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Abstract. Let q > 1 and E be a real q-uniformly smooth Banach space, K be a nonempty

closed convex subset of E and T : K → K be a strictly pseudocontractive mapping in the

sense of F. E. Browder and W.V. Pstryshyn [1]. Let {un} be a bounded sequence in K

and {αn} and {βn} be real sequences in [0, 1] satisfying some restrictions. Let {xn} be the

sequence generated from an arbitrary x1 ∈ K by the Ishikawa iteration process with errors:

yn = (1 − βn)xn + βnTxn, xn+1 = (1 − αn)xn + αnTyn + un, n ≥ 1. Sufficient and necessary

conditions for the strong convergence {xn} to a fixed point of T is established.

Keywords: Fixed point, strictly pseudocontractive mapping, Ishikawa iteration process with

errors, q−uniformly smooth Banach space.
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1. Introduction and Preliminaries

Let E be an arbitrary real Banach space and let Jq(q > 1) denote the generalized duality

mapping from E into 2E?
given by

Jq(x) = {f ∈ E? : 〈x, f〉 = ‖x‖q = ‖x‖‖f‖},

where E? denote the dual space of E and 〈·, ·〉 denotes the generalized duality pairing between

E and E?. In particular, J2 is called the normalized duality mapping and it is usually denote

by J . It is well known (see [11]) that Jq(x) = ‖x‖q−2J(x) if x 6= 0 and that if E? is strictly

convex, then Jq is single-valued.

Definition 1.1. A mapping T with domain D(T ) and range R(T ) in E is called strictly

pseudocontractive [1] if there exists λ > 0 such that for all x, y ∈ D(T ) there exists j(x− y) ∈

J(x− y) satisfying

〈(I − T )x− (I − T )y, j(x− y)〉 ≥ λ‖(I − T )x− (I − T )y‖2 (1.1)

where I denotes the identity operator.

Remark 1.1. Without loss of generality we may assume λ ∈ (0, 1). In Hilbert spaces, (1.1)

is equivalent to the following inequality

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x− (I − T )y‖2, k = 1− 2λ < 1. (1.2)
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The Mann iterative process (with errors) and the Ishikawa iterative process (with errors)

have been extensively applied to approximate the solutions of nonlinear operator equations or

fixed points of nonlinear mappings in Hilbert spaces or Banach spaces in the literature. See,

e.g., [3-10]. In 1974, Rhoades [9] proved the following convergence theorem using the Mann

iterative process.

Theorem 1.1. Let H be a real Hilbert space and K a nonempty compact convex subset

of H. Let T : K → K be a strictly pseudocontractive mapping and let {αn} be a real

sequence satisfying the conditions: (i) α0 = 1; (ii) 0 < αn < 1, n ≥ 1; (iii )
∑∞

n=1 αn = ∞;

(iv) limn→∞ αn = α < 1. Then the sequence {xn} generated from an arbitrary x0 ∈ K by the

Mann iterative process

xn+1 = (1− αn)xn + αnTxn, n ≥ 0

converges strongly to a fixed point of T .

Let E be a real Banach space. The modulus of smoothness of E is defined as the function

ρE : [0,∞) → [0,∞) :

ρE(τ) = sup{1

2
(‖x + y‖+ ‖x− y‖)− 1 : ‖x‖ ≤ 1, ‖y‖ ≤ τ}.

E is said to be uniformly smooth if and only if limτ→0+(ρE(τ)/τ) = 0. Let q > 1. The space

E is said to be q−uniformly smooth (or to have a modulus of smoothness of power type

q > 1), if there exists a constant cq > 0 such that ρE(τ) ≤ cqτ
q. It is well known that Hilbert
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spaces, Lp and lp spaces, 1 < p < ∞, as well as the Sobolev spaces, W p
m, 1 < p < ∞, are

q−uniformly smooth. Hilbert spaces are 2-uniformly smooth while if 1 < p ≤ 2, Lp, lp and

W p
m are p−uniformly smooth. If p ≥ 2, Lp, lp and W p

m are 2-uniformly smooth.

Theorem 1.2 [11]. Let q > 1 and E be a real smooth Banach space. Then the following are

equivalent:

(1) E is q−uniformly smooth.

