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Abstract. In this paper, we first prove a weak convergence theorem by

Mann’s iteration for a commutative family of positively homogeneous non-
expansive mappings in a Banach space. Next, using the shrinking projection
method defined by Takahashi, Takeuchi and Kubota, we prove a strong con-
vergence theorem for such a family of the mappings. These results are new

even if the mappings are linear and contractive.

1. Introduction

Let N be the set of positive integers. Let E be a real Banach space with norm ∥·∥
and let C be a closed and convex subset of E. Let T be a mapping of C into itself.
We denote by F (T ) the set of fixed points of T . A mapping T : C → C is called
nonexpansive if ∥Tx−Ty∥ ≤ ∥x−y∥ for all x, y ∈ C. Let C be a closed convex cone
of E. A mapping T : C → C is called positively homogeneous if T (αx) = αT (x)
for all x ∈ C and α ≥ 0. From Reich [27] we know a weak convergence theorem
by Mann’s iteration [20] for nonexpansive mappings in a Banach space: Let E
be a uniformly convex Banach space with a Fréchet differentiable norm and let
T : C → C be a nonexpansive mapping with F (T ) ̸= ∅. Define a sequence {xn} in
C by x1 = x ∈ C and

xn+1 = αnxn + (1 − αn)Txn, ∀n ∈ N,

where {αn} is a real sequence in [0, 1] such that
∑∞

n=1 αn(1 − αn) = ∞. Then,
{xn} converges weakly to z ∈ F (T ).

In this theorem, the fixed point z is characteraized under any projections in a
Banach space. Recently, Takahashi and Yao [45] proved a theorem for positively
homogeneous nonexpansive mappings in a Banach space. In the theorem, the limit
of weak convergence is characteraized by using a sunny generalized nonexpansive
retraction in the sense of Ibaraki and Takahashi [9]. On the other hand, Nakajo and
Takahashi [25] proved a strong convergence theorem for nonexpansive mappings in
a Hilbert space by using the hybrid method in mathematical programming: Let
C be a closed and convex subset of a Hilbert space H and let T : C → C be a
nonexpansive mapping with F (T ) ̸= ∅. Let {αn} be a real sequence in [0, 1] such

2000 Mathematics Subject Classification. 47H05, 47H09, 47H20.
Key words and phrases. Banach space, nonexpansive mapping, fixed point, generalized non-

expansive mapping, hybrid method, Mann’s iteration.

1



that 0 ≤ αn ≤ a < 1 for all n ∈ N. Define a sequence {xn} in C by x1 = x ∈ C and
un = αnxn + (1 − αn)Txn,

Cn = {z ∈ C : ∥un − z∥ ≤ ∥xn − z∥},
Qn = {z ∈ C : ⟨xn − z, x − xn⟩ ≥ 0},
xn+1 = PCn∩Qnx, ∀n ∈ N,

where PCn∩Qn
is the metric projection of H onto Cn ∩ Qn. Then, {xn} converges

strongly to z ∈ F (T ), where z = PF (T )x and PF (T ) is the metric projection of H
onto F (T ).

Such a strong convergence theorem for nonexpansive mappings has not extended
to Banach spaces. Takahashi and Yao [45] also proved such a theorem for positively
homogeneous nonexpansive mappings.

Our purpose in this paper is first to prove a weak convergence theorem by Mann’s
iteration for a commutative family of positively homogeneous nonexpansive map-
pings in a Banach space. In the theorem, the limit of weak convergence is also
characteraized by using a sunny generalized nonexpansive retraction. Furthermore,
using the shrinking projection method defined by Takahashi, Takeuchi and Kub-
ota, we prove a strong convergence theorem for a commutative family of positively
homogeneous nonexpansive mappings in a Banach space. These results are new
even if the mappings are linear and contractive.

2. Preliminaries

Let E be a real Banach space with norm ∥ · ∥ and let E∗ be the dual of E. We
denote the value of y∗ ∈ E∗ at x ∈ E by ⟨x, y∗⟩. When {xn} is a sequence in
E, we denote the strong convergence of {xn} to x ∈ E by xn → x and the weak
convergence by xn ⇀ x. The modulus δ of convexity of E is defined by

δ(ϵ) = inf
{

1 − ∥x + y∥
2

: ∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥x − y∥ ≥ ϵ

}
for every ϵ with 0 ≤ ϵ ≤ 2. A Banach space E is said to be uniformly convex
if δ(ϵ) > 0 for every ϵ > 0. A uniformly convex Banach space is strictly convex
and reflexive. Let C be a nonempty subset of a Banach space E. A mapping
T : C → C is quasi-nonexpansive if F (T ) ̸= ∅ and ∥Tx− y∥ ≤ ∥x− y∥ for all x ∈ C
and y ∈ F (T ), where F (T ) is the set of fixed points of T . If C is a closed convex
subset of E and T : C → C is quasi-nonexpansive, then F (T ) is closed and convex;
see Itoh and Takahashi [11]. The following result was proved by Browder; see [34].

