\varphi\left(a_{1} a_{2}\right)=\varphi\left(a_{1}\right) \varphi\left(a_{2}\right)$.

Let x, y in A, we have

$$
\varphi\left(\langle x, y\rangle^{*}\right)=\varphi(\langle y, x\rangle)=\langle T y, T x\rangle=\langle T x, T y\rangle^{*}=\varphi(\langle x, y\rangle)^{*} .
$$

For a in A,

$$
\begin{aligned}
& \left\langle T(x)\left(\varphi\left(a^{*}\right)-\varphi(a)^{*}\right), T(x)\left(\varphi\left(a^{*}\right)-\varphi(a)^{*}\right)\right\rangle \\
= & \varphi\left(a^{*}\right)^{*} \varphi(\langle x, x\rangle) \varphi\left(a^{*}\right)-\varphi\left(a^{*}\right)^{*} \varphi(\langle x, x\rangle) \varphi(a)^{*}-\varphi(a) \varphi(\langle x, x\rangle) \varphi\left(a^{*}\right)+\varphi(a) \varphi(\langle x, x\rangle) \varphi(a)^{*} \\
= & \left(\varphi\left(\left\langle x a^{*}, x\right\rangle\right) \varphi\left(a^{*}\right)\right)^{*}-\left(\varphi(a) \varphi(\langle x, x\rangle) \varphi\left(a^{*}\right)\right)^{*}-\varphi\left(\left\langle x a^{*}, x a^{*}\right\rangle\right)+\left(\varphi(a) \varphi\left(\left\langle x, x a^{*}\right\rangle\right)\right)^{*} \\
= & 0 .
\end{aligned}
$$

Hence, $T(x)\left(\varphi\left(a^{*}\right)-\varphi(a)^{*}\right)=0$ for all x in E. Since T is surjective and F is full, we have $\varphi\left(a^{*}\right)=\varphi(a)^{*}$.

Lemma 7. If φ is $a *$-homomorphism, then every map T which preserves the inner products w.r.t. φ is a module map w.r.t. φ.

Proof. Let x and y in E and a in A. Then

$$
\langle T(x a), T y\rangle=\varphi(\langle x a, y\rangle)=\varphi(a)^{*} \varphi(\langle x, y\rangle)=\langle T(x) \varphi(a), T y\rangle .
$$

Similarly, we have

$$
\langle T(x), T(y a)\rangle=\langle T(x), T(y) \varphi(a)\rangle
$$

It is easy to show that

$$
\langle T(x a)-T(x) \varphi(a), T(x a)-T(x) \varphi(a)\rangle=0 .
$$

Hence, $T(x a)=T(x) \varphi(a)$.
Lemma 8 ([13]). Let T be a surjective linear isometry and φ a*-isomorphism. If T is a module map w.r.t. φ, then T preserves the inner products with respect to φ.

Proof. It suffices to prove that $\langle T x, T x\rangle=\varphi(\langle x, x\rangle)$ for all x in E. Note that $|a|:=\left(a^{*} a\right)^{1 / 2}$. For all b in B, let $\varphi(a)=b$, then

$$
\begin{aligned}
& \||T x| b\|^{2}=\left\|b^{*}|T x|^{2} b\right\|=\|\langle T(x) \varphi(a), T(x) \varphi(a)\rangle\| \\
= & \|\langle T(x a), T(x a)\rangle\|=\|\langle x a, x a\rangle\|=\||x| a\|^{2}=\|\varphi(|x| a)\|^{2}=\|\varphi(|x|) b\|^{2} .
\end{aligned}
$$

By Lemma 3.5 in [11], we get $|T x|=(\varphi(|x|)$ and hence $\langle T x, T x\rangle=\varphi(\langle x, x\rangle)$.

Theorem 9. Let T be a surjective linear 2-isometry from E onto F. Then there exists $a *$-isomorphism φ from $\overline{\langle E, E\rangle}$ onto $\overline{\langle F, F\rangle}$ such that, for all x, y in E, and a in A,

$$
\langle T x, T y\rangle=\varphi(\langle x, y\rangle)
$$

and

$$
T(x a)=T(x) \varphi(a)
$$

Proof. We can regard E and F as full modules over $\langle E, E\rangle$ and $\langle F, F\rangle$, respectively. In this case, as we mentioned above, T is completely isometric and hence it preserves the triple products

$$
T(z\langle x, y\rangle)=T z\langle T x, T y\rangle, \forall x, y, z \in E .
$$

Define $\varphi:\langle E, E\rangle \rightarrow\langle F, F\rangle$ by

$$
\varphi\left(\sum_{i=i}^{n} \alpha_{i}\left\langle x_{i}, y_{i}\right\rangle\right):=\sum_{i=i}^{n} \alpha_{i}\left\langle T x_{i}, T y_{i}\right\rangle, x_{i}, y_{i} \in E, \alpha_{i} \in \mathbb{C}, i=1, \cdots, n
$$