(2) There exists a constant cq > 0 such that for all x, y ∈ E

‖x + y‖q ≤ ‖x‖q + q〈y, Jq(x)〉+ cq‖y‖q. (1.3)

(3) There exists a constant dq such that for all x, y ∈ E and t ∈ [0, 1]

‖(1− t)x + ty‖q ≥ (1− t)‖x‖q + t‖y‖q − ωq(t)dq‖x− y‖q, (1.4)

where ωq(t) = tq(1− t) + t(1− t)q.

Furthermore, it was shown in [12, Remark 5] that if E is q−uniformly smooth (q > 1),

then for all x, y ∈ E, there exists a constant L? > 0 such that

‖Jq(x)− Jq(y)‖ ≤ L?‖x− y‖q−1. (1.5)

Recently, Osilike and Udomene [13] improved, unified and developed the above Theorem

1.1 and Browder and Petryshyn’s corresponding result [1] in two aspects: (i) Hilbert spaces

are extended to the setting of q−uniformly smooth Banach spaces (q > 1); (ii) Mann iterative

process is extended to the case of Ishikawa iterative process.

5



Theorem 1.3 [13, Theorem 2]. Let E be a real q−uniformly smooth Banach space which

is also uniformly convex. Let K be a nonempty closed convex subset of E and T : K → K be

a strictly pseudocontractive mapping with a nonempty fixed-point set F (T ). Let {αn} and

{βn} be real sequences in [0, 1] satisfying the conditions:

(i) 0 < a ≤ αq−1
n ≤ b < (qλq−1/cq)(1− βn),∀n ≥ 1 and for some constants a, b ∈ (0, 1);

(ii)
∑∞

n=1 βτ
n < ∞, where τ = min{1, (q − 1)}.

If {xn} is the sequence generated from an arbitrary x1 ∈ K by the Ishikawa iterative

process {
yn = (1− βn)xn + βnTxn,
xn+1 = (1− αn)xn + αnTyn, n ≥ 1.

then {xn} converges weakly to a fixed point of T .

Definition 1.2. A mapping T with domain D(T ) and range R(T ) in E is called demiclosed at

a point p if whenever {xn} is a sequence in D(T ) such that {xn} converges weakly to x ∈ D(T )

and {Txn} converges strongly to p, then Tx = p. Furthermore, T is called demicompact if

whenever {xn} is a bounded sequence in D(T ) such that {xn−Txn} converges strongly, then

{xn} has a subsequence which converges strongly.

Theorem 1.4 [13, Corollary 2]. Let E be a real q−uniformly smooth Banach space, K be a

nonempty closed convex subset of E, T : K → K be a demicompact strictly pseudocontractive

mapping with a nonempty fixed-point set F (T ). Let {αn},{βn} and {xn} be as in Theorem
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1.3. Then {xn} converges strongly to a fixed point of T .

Let E be a real q−uniformly smooth Banach space, K be a nonempty closed convex

(not necessarily bounded) subset of E with K + K ⊆ K, and T : K → K be a strictly

pseudocontractive mapping with F (T ) 6= ∅. Let {un} be a bounded sequence in K and

{αn}, {βn} be real sequences in [0, 1] satisfying certain restrictions. Let {xn} be the sequence

generated from x1 ∈ K by the Ishikawa iterative process with errors:

{
yn = (1− βn)xn + βnTxn,
xn+1 = (1− αn)xn + αnTyn + un, n ≥ 1.

(1.6)

In this paper, we establish the sufficient and necessary conditions for the strong convergence

of {xn} to a fixed point of T . It is worth noting that comparing with [13,Theorem 2 and

Corollary 2] our results have the following features: (i) The uniform convexity assumption

on E is removed. (ii) The Ishikawa iterative process is replaced by the Ishikawa iterative

process with errors. (iii) Our restrictions imposed on {αn} are much weaker than those in

[13, Theorem 2 and Corollary 2]. (iv) We establish the sufficient and necessary conditions on

the strong convergence of the Ishikawa iterative process with errors. Furthermore, our results

also improve and extend the corresponding results in [1, 9]

Now, we give some preliminaries which will be used in the sequel.