Lemma 2.1. Let E be a uniformly convex Banach space and let C be a bounded
closed convex subset of E. Let T : C → C be a nonexpansive mapping. If {xn} is
a sequence of C such that xn ⇀ u and xn − Txn → 0, then u is a fixed point of T .

Let C be a nonempty closed convex subset of a strictly convex and reflexive
Banach space E. Then we know that for any x ∈ E, there exists a unique element
z ∈ C such that ∥x−z∥ ≤ ∥x−y∥ for all y ∈ C. Putting z = PC(x), we call PC the
metric projection of E onto C. The duality mapping J from E into 2E∗

is defined
by

Jx = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}
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for every x ∈ E. Let U = {x ∈ E : ∥x∥ = 1}. The norm of E is said to be Gâteaux
differentiable if for each x, y ∈ U , the limit

(2.1) lim
t→0

∥x + ty∥ − ∥x∥
t

exists. In the case, E is called smooth. We know that E is smooth if and only if
J ia a single valued mapping of E into E∗. We also know that E is reflexive if
and only if J is surjective, and E is strictly convex if and only if J is one-to-one.
Therefore, if E is a smooth, strictly convex and reflexive Banach space, then J is
a single-valued bijection and in this case, the inverse mapping J−1 coincides with
the duality mapping J∗ on E∗. The norm of E is said to be Fréchet differentiable
if for each x ∈ U , the limit (2.1) is attained uniformly for y ∈ U . It is known that
if the norm of E is Fréchet differentiable, then J is norm to norm continuous. For
more details, see [34]. We know the following result;

Lemma 2.2. Let E be a smooth Banach space and let J be the duality mapping
on E. Then, ⟨x − y, Jx − Jy⟩ ≥ 0 for all x, y ∈ E. Furthermore, if E is strictly
convex and ⟨x − y, Jx − Jy⟩ = 0, then x = y.

The following result was proved by Xu [46].

Lemma 2.3 (Xu [46]). Let E be a uniformly convex Banach space and let r > 0.
Then there exists a strictly increasing, continuous, and convex function g : [0, 2r] →
[0,∞) such that g(0) = 0 and

∥ax + (1 − a)y∥2 ≤ a∥x∥2 + (1 − a)∥y∥2 − a(1 − a)g(∥x − y∥)

for all x, y ∈ Br and a ∈ [0, 1] , where Br = {z ∈ E : ∥z∥ ≤ r}.

Let E be a smooth Banach space. The function ϕ : E×E → (−∞,∞) is defined
by

ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩ + ∥y∥2

for x, y ∈ E, where J is the duality mapping of E; see [1] and [14]. We have from
the definition of ϕ that

(2.2) ϕ(x, y) = ϕ(x, z) + ϕ(z, y) + 2⟨x − z, Jz − Jy⟩

for all x, y, z ∈ E. From (∥x∥2 − ∥y∥2) ≤ ϕ(x, y) for all x, y ∈ E, we can see that
ϕ(x, y) ≥ 0. If E is additionally assumed to be strictly convex, then

(2.3) ϕ(x, y) = 0 ⇐⇒ x = y.

If C is a nonempty closed convex subset of a smooth, strictly and reflexive Banach
space E, then for all x ∈ E there exists a unique z ∈ C (denoted by ΠCx) such
that

(2.4) ϕ(z, x) = min
y∈C

ϕ(y, x).

The mapping ΠC is called the generalized projection from E onto C; see Alber [1],
Alber and Reich [2], and Kamimura and Takahashi [14]. The following lemmas are
well known; see, for instance, [14].

Lemma 2.4. Let E be a reflexive, strictly convex and smooth Banach space and
let {xn} and {yn} be sequences in E such that {xn} or {yn} is bounded. If
limn→∞ ϕ(xn, yn) = 0, then limn→∞ ∥xn − yn∥ = 0.
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Lemma 2.5. Let E be a smooth and uniformly convex Banach space and let r > 0.
Then, there exists a strictly increasing, continuous and convex function g : [0,∞) →
[0,∞) such that g(0) = 0 and

g(∥x − y∥) ≤ ϕ(x, y)

for all x, y ∈ Br, where Br = {z ∈ E : ∥z∥ ≤ 0}.

Let E be a Banach space and let D be a nonempty closed subset of E. A mapping
R : E → D is said to be sunny if

R(Rx + t(x − Rx)) = Rx, ∀x ∈ E, ∀t ≥ 0.