Let x_{i}, y_{i} and $z \in E, \alpha_{i} \in \mathbb{C}, i=1, \cdots, n$. Then $\sum_{i=i}^{n} \alpha_{i}\left\langle x_{i}, y_{i}\right\rangle=0$ if and only if $z\left(\sum_{i=i}^{n} \alpha_{i}\left\langle x_{i}, y_{i}\right\rangle\right)=0$ for all z if and only if $T(z)\left(\sum_{i=i}^{n} \alpha_{i}\left\langle T x_{i}, T y_{i}\right\rangle\right)=\sum_{i=i}^{n} \alpha_{i} T z\left\langle T x_{i}, T y_{i}\right\rangle=$ $\sum_{i=i}^{n} \alpha_{i} T\left(z\left\langle x_{i}, y_{i}\right\rangle\right)=T\left(z\left(\sum_{i=i}^{n} \alpha_{i}\left\langle x_{i}, y_{i}\right\rangle\right)\right)=0$ for all z if and only if $\sum_{i=i}^{n} \alpha_{i}\left\langle T x_{i}, T y_{i}\right\rangle=0$ since T is injective, $\sum_{i=i}^{n} \alpha_{i}\left\langle x_{i}, y_{i}\right\rangle \in\langle E, E\rangle$ and $\sum_{i=i}^{n} \alpha_{i}\left\langle T x_{i}, T y_{i}\right\rangle \in\langle F, F\rangle$. This shows that φ is well-defined and injective. From the defintion of φ, since T is surjective, it is clear that φ is a surjective $*$-homomorphism and T preserves the inner products w.r.t. φ. By lemma $7, T$ is a module map w.r.t φ.

Corollary 10. Every surjective linear 2-isometry between two full Hilbert C^{*}-modules preserves the inner products and is a module map with respect to some $*$-isomorphism of underlying C^{*}-algebras.

References

1. C-H. Chu, M, Mackey, Isometries between JB*-triples. Math. Z. 251 (2005), no. 3, 615-633.
2. M. J. Dupré and R. M. Gillette, Banach bundles, Banach modules and automorphisms of C^{*}-algebras, Research Notes in Mathematics 92, Pitman (1983).
3. M. Hamana, Triple envelopes and Shilov boundaries of operator spaces, Math. J. Toyama Univ. 22 (1999), 77-93.
4. M. H. Hsu and N. C. Wong, Isometries embeddings of Banach bundles, to appear.
5. J. M. Isidro, Holomorphic automorphisms of the unit balls of Hilbert C^{*}-modules. Glasg. Math. J. 45 (2003), no. 2, 249-262.
6. J. S. Jeang and N. C. Wong, On the Banach-Stone Problem, Studia Math. 155 (2003), 95-105.
7. M. Jerison, The space of bounded maps into a Banach space, Ann. of Math. 52 (1950), 309-327.
8. M. Joiţa, A note about Hilbert modules over Fréchet locally C^{*}-algebras, Novi Sad J. Math 37 (2007), no. 1, 27-32.
9. R. V. Kadison, Isometries of operator algebras, Ann. of Math. 54 (1951), 325-338.
10. W. Kaup, A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, Math. Z. 183 (1983), 503-529.
11. C. Lance, Hilbert C^{*}-modules, London Mat. Soc. Lecture Notes Series, 210, cambridge University Press, Cambridge, 1995.
12. K. S. Lau, A representation theorem for isometries of $C(X, E)$, Pacific J. of Math. 60 (1975), 229-233.
13. P. S. Muhly and B. Solel, On the Morita equivalence of tensor algebras, Proc. London Math. Soc. 81 (2000), 113-118.
14. M. Neal and B. Russo, Operator space characterizations of C^{*}-algebras and ternary rings, Pac. J. Math. 209 (2003), 339-364.
15. G. Pisier, Introduction to Operator Space Theory, Cambridge University Press, 2003.
16. B. Solel, Isometries of Hilbert C^{*}-modules, Trans. Amer. Math. Soc. 553 (2001), 4637-4660.
17. H. Zettl, A characterization of ternary rings of operators, Adv. in Math. 48 (1983), no. 2, 117-143.

Department of Applied Mathematics, National Sun Yat-sen University, KaohsiUng, 80424, TAIWAN.

E-mail address, Ming-Hsiu Hsu: hsumh@math.nsysu.edu.tw
E-mail address, Ngai-Ching Wong: wong@math.nsysu.edu.tw

[^0]: 2000 Mathematics Subject Classification. 46L08, 46E40, 46B04.
 Key words and phrases. Hilbert C^{*}-modules, TROs, complete isometries, triple products, Banach-Stone type theorems.

 This work is jointly supported by a Taiwan NSC Grant ().