From (1.2) we have

‖x− y‖ ≥ λ‖x− y − (Tx− Ty)‖ ≥ λ‖Tx− Ty‖ − λ‖x− y‖.
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so that ‖Tx− Ty‖ ≤ L‖x− y‖,∀x, y ∈ K, where L = (1 + λ)/λ. Since

‖x− y‖ ≥ λ‖x− y − (Tx− Ty)‖,

we have

〈x− Tx− (y − Ty), jq(x− y)〉 = ‖x− y‖q−2〈x− Tx− (y − Ty), j(x− y)〉
≥ λ‖x− y‖q−2‖x− Tx− (y − Ty)‖2

≥ λq−1‖x− Tx− (y − Ty)‖q. (1.7)

Lemma 1.1 [10]. Let{an}∞n=1 and {bn}∞n=1 be sequences of nonnegative real numbers such

that
∑∞

n=1 bn < ∞ and an+1 ≤ an + bn,∀n ≥ 1. Then limn→∞ an exists.

2. Main Results

Throughout this section, λ denotes the constant appearing in (1.1). L stands for the

Lipschitz constant of T , and cq, dq, ωq(t), and L? are the constants appearing in inequalities

(1.3)-(1.5), respectively.

Lemma 2.1. Let q > 1 and E be a real q−uniformly smooth Banach space and K be a non-

empty convex subset of E with K + K ⊆ K, and T : K → K be a strictly pseudocontractive

mapping with F (T ) 6= ∅. Let {un}∞n=1 be a bounded sequence in K,and {αn}∞n=1, {βn}∞n=1

be real sequences in [0, 1] satisfying the following conditions: (i)
∑∞

n=1 ‖un‖ < ∞, (ii) αn ≤

λ(q/cq)
1/(q−1), and

∑∞
n=1 βτ

n < ∞ where τ = min{1, (q − 1)}. Let {xn} be the sequence

generated from an arbitrary x1 ∈ K by the Ishikawa iterative process (1.6) with errors. Then
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(i) ‖xn+1 − x?‖q ≤ (1 + δn)‖xn − x?‖q + θn,∀n ≥ 1,∀x? ∈ F (T ),

where

δn = 2αnβnλ
q−1qdq(1 + L)q + αnβ

q−1
n qL?(1 + L)q+1 + αnβnqλ

q−1(1 + L2)q

and

θn = q‖un‖‖xn+1 − un − x?‖q−1 + cq‖un‖q.

(ii) There exists a constant M > 0 (e.g., M = e
∑∞

n=1
δn) such that

‖xn+m − x?‖q ≤ M‖xn − x?‖q + M
n+m−1∑

k=n

θk,∀n,m ≥ 1,∀x? ∈ F (T ).

Proof. (i) For each n ≥ 1, from (1.6) we obtain

xn+1 = (1− αn)xn + αnTyn + un. (2.1)

Let x? be an arbitrary element in F (T ). Then it follows from (1.3) that

‖xn+1 − x?‖q = ‖(1− αn)xn + αnTyn + un − x?‖q

≤ ‖(1− αn)xn + αnTyn − x?‖q + q〈un, jq(xn+1 − un − x?)〉+ cq‖un‖q

≤ ‖(1− αn)xn + αnTyn − x?‖q + q‖un‖‖xn+1 − un − x?‖q−1 + cq‖un‖q.(2.2)

Observe that

‖(1− αn)xn + αnTyn − x?‖q = ‖xn − x? − αn(xn − Tyn)‖q

≤ ‖xn − x?‖q − qαn〈xn − Tyn, jq(xn − x?)〉
+αq

ncq‖xn − Tyn‖q, (2.3)

〈xn − Tyn, jq(xn − x?)〉 = 〈xn − yn, jq(xn − x?)〉+ 〈yn − Tyn, jq(xn − x?)〉
= βn〈xn − Txn − (x? − Tx?), jq(xn − x?)〉

+〈yn − Tyn, jq(xn − x?)〉
≥ βnλ

q−1‖xn − Txn − (x? − Tx?)‖q

+〈yn − Tyn, jq(xn − x?)〉
= βnλ

q−1‖xn − Txn‖q + 〈yn − Tyn, jq(xn − x?)〉,
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and by (1.7)

〈yn − Tyn, jq(xn − x?)〉 = 〈yn − Tyn − (x? − Tx?), jq(xn − x?)− jq(yn − x?)〉
+〈yn − Tyn − (x? − Tx?), jq(yn − x?)〉