A mapping R : E → D is a retraction if Rx = x for all x ∈ D. Let E be a smooth
Banach space E and let C be a nonempty subset of E. A mapping T : C → C is
generalized nonexpansive [9] if F (T ) ̸= ∅ and

(2.5) ϕ(Tx, y) ≤ ϕ(x, y)

for all x ∈ C and y ∈ F (T ). A nonempty subset of a smooth Banach space E is
said to be a generalized nonexpansive retract (resp. sunny generalized nonexpansive
retract) of E if there exists a generalized nonexpansive retraction (resp. sunny
generalized nonexpansive retraction) of E onto D. From [9], we know the following
lemmas.

Lemma 2.6 (Ibaraki and Takahashi [9]). Let E be a smooth, strictly convex and
reflexive Banach space and let D be a nonempty closed subset of E. Then, a sunny
generalized nonexpansive retraction of E onto D is uniquely determined.

Lemma 2.7 (Ibaraki and Takahashi [9]). Let E be a smooth, strictly convex and
reflexive Banach space and let D be a nonempty closed subset of E. Suppose that
there exists a sunny generalized nonexpansive retraction R of E onto D and let
(x, z) ∈ E × C. Then, the following hold:

(1) z = Rx if and only if ⟨x − z, Jy − Jz⟩ ≤ 0, ∀y ∈ D;
(2) ϕ(Rx, z) + ϕ(x,Rx) ≤ ϕ(x, z).

In 2007, Kohsaka and Takahashi [16] proved the following results.

Lemma 2.8 (Kohsaka and Takahashi [16]). Let E be a smooth, strictly convex
and reflexive Banach space and let C∗ be a nonempty closed convex subset of E∗.
Suppose that ΠC∗ is the generalized projection of E∗ onto C∗. Then, R defined by
R = J−1ΠC∗J is a sunny generalized nonexpansive retraction of E onto J−1C∗.

Lemma 2.9 (Kohsaka and Takahashi [16]). Let E be a smooth, strictly convex and
reflexive Banach space and let D be a nonempty subset of E. Then, the following
conditions are equivalent

(1) D is a sunny generalized nonexpansive retract of E;
(2) D is a generalized nonexpansive retract of E;
(3) JD is closed and convex.

In this case, D is closed.

Lemma 2.10 (Kohsaka and Takahashi [16]). Let E be a smooth, strictly convex
and reflexive Banach space and let D be a nonempty closed subset of E. Suppose
that there exists a sunny generalized nonexpansive retraction R of E onto D and
let (x, z) ∈ E × C. Then, the following conditions are equivalent
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(1) z = Rx;
(2) ϕ(x, z) = miny∈D ϕ(x, y).

From Ibaraki and Takahashi [10] we know the following lemma.

Lemma 2.11 (Ibaraki and Takahashi [10]). Let E be a smooth, strictly convex and
reflexive Banach space and let T be a generalized nonexpansive mapping of E into
itself. Then, F (T ) is a sunny generalized nonexpansive retract of E.

From Takahashi and Yao [45] we also have the following lemma.

Lemma 2.12 (Takahashi and Yao [45]). Let E be a Banach space and let C be a
closed convex cone of E. Let T : C → C be a positively homogenuous nonexpansive
mapping. Then, for any x ∈ C and m ∈ F (T ), there exists j ∈ Jm such that

⟨x − Tx, j⟩ ≤ 0,

where J is the duality mapping of E into E∗.

Using Lemma 2.12, Takahashi and Yao [45] ontained the following theorem.

Theorem 2.13 (Takahashi and Yao [45]). Let E be a smooth Banach space and
let C be a closed convex cone of E. Let T : C → C be a positively homogenuous
nonexpansive mapping. Then, T is a generalized nonexpansive mapping.

For a sequence {Cn} of nonempty, closed and convex subsets of a reflexive Banach
space E, define s-LinCn and w-LsnCn as follows: x ∈s-LinCn if and only if there
exists {xn} ⊂ E such that {xn} converges strongly to x and that xn ∈ Cn for
all n ∈ N. Similarly, y ∈w-LsnCn if and only if there exists a subsequence {Cni}
of {Cn} and a sequence {yi} ⊂ E such that {yi} converges weakly to y and that
yi ∈ Cni for all i ∈ N. If C0 satisfies that

(2.6) C0 =s-LinCn =w-LsnCn,

it is said that {Cn} converges to C0 in the sense of Mosco [24] and we write C0 =M-
limn→∞ Cn. It is easy to show that if {Cn} is nonincreasing with respect to inclu-
sion, then {Cn} converges to ∩∞

n=1Cn in the sense of Mosco. For more details, see
[24]. We know the following theorem [7].

Lemma 2.14. Let E be a smooth Banach space and let E∗ have a Fréchet differ-
entiable norm. Let {Cn} be a sequence of nonempty closed convex subsets of E.
If C0 =M-limn→∞ Cn exists and nonempty, then for each x ∈ E, ΠCn

x converges
strongly to ΠC0x, where ΠCn and ΠC0 are the generalized projections of E onto Cn

and C0, respectively.

