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Abstract. Let q > 1 and E be a real q−uniformly smooth Banach space. Let K be a
nonempty closed convex subset of E and T : K → K be a strictly pseudocontractive mapping
in the sense of F. E. Browder and W. V. Petryshyn [1]. Let {un} be a bounded sequence in K
and {αn}, {βn}, {γn} be real sequences in [0,1] satisfying some restrictions. Let {xn} be the
bounded sequence in K generated from any given x1 ∈ K by the Ishikawa iteration method
with errors: yn = (1 − βn)xn + βnTxn, xn+1 = (1 − αn − γn)xn + αnTyn + γnun, n ≥ 1. It is
shown in this paper that if T is compact or demicompact, then {xn} converges strongly to a
fixed point of T .
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1. Introduction

Let E be a real Banach space with norm ‖ ·‖ and dual E∗. Let 〈·, ·〉 denote the generalized
duality pairing between E and E∗, and let Jq : E → 2E∗(q > 1) denote the generalized duality
mapping defined as the following: for each x ∈ E,

Jq(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖q = ‖x‖‖f‖}.

In particular, J2 is called the normalized duality mapping and it is usually denoted by J. It is
well known (see [6]) that Jq(x) = ‖x‖q−2J(x) if x 6= 0, and that if E∗ is strictly convex then Jq

is single-valued. In the sequel we shall denote the single-valued generalized duality mapping
by jq.

Definition 1.1. A mapping T with domain D(T ) and range R(T ) in E is said to be strictly
pseudocontractive [1] if for all x, y ∈ D(T ), there exist λ > 0 and j(x − y) ∈ J(x − y) such
that

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2 − λ‖x− y − (Tx− Ty)‖2. (1.1)

Remark 1.1. Without loss of generality we may assume λ ∈ (0, 1). If I denotes the identity
operator, then (1.1) can be rewritten in the form

〈(I − T )x− (I − T )y, j(x− y)〉 ≥ λ‖(I − T )x− (I − T )y‖2. (1.2)

In Hilbert space, (1.1) (and hence (1.2)) is equivalent to the following inequality:

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x− (I − T )y‖2, k = (1− λ) < 1.

Definition 1.2. A mapping T with domain D(T ) and range R(T ) in E is called
(i) compact if for any bounded sequence {xn} in D(T ), there exists a strongly convergent

subsequence of {Txn};
(ii) demicompact if for any bounded sequence {xn} in D(T ), whenever {xn − Txn} is

strongly convergent, there exists a strongly convergent subsequence of {xn}.

In 1974, Rhoades [4] proved the following strong convergence theorem using the Mann
iteration method.

Theorem 1.1. Let H be a real Hilbert space and K be a nonempty compact convex subset of
H. Let T : K → K be a strictly pseudocontractive mapping and let {αn} be a real sequence
satisfying the following conditions:
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(i) α0 = 1; (ii) 0 < αn < 1, ∀n ≥ 1; (iii)
∑∞

n=1 αn = ∞; (iv) limn→∞αn = α < 1.
Then the sequence {xn} generated from an arbitrary x0 ∈ K by the Mann iteration method

xn+1 = (1− αn)xn + αTxn, ∀n ≥ 1,

converges strongly to a fixed point of T .

Recently, Osilike and Udomene [3] improved, unified and developed Theorem 1.1 and
Browder and Petryshyn’s corresponding result [1] in the following aspects: (1) Hilbert spaces
are extended to the setting of q−uniformly smooth Banach spaces. (2) The Mann iteration
method is extended to the case of Ishikawa iteration method.

Theorem 1.2 [3, Corollary 2]. Let q > 1 and E be a real q−uniformly smooth Banach
space. Let K be a nonempty closed convex subset of E, T : K → K be a demicompact
strictly pseudocontractive mapping with a nonempty fixed-point set, i.e.,F (T ) 6= ∅. Let {αn}
and {βn} be real sequences in [0,1] satisfying the following conditions:

(i) 0 < a ≤ αq−1
n ≤ b < (qλq−1/cq)(1− βn), ∀n ≥ 1 and for some constants a, b ∈ (0, 1);

(ii)
∑∞

n=1 βτ
n < ∞, where τ = min{1, (q − 1)}.