≥ λq−1‖yn − Tyn − (x? − Tx?)‖q

+〈yn − Tyn − (x? − Tx?), jq(xn − x?)− jq(yn − x?)〉
= λq−1‖yn − Tyn‖q

+〈yn − Tyn − (x? − Tx?), jq(xn − x?)− jq(yn − x?)〉.(2.4)

Moreover, by using (1.4), we have

‖yn − Tyn‖q = ‖(1− βn)(xn − Tyn) + βn(Txn − Tyn)‖q

≥ (1− βn)‖xn − Tyn‖q + βn‖Txn − Tyn‖q − ωq(βn)dq‖xn − Txn‖q.(2.5)

Then it follows from (2.2)-(2.5) that

‖xn+1 − x?‖q ≤ ‖xn − x?‖q − qαn{βnλ
q−1‖xn − Txn‖q + λq−1(1− βn)‖xn − Tyn‖q

+λq−1βn‖Txn − Tyn‖q − λq−1ωq(βn)dq‖xn − Txn‖q

+〈yn − Tyn, jq(xn − x?)− jq(yn − x?)〉}
+αq

ncq‖xn − Tyn‖q + q‖un‖‖xn+1 − un − x?‖q−1 + cq‖un‖q

≤ ‖xn − x?‖q − αn(qλq−1(1− βn)− αq−1
n cq)‖xn − Tyn‖q

+qdqλ
q−1αnωq(βn)‖xn − Txn‖q

+qαn‖yn − Tyn‖‖jq(xn − x?)− jq(yn − x?)‖
+q‖un‖‖xn+1 − un − x?‖q−1 + cq‖un‖q.

Also, observe that

ωq(βn) = βn(1− βn)q + βq
n(1− βn) ≤ 2βn,

‖xn − Txn‖ ≤ (1 + L)‖xn − x?‖,

‖jq(xn − x?)− jq(yn − x?)‖ ≤ L?β
q−1
n ‖xn − Txn‖q−1(using (1.5))

≤ L?(1 + L)q−1βq−1
n ‖xn − x?‖q−1,

and

‖yn − Tyn‖ ≤ (1 + L)‖yn − x?‖
≤ (1 + L)[(1− βn)‖xn − x?‖+ βnL‖xn − x?‖]
≤ (1 + L)2‖xn − x?‖.
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Consequently, we have

‖xn+1 − x?‖q ≤ [1 + 2αnβnλ
q−1qdq(1 + L)q + αnβ

q−1
n qL?(1 + L)q+1]‖xn − x?‖

−αn[qλq−1(1− βn)− αq−1
n cq]‖xn − Tyn‖q

+q‖un‖‖xn+1 − un − x?‖q−1 + cq‖un‖q.

Since αn ≤ λ(q/cq)
1/(q−1), and

‖xn − Tyn‖ ≤ ‖xn − x?‖+ L‖x? − yn‖
≤ ‖xn − x?‖+ L[(1− βn)‖xn − x?‖+ βnL‖xn − x?‖]
≤ (1 + L2)‖xn − x?‖,

we conclude that (i) is valid.

(ii) It follows from conclusion (i) that for all n,m ≥ 1 and x? ∈ F (T )

‖xn+m − x?‖q ≤ (1 + δn+m−1)‖xn+m−1 − x?‖q + θn+m−1

≤ (1 + δn+m−1)(1 + δn+m−2)‖xn+m−2 − x?‖q

+(1 + δn+m−1)θn+m−2 + θn+m−1

≤ (1 + δn+m−1)(1 + δn+m−2)(1 + δn+m−3)‖xn+m−3 − x?‖q

+(1 + δn+m−1)(1 + δn+m−2)θn+m−3 + (1 + δn+m−1)θn+m−2 + θn+m−1

≤ ...

≤ e
∑n+m−1

k=n
δk‖xn − x?‖q + e

∑n+m−1

k=n
δk

∑n+m+1
k=n θk

≤ M‖xn − x?‖q + M
∑n+m+1

k=n θk,

where M = e
∑∞

k=1
δk . This shows that conclusion (ii) is also valid.