3. Semigroups of Positively Homogeneous Nonexpansive Mappings

Let S be a semitopological semigroup, i.e., S is a semigroup with a Hausdorff
topology such that for each a ∈ S the mappings s 7→ a · s and s 7→ s · a from S to
S are continuous. In the case when S is commutative, we denote st by s + t. Let
B(S) be the Banach space of all bounded real valued functions on S with supremum
norm and let C(S) be the subspace of B(S) of all bounded real valued continuous
functions on S. Let µ be an element of C(S)∗ (the dual space of C(S)). We denote
by µ(f) the value of µ at f ∈ C(S). Sometimes, we denote by µt(f(t)) or µtf(t)
the value µ(f). For each s ∈ S and f ∈ C(S), we define two functions lsf and rsf
as follows:

(lsf)(t) = f(st) and (rs f )(t) = f (ts)
5



for all t ∈ S. An element µ of C(S)∗ is called a mean on C(S) if µ(e) = ∥µ∥ = 1,
where e(s) = 1 for all s ∈ S. We know that µ ∈ C(S)∗ is a mean on C(S) if and
only if

inf
s∈S

f(s) ≤ µ(f) ≤ sup
s∈S

f(s), ∀f ∈ C(S).

A mean µ on C(S) is called left invariant if µ(lsf) = µ(f) for all f ∈ C(S) and
s ∈ S. Similarly, a mean µ on C(S) is called right invariant if µ(rsf) = µ(f) for all
f ∈ C(S) and s ∈ S. A left and right invariant invariant mean on C(S) is called
an invariant mean on C(S). The following theorem is in [34, Theorem 1.4.5].

Theorem 3.1 ([34]). Let S be a commutative semitopological semigroup. Then
there exists an invariant mean on C(S), i.e., there exists an element µ ∈ C(S)∗

such that µ(e) = ∥µ∥ = 1 and µ(rsf) = µ(f) for all f ∈ C(S) and s ∈ S.

Let E be a Banach space and let C be a nonempty, closed and convex subset
of E. Let S be a semitopological semigroup and let S = {Ts : s ∈ S} be a family
of nonexpansive mappings of C into itself. Then S = {Ts : s ∈ S} is called a
continuous representation of S as nonexpansive mappings on C if Tst = TsTt for all
s, t ∈ S and s 7→ Tsx is continuous for each x ∈ C. We denote by F (S) the set of
common fixed points of Ts, s ∈ S, i.e.,

F (S) = ∩{F (Ts) : s ∈ S}.

The following definition [31] is crucial in the nonlinear ergodic theory of abstract
semigroups. Let S be a topological space and Let C(S) be the Banach space of
all bounded real valued continuous functions on S with supremum norm. Let E
be a reflexive Banach space. Let u : S → E be a continuous function such that
{u(s) : s ∈ S} is bounded and let µ be a mean on C(S). Then there exists a unique
element z0 of E such that

µs⟨u(s), x∗⟩ = ⟨z0, x
∗⟩, ∀x∗ ∈ E∗.

We call such z0 the mean vector of u for µ and denote by τ(µ)u, i.e., τ(µ)u = z0. In
particular, if S = {Ts : s ∈ S} is a continuous representation of S as nonexpansive
mappings on C such that F (S) ̸= ∅. and u(s) = Tsx for all s ∈ S, then there exists
z0 ∈ C such tat

µs⟨Tsx, x∗⟩ = ⟨z0, x
∗⟩, ∀x∗ ∈ E∗.

We denote such z0 by Tµx. A net {µ < α} of means on C(S) is said to be
asymptotically invariant if for each f ∈ C(S) and s ∈ S,

µα(f) − µα(lsf) → 0 and µα(f ) − µα(rs f ) → 0,

and it is said to be strongly asymptotically invariant if for each s ∈ S,

∥l∗sµα − µα∥ → 0 and ∥r∗
s µα − µα∥ → 0,

where l∗s and r∗s are the adjoint operators of ls and rs, respectively. Such nets were
first studied by Day [6]. The following result is in Shioji and Takahashi [30]; see
also [19].

Lemma 3.2. Let S be a commutative semitopological semigroup. Let E be a uni-
formly convex Banach space, let C be a nonempty, closed and convex subset of E,
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and let B be a bounded subset of C. Let S = {Ts : s ∈ S} be a continuous repre-
sentation of S as nonexpansive mappings on C such that F (S) ̸= ∅. Let {µ < α}
be a strongly asymptotically invariant net of means on C(S). Then for any t ∈ S,

lim
α

sup
x∈B

∥TtTµαx − Tµαx∥ = 0.

Using Lemma 2.12, we also the following result.

Lemma 3.3. Let S be a commutative semitopological semigroup. Let E be a smooth
and reflexive Banach space and let S = {Ts : s ∈ S} be a continuous representation
of S as positively homogeneous nonexpansive mappings of E into itself. Let {µn}
be a mean on C(S) and let Tµx be a mean vector of {Tsx : s ∈ S} and µ for every
x ∈ E. Then

ϕ(Tµx,m) ≤ ϕ(x,m), ∀x ∈ E, m ∈ F (S).

Proof. Let x ∈ E. Since F (S) is nonempty, {Tsx : s ∈ S} is bounded. Then there
exists Tµx ∈ E such that

µs⟨Tsx, x∗⟩ = ⟨Tµx, x∗⟩, ∀x∗ ∈ E∗.

We have that

∥Tµx∥ = sup{ |⟨Tµx, z∗⟩| : ∥z∗∥ = 1}
= sup{ |µs⟨Tsx, z∗⟩| : ∥z∗∥ = 1}
≤ sup{ ∥µ∥ · sup

s∈S
|⟨Tsx, z∗⟩| : ∥z∗∥ = 1}

≤ sup{ sup
s∈S

∥Tsx∥ · ∥z∗∥ : ∥z∗∥ = 1}

≤ sup{ sup
s∈S

∥x∥ · ∥z∗∥ : ∥z∗∥ = 1}

= ∥x∥.

Using Lemma 2.12, we have that for any m ∈ F (S),

ϕ(Tµx,m) = ∥Tµx∥2 − 2⟨Tµx, Jm⟩ + ∥m∥2

≤ ∥x∥2 − 2µs⟨Tsx, Jm⟩ + ∥m∥2

≤ ∥x∥2 − 2µs⟨x, Jm⟩ + ∥m∥2

= ∥x∥2 − 2⟨x, Jm⟩ + ∥m∥2

= ϕ(x,m).

This completes the proof. ¤

4. Weak convergence theorems

In this section, we prove a weak convergence theorem of Mann’s iteration [20]
for a commutative family of positively homogenuous nonexpansive mappings in a
Banach space. Using Lemma 3.3, we have the following result.

Lemma 4.1. Let S be a commutative semitopological semigroup. Let E be a smooth
and uniformly convex Banach space and let S = {Ts : s ∈ S} be a continuous
representation of S as positively homogeneous nonexpansive mappings of E into
itself. If a sequence {µn} of means on C(S) is strongly asymptotically invariant.
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Let {αn} be a sequence of real numbers such that 0 ≤ αn < 1 and let {xn} be a
sequence in E generated by x1 = x ∈ E and

xn+1 = αnxn + (1 − αn)Tµnxn, ∀n ∈ N.

If RF (S) is a sunny generalized nonexpansive retraction of E onto F (S), then
{RF (S)xn} converges strongly to z ∈ F (S).

Proof. Let m ∈ F (S). Using Lemma 3.3, we have that

ϕ(xn+1,m) = ϕ(αnxn + (1 − αn)Tµnxn, m)

≤ αnϕ(xn,m) + (1 − αn)ϕ(Tµnxn, m)

≤ αnϕ(xn,m) + (1 − αn)ϕ(xn, m)

= ϕ(xn,m).

So, limn→∞ ϕ(xn,m) exists. Since {ϕ(xn,m)} is bounded, {xn} and {Tµnxn} are
bounded. Define yn = RF (S)xn for all n ∈ N. Since ϕ(xn+1,m) ≤ ϕ(xn,m) for all
m ∈ F (S), from yn ∈ F (S) we have

(4.1) ϕ(xn+1, yn) ≤ ϕ(xn, yn).

From Lemma 2.7 and (4.1), we have

ϕ(xn+1, yn+1) = ϕ(xn+1, RF (S)xn+1)

≤ ϕ(xn+1, yn) − ϕ(RF (S)xn+1, yn)

= ϕ(xn+1, yn) − ϕ(yn+1, yn)

≤ ϕ(xn+1, yn)

≤ ϕ(xn, yn).

Then ϕ(xn, yn) is a convergent sequence. We also have from (4.1) that for all m ∈ N,

ϕ(xn+m, yn) ≤ ϕ(xn, yn).

From yn+m = RF (S)xn+m and Lemma 2.7, we have

ϕ(yn+m, yn) + ϕ(xn+m, yn+m) ≤ ϕ(xn+m, yn) ≤ ϕ(xn, yn)

and hence
ϕ(yn+m, yn) ≤ ϕ(xn, yn) − ϕ(xn+m, yn+m).

Using Lemma 2.5, we have that

g(∥yn+m − yn∥) ≤ ϕ(yn+m, yn) ≤ ϕ(xn, yn) − ϕ(xn+m, yn+m),

where g : [0,∞) → [0,∞) is a continuous, strictly increasing and convex function
such that g(0) = 0. Then, the properties of g yield that RF (S)xn converges strongly
to an element z of F (S). ¤

Using Lemma 4.1, we prove the following theorem.