Theorem 2.1. Let q > 1 and E be a real q−uniformly smooth Banach space, K be a

nonempty closed convex subset of E with K + K ⊆ K, and T : K → K be a strictly

pseudocontractive mapping with F (T ) 6= ∅. Let {un} be a bounded sequence in K. Let {αn}

and {βn} be real sequences in [0, 1] satisfying the following conditions:

(i)
∑∞

n=1 ‖un‖ < ∞;

(ii) αn ≤ λ(q/cq)
1/(q−1), and

∑∞
n=1 βτ

n < ∞, where τ = min{1, (q − 1)}.
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Let {xn} be the sequence generated from an arbitrary x1 ∈ K by the Ishikawa iterative

process (1.6) with errors. Then {xn} converges strongly to a fixed point of T if and only if

{xn} is bounded and

liminfn→∞d(xn, F (T )) = 0

where d(xn, F (T )) is the distance of xn to set F (T ), i.e., d(xn, F (T )) = infu?∈F (T )d(xn, u
?).

Proof “Necessity”. Suppose that {xn} converges strongly to a fixed point of T , say, y? ∈ F (T ).

Then it is clear that {xn} is bounded. Note that

d(xn, F (T )) = infu?∈F (T )d(xn, u
?) ≤ d(xn, y

?) as n →∞.

Therefore,

liminfn→∞d(xn, F (T )) = 0

“Sufficiency”. Suppose that {xn} is bounded and that liminfn→∞d(xn, F (T )) = 0. First, from

Lemma 2.1(i), we obtain

‖xn+1 − x?‖q ≤ (1 + δn)‖xn − x?‖q + θn, n ≥ 1, x? ∈ F (T ),

where

δn = 2αnβnλ
q−1qdq(1 + L)q + αnβ

q−1
n qL?(1 + L)q+1 + αnβnqλ

q−1(1 + L)2q,

and

θn = q‖un‖‖xn+1 − un − x?‖q−1 + cq‖un‖q, ∀n ≥ 1.
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Since
∑∞

n=1 ‖un‖ < ∞,
∑∞

n=1 ‖un‖q < ∞. Note that {xn} and {un} are both bounded.

Thus, there is a number M̃ > 0 such that ‖xn+1−un−x?‖ ≤ M̃ , and ‖xn−x?‖ ≤ M̃,∀n ≥ 1.

Hence,

∞∑
n=1

θn =
∞∑

n=1

(q‖un‖‖xn+1 − un − x?‖q−1 + cq‖un‖q)

≤ qM̃ q−1
∞∑

n=1

‖un‖+ cq

∞∑
n=1

‖un‖q < ∞.

On the other hand, it follows from condition (ii) that
∑∞

n=1 δnM̃
q < ∞. Also, observe that

‖xn+1 − x?‖q ≤ (1 + δn)‖xn − x?‖q + θn ≤ ‖xn − x?‖q + δnM̃
q + θn. (2.6)

This implies that

(d(xn+1, F (T )))q ≤ [d(xn, F (T ))]q + δnM̃
q + θn.

By Lemma 1.1, we infer that limn→∞(d(xn, F (T ))q exists, that is, limn→∞ d(xn, F (T )) exists.

Since limn→∞ infd(xn, F (T )) = 0, we have liminfn→∞d(xn, F (T )) = 0.

Now we claim that {xn} is a Cauchy sequence. Indeed, according to Lemma 2.1(ii), we

deduce that there exists a constant M > 0 such that

‖xn+m − x?‖ ≤ M‖xn − x?‖q + M
n+m+1∑

k=n

θk,∀n, m ≥ 1, x? ∈ F (T ).

Since limn→∞ d(xn, F (T )) = 0 and
∑∞

n=1 θn < ∞, for an arbitrary ε > 0, there exists an

integer N1 ≥ 1 such that for all n ≥ N1

d(xn, F (T )) < (
ε

3M
)1/q · 1

2(q−1)/q
, and

∞∑
k=n

θk <
ε

6M
· 1

2q−1
.
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Hence, d(xN1 , F (T )) < ( ε
3M

)1/q · 1
2(q−1)/q . This implies that there exists an x?

1 ∈ F (T ) such that

d(xN1 , x
?
1) < (

ε

3M
)1/q · 1

2(q−1)/q
.