Theorem 4.2. Let S be a commutative semitopological semigroup. Let E be a
smooth and uniformly convex Banach space and let S = {Ts : s ∈ S} be a continuous
representation of S as positively homogeneous nonexpansive mappings of E into
itself. If a sequence {µn} of means on C(S) is strongly asymptotically invariant.
Let {αn} be a sequence of real numbers such that 0 ≤ αn ≤ a < 1 for some a ∈ R
with 0 < a < 1. Then, a sequence {xn} generated by x1 = x ∈ E and

xn+1 = αnxn + (1 − αn)Tµnxn, ∀n ∈ N
8



converges weakly to z ∈ F (S). Further, if E has a Fréchet differentiable norm, then
z = limn→∞ RF (S)xn, where RF (S) is a sunny generalized nonexpansive retraction
of E onto F (S).

Proof. For x ∈ E and m ∈ F (S), put r = ∥x − m∥ and set

X = {u ∈ E : ∥u − m∥ ≤ r}.
Then, X is a nonempty, bounded, closed and convex suset of E. Furthermore, X
is Ts-invariant for every s ∈ S and contains x1 = x. From Lemma 2.3, there exists
a continuous, strictly increasing and convex function g : [0,∞) → [0,∞) such that
g(0) = 0 and

∥xn+1 − m∥2 = ∥αnxn + (1 − αn)Tµnxn − m∥2

≤ αn∥xn − m∥2 + (1 − αn)∥Tµnxn − m∥2

− αn(1 − αn)g(∥Tµnxn − xn∥)
≤ αn∥xn − m∥2 + (1 − αn)∥xn − m∥2(4.2)

− αn(1 − αn)g(∥Tµn
xn − xn∥)

= ∥xn − m∥2 − αn(1 − αn)g(∥Tµnxn − xn∥)
≤ ∥xn − m∥2

So, limn→∞ ∥xn − m∥ exists. Since 0 ≤ αn ≤ a < 1, we have from (4.2) that

αn(1 − a)g(∥Tµnxn − xn∥) ≤ αn(1 − αn)g(∥Tµnxn − xn∥)(4.3)

≤ ∥xn − m∥2 − ∥xn+1 − m∥2.

Since limn→∞ ∥xn − m∥ exists, we have from (4.3) that

lim
n→∞

αng(∥Tµnxn − xn∥) = 0.(4.4)

From the properties of g and {αn}, we have

lim
n→∞

αn∥Tµnxn − xn∥ = 0.(4.5)

In fact, take any subsequence {αni∥Tµni
xni − xni∥} of {αn∥Tµnxn − xn∥}. If

limi→∞ αni = 0, then limi→∞ αni∥Tµni
xni − xni∥ = 0. If limi→∞ αni ̸= 0, then

there exist ε > 0 and a subsequence {αnij
} of {αni} such that αnij

≥ ε > 0 for all
j ∈ N. Then we have from (4.4) that g(∥Tµnij

xnij
− xnij

∥) = 0. From the prop-
erties of g, we have ∥Tµnij

xnij
− xnij

∥ = 0 and hence αnij
∥Tµnij

xnij
− xnij

∥ = 0.
Therefore

lim
n→∞

αn∥Tµnxn − xn∥ = 0.

Using (4.5) and the definition of {xn}, we have that

xn+1 − Tµnxn = αn(xn − Tµnxn) → 0.(4.6)

We have from Lemma 3.2 that for any s ∈ S,

∥xn+1 − Tsxn+1∥ ≤ ∥xn+1 − Tµnxn∥
+ ∥Tµnxn − TsTµnxn∥ + ∥TsTµnxn − Tsxn+1∥(4.7)

≤ 2∥xn+1 − Tµnxn∥ + ∥Tµnxn − TsTµnxn∥ → 0.

Since E is reflexive and {xn} is bounded, there exists a subsequence {xni} of
{xn} such that xni ⇀ v for some v ∈ X. Since E is uniformly convex and
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limn→∞ ∥Tsxn − xn∥ = 0 for all s ∈ S, we have from Lemma 2.1 that v is a
fixed point of Ts. Thus v ∈ F (S). Let {xni} and {xnj} be two subsequences of
{xn} such that xni ⇀ u and xnj ⇀ v. We have that u, v ∈ F (S). As in the proof
of Lemma 4.1, we have that for any m ∈ F (S),

ϕ(xn+1,m) = ϕ(αnxn + (1 − αn)Tµnxn, m)

≤ αnϕ(xn,m) + (1 − αn)ϕ(Tµnxn, m)

≤ ϕ(xn,m)

for all n ∈ N. Then, limn→∞ ϕ(xn,m) exists. Put

a = lim
n→∞

(ϕ(xn, u) − ϕ(xn, v)).

Since ϕ(xn, u) − ϕ(xn, v) = 2⟨xn, Jv − Ju⟩ + ∥u∥2 − ∥v∥2, we have

a = 2⟨u, Jv − Ju⟩ + ∥u∥2 − ∥v∥2

and

a = 2⟨v, Jv − Ju⟩ + ∥u∥2 − ∥v∥2.

From these equalities, we obtain

⟨u − v, Ju − Jv⟩ = 0.

Since J is strictly monotone, it follows that u = v; see [34]. Therefore, {xn}
converges weakly to an element u of F (S). On the other hand, we know from
Lemma 4.1 that {RF (S)xn} converges strongly to z ∈ F (S). From Lemma 2.7, we
also have

⟨xn − RF (S)xn, JRF (S)xn − Ju⟩ ≥ 0.

Since E has a Fréchet differentiable norm, the duality mapping J is norm-to-norm
continuous. So, we have ⟨u − z, Jz − Ju⟩ ≥ 0. Since J is monotone, we also have
⟨u − z, Jz − Ju⟩ ≤ 0. So, we have ⟨u − z, Jz − Ju⟩ = 0. Since E is strictly convex,
we have z = u. This completes the proof. ¤

Using Theorem 4.2, we obtain the following new result for linear contractive
mappings of E into itself.

Theorem 4.3. Let E be a smooth and uniformly convex Banach space and Let
T : E → E be a linear contractive mapping. Let {αn} be a sequence of real numbers
such that 0 ≤ αn < 1 and

∑∞
n=1 αn(1−αn) = ∞. Then, a sequence {xn} generated

by x1 = x ∈ E and

xn+1 = αnxn + (1 − αn)Txn, ∀n ∈ N

converges weakly to z ∈ F (T ). Further, if E has a Fréchet differentiable norm,
then z = limn→∞ Rxn, where R is a sunny generalized nonexpansive retraction of
E onto F (T ).

Proof. A linear contractive mapping T : E → E is a positively homogenuous non-
expansive mapping such that T (0) = 0. From Theorem 4.2, we get the desired
result. ¤
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5. Strong convergence theorems

In this section, we prove a strong convergence theorem by a hybrid method
called the shrinking projection method for positively homogenuous nonexpansive
mappings in a Banach space.

Theorem 5.1. Let S be a commutative semitopological semigroup. Let E be a
uniformly convex Banach space which has a Fréchet differentiable norm and let
S = {Ts : s ∈ S} be a continuous representation of S as positively homogeneous
nonexpansive mappings of E into itself. If a sequence {µn} of means on C(S) is
strongly asymptotically invariant. Let {αn} be a sequence of real numbers such that
0 ≤ αn ≤ a < 1. Let {xn} be a sequence generated by x1 = x ∈ E, C1 = E and

un = αnxn + (1 − αn)Tµnxn,

Cn+1 = {z ∈ Cn : ϕ(un, z) ≤ ϕ(xn, z)},
xn+1 = RCn+1x, ∀n ∈ N,

where RCn+1 is the sunny generalized nonexpansive retraction of E onto Cn+1.
Then, {xn} converges strongly to z = RF (S)x, where RF (S) is the sunny generalized
nonexpansive retraction of E onto F (S).

Proof. Since Ts : E → E is a generalized nonexpansive mapping for every s ∈ S,
we have from Lemma 2.11 that F (S) is a sunny generalized nonexpansive retract
of E. We shall show that JCn are closed and convex and F (S) ⊂ Cn for all n ∈ N.
It is obvious from the assumption that JC1 = JE = E∗ is closed and convex, and
F (S) ⊂ C1. Suppose that JCk is closed and convex and F (S) ⊂ Ck for some k ∈ N.
From the definition of ϕ, we have that for z ∈ Ck,

ϕ(uk, z) ≤ ϕ(xk, z)

⇐⇒∥uk∥2 − ∥xk∥2 − 2⟨uk − xk, Jz⟩ ≤ 0.

So, JCk+1 is closed and convex. If z ∈ F (S) ⊂ Ck, then we have
ϕ(un, z) = ϕ(αnxn + (1 − αn)Tµnxn, z)

≤ αnϕ(xn, z) + (1 − αn)ϕ(Tµnxn, z)

≤ αnϕ(xn, z) + (1 − αn)ϕ(xn, z)

= ϕ(xn, z).

Hence, we have z ∈ Ck+1. By induction, we have that JCn are closed and convex
and F (S) ⊂ Cn for all n ∈ N. Since JCn is closed and convex, from Lemma 2.6
there exists a unique sunny generalized nonexpansive retraction RCn of E onto Cn.
We also know from Lemma 2.8 that such RCn is denoted by J−1ΠJCnJ , where J
is the duality mapping of E and ΠJCn is the generalized projection of E onto JCn.
Thus, {xn} is well-defined.

Since {JCn} is a nonincreasing sequence of nonempty, closed and convex subsets
of E∗ with respect to inclusion, it follows that

(5.1) ∅ ̸= JF (S) ⊂ M- lim
n→∞

JCn = ∩∞
n=1JCn.