In view of Jensen’s Inequality [2, p.183], we conclude that

‖xn+m − xn‖q ≤ 2q−1(‖xn − x?
1‖q + ‖xn+m − x?

1‖q). (2.7)

Since for all n ≥ N1, we have

‖xn − x?
1‖q ≤ M‖xN1 − x?

1‖q + M
∑n

k=N1
θk

≤ M‖xN1 − x?
1‖q + M

∑∞
k=N1

θk

≤ M ε
3M

· 1
2(q−1) + M ε

6M
· 1

2q−1

= ε
2
· 1

2q−1 ,

and
‖xn+m − x?

1‖q ≤ M‖xN1 − x?
1‖q + M

∑n+m−1
k=N1

θk

≤ M‖xN1 − x?
1‖q + M

∑∞
k=N1

θk

≤ M ε
3M

· 1
2q−1

+ M ε
6M

· 1
2q−1

= ε
2
· 1

2q−1 ,

so, from (2.7), we get

‖xn+m − xn‖q ≤ 2q−1(
ε

2
· 1

2q−1
+

ε

2
· 1

2q−1
) = ε, ∀n ≥ N1, m ≥ 1.

This shows that {xn} is Cauchy sequence. Since the space E is complete, limn→∞ xn exists.

Thus, we may assume that limn→∞ xn = u?.

Next, we claim that u? is a fixed point of T , i.e., u? ∈ F (T ). Indeed, since d(u?, F (T )) = 0,

for any ε > 0, there is z? ∈ F (T ) such that ‖u? − z?‖ < ε. Then we have

‖Tu? − u?‖ ≤ ‖Tu? − Tz?‖+ ‖u? − z?‖
≤ (1 + L)ε.
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As ε is arbitrary, we conclude that Tu? = u? and hence u? is a fixed point of T . This completes

the proof of Theorem 2.1.

Theorem 2.2. Let q > 1 and E be a real q−uniformly smooth Banach space, K be a

nonempty closed convex subset of E with K + K ⊆ K, and T : K → K be a strictly

pseudocontractive mapping with F (T ) 6= ∅. Let {un} be a bounded sequence in K, and {αn},

{βn} be real sequences in [0, 1] satisfying the following conditions:

(i)
∑∞

n=1 ‖un‖ < ∞;

(ii) αn ≤ λ(q/cq)
1/(q−1), and

∑∞
n=1 βτ

n < ∞, where τ = min{1, (q − 1)}.

Let {xn} be the sequence generated from arbitrary x1 ∈ K by the Ishikawa iterative process

(1.6) with errors. Then {xn} converges strongly to a fixed point u? of T if and only if {xn} is

bounded and {xn} has a subsequence which is strongly convergent to a fixed point u? of T .

Proof. The conclusion of Theorem 2.2 follows immediately from Theorem 2.1.

Remark 2.1. If we take βn = 0,∀n ≥ 1 in Theorems 2.1 and 2.2, then we can obtain the

corresponding results on the strong convergence of the Mann iterative process with errors

xn+1 = (1− αn)xn + αnTxn + un, ∀n ≥ 1.

In addition, if we take un = 0,∀n ≥ 1 in (1.6), then Theorems 2.1 and 2.2 are still valid under

the lack of the assumption that {xn} is bounded. Indeed, when un = 0,∀n ≥ 1, it follows
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from Lemma 2.1(i) that

‖xn+1 − x?‖q ≤ (1 + δn)‖xn − x?‖q ≤ e
∑n

j=1
δj‖x1 − x?‖q ≤ e

∑∞
j=1

δj‖x1 − x?‖q < ∞.

This shows that {xn} is bounded.

Remark 2.2. Recall that Ishikawa iterative process with errors introduced by Liu [3] is stated

as follows: Let K be a nonempty convex subset of E with K + K ⊆ K. For any given x1 ∈ K,

the sequence {xn} is defined by the iterative scheme

{
yn = (1− βn)xn + βnTxn + vn,
xn+1 = (1− αn)xn + αnTyn + un, n ≥ 1,

where {un} and {vn} are bounded sequences in K, and {αn} as well as {βn} are real sequences

in [0, 1]. Naturally, one may ask the following open question.

Open Question: Are Theorems 2.1 and 2.2 extendable to the case of the Ishikawa iterative

process with errors in the sense of Liu [3]?
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