Put C∗
0 = ∩∞

n=1JCn. Then, by Theorem 2.14 we have that {ΠJCn+1Jx} converges
strongly to x∗

0 = ΠC∗
0
Jx. Since E∗ is a Fréchet differencial norm, J−1 is continuous.

So, we have

xn+1 = Rn+1x = J−1ΠJCn+1Jx → J−1x∗
0.

11



To complete the proof, it is sufficient to show that J−1x∗
0 = RF (S)x.

Since xn = RCnx and xn+1 = RCn+1x ∈ Cn+1 ⊂ Cn, we have from Lemma 2.7
and (2.2) that

0 ≤ 2⟨x − xn, Jxn − Jxn+1⟩
= ϕ(x, xn+1) − ϕ(x, xn) − ϕ(xn, xn+1)

≤ ϕ(x, xn+1) − ϕ(x, xn).

Thus we get that

ϕ(x, xn) ≤ ϕ(x, xn+1).(5.2)

Furthermore, since xn = RCnx and z ∈ F (T ) ⊂ Cn, from Lemma 2.10 we have

ϕ(x, xn) ≤ ϕ(x, z).(5.3)

Then we have that limn→∞ ϕ(x, xn) exists. This implies that {xn} is bounded.
Hence, {un} and {Tµnxn} are also bounded. From

ϕ(xn, xn+1) = ϕ(RCnx, xn+1)

= ϕ(x, xn+1) − ϕ(x,RCnx)

= ϕ(x, xn+1) − ϕ(x, xn) → 0,

we have that

ϕ(xn, xn+1) → 0.(5.4)

From xn+1 ∈ Cn+1, we have that ϕ(un, xn+1) ≤ ϕ(xn, xn+1). So, we get that
ϕ(un, xn+1) → 0. Using Lemma 2.4, we have

lim
n→∞

∥un − xn+1∥ = lim
n→∞

∥xn − xn+1∥ = 0.

So, we have

∥un − xn∥ ≤ ∥un − xn+1∥ + ∥xn+1 − xn∥ → 0.(5.5)

Since ∥xn − un∥ = ∥xn − αnxn − (1 − αn)Tµnxn∥ = (1 − αn)∥xn − Tµnxn∥ and
0 ≤ αn ≤ a < 1, we have that

∥Tµn
xn − xn∥ → 0.(5.6)

We have Lemma 3.2 that for any s ∈ S,

∥xn − Tsxn∥ ≤ ∥xn − Tµnxn∥ + ∥Tµnxn − TsTµnxn∥ + ∥TsTµnxn − Tsxn∥
≤ 2∥xn − Tµnxn∥ + ∥Tµnxn − TsTµnxn∥ → 0.

Since xn+1 → J−1x∗
0 and Ts is continuous, we have J−1x∗

0 ∈ F (Ts). Therefore,
we have J−1x∗

0 ∈ F (S).
Put z0 = RF (S)x. Since z0 = RF (S)x ⊂ Cn+1 and xn+1 = RCn+1x, we have that

(5.7) ϕ(x, xn+1) ≤ ϕ(x, z0).

So, we have that

ϕ(x, J−1x∗
0) = ∥x∥2 − 2⟨x, x∗

0⟩ + ∥J−1x∗
0∥2

= lim
n→∞

(∥x∥2 − 2⟨x, Jxn⟩ + ∥xn∥2)

= lim
n→∞

ϕ(x, xn)

≤ ϕ(x, z0).
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Then we get z0 = J−1x∗
0. Hence, {xn} converges strongly to z0. This completes

the proof. ¤

Using Theorem 5.1, we prove a strong convergence theorem for linear contractive
mappings in a Banach space.

Theorem 5.2. Let S be a commutative semitopological semigroup. Let E be a
uniformly convex Banach space which has a Fréchet differentiable norm and let
S = {Ts : s ∈ S} be a continuous representation of S as linear contractive mappings
of E into itself. If a sequence {µn} of means on C(S) is strongly asymptotically
invariant. Let {αn} be a sequence of real numbers such that 0 ≤ αn ≤ a < 1. Let
{xn} be a sequence generated by x1 = x ∈ E, C1 = E and

un = αnxn + (1 − αn)Tµnxn,

Cn+1 = {z ∈ Cn : ϕ(un, z) ≤ ϕ(xn, z)},
xn+1 = RCn+1x, ∀n ∈ N,

where RCn+1 is the sunny generalized nonexpansive retraction of E onto Cn+1.
Then, {xn} converges strongly to z = RF (S)x, where RF (S) is the sunny generalized
nonexpansive retraction of E onto F (S).

Proof. A linear contractive mapping Ts : E → E is positively homogenuous and
nonexpansive. So, using Theorem 5.1, we obtain the desired result. ¤
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