Then the sequence {xn} generated from an arbitrary x1 ∈ K by the Ishikawa iteration method{
yn = (1− βn)xn + βnTxn,
xn+1 = (1− αn)xn + αnTyn, n ≥ 1.

converges strongly to a fixed point of T .

Let q > 1 and E be a real q−uniformly smooth Banach space. Let K be a nonempty closed
convex (not necessarily bounded) subset of E, and T : K → K be a strictly pseudocontractive
mapping with F (T ) 6= ∅. Let {un} be a bounded sequence in K,{αn}, {βn} and {γn} be real
sequences in [0,1] satisfying certain restrictions. Let {xn} be the bounded sequence generated
from an arbitrary x1 ∈ K by the Ishikawa iteration method with errors{

yn = (1− βn)xn + βnTxn,
xn+1 = (1− αn − γn)xn + αnTyn + γnun, n ≥ 1.

It is shown in this paper that if T is compact or demicompact then {xn} converges strongly
to a fixed point of T . Our result improves, extends and develops Osilike and Udomene [3,
Corollary 2] in the following aspects: (1) The Ishikawa iteration method is extended to the
case of Ishikawa iteration method with errors. (2) The stronger condition (ii) in [3, Corollary
2] is removed and replaced by a weaker condition which is convenient to verify. In addition,
our result also improves and generalizes corresponding results in [1] and [4], respectively.

2. Preliminaries
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In this section, we give some preliminaries whih will be used in the rest of this paper.
¿From (1.2) we have

‖x− y‖ ≥ λ‖x− y − (Tx− Ty)‖ ≥ λ‖Tx− Ty‖ − λ‖x− y‖,

so that
‖Tx− Ty‖ ≤ L‖x− y‖, ∀x, y ∈ K, where L = (1 + λ)/λ.

Since ‖x− y‖ ≥ λ‖x− y − (Tx− Ty)‖, we have

〈x− Tx− (y − Ty), jq(x− y)〉 = ‖x− y‖q−2〈x− Tx− (y − Ty), jq(x− y)〉
≥ λ‖x− y‖q−2‖x− Tx− (y − Ty)‖2

≥ λq−1‖x− Tx− (y − Ty)‖q. (2.1)

Recall that the modulus of smoothness of E is the function ρE : [0,∞) → [0,∞) defined
by

ρE(τ) = sup{1

2
(‖x + y‖+ ‖x− y‖)− 1 : ‖x‖ ≤ 1, ‖y‖ ≤ τ}.

E is uniformly smooth if and only if limτ→0+(ρE(τ)/τ) = 0. Let q > 1. The space E is said
to be q−uniformly smooth (or to have a modulus of smoothness of power type q > 1) if there
exists a constant cq > 0 such that ρE(τ) < cqτ

q. Hilbert spaces, Lp, lp spaces, 1 < p < ∞, and
the Sobolev spaces, W p

m, 1 < p < ∞, are q−uniformly smooth. Hilbert spaces are 2-uniformly
smooth while if 1 < p < 2, then Lp, lp and W p

m is p−uniformly smooth; if p ≥ 2, then Lp, lp
and W p

m are 2-uniformly smooth.

Theorem 2.1 [6, p. 1130]. Let q > 1 and E be a real Banach space. Then the following
are equivalent:

(1) E is q−uniformly smooth.
(2) There exists a constant cq > 0 such that for all x, y ∈ E

‖x + y‖q ≤ ‖x‖q + q〈y, jq(x)〉+ cq‖y‖q.(2.2)

(3) There exists a constant dq such that for all x, y ∈ E and t ∈ [0, 1]

‖(1− t)x + ty‖q ≥ (1− t)‖x‖q + t‖y‖q − ωq(t)dq‖x− y‖q, (2.3)

where ωq(t) = tq(1− t) + t(1− t)q.

Furthermore, Xu and Roach [7, Remark 5] proved that if E is q−uniformly smooth (q > 1),
then for all x, y ∈ E, there exists a constant L∗ > 0 such that

‖jq(x)− jq(y)‖ ≤ L∗‖x− y‖q−1.(2.4)
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Lemma 2.1 [5, p. 303]. Let {an}∞n=1 and {bn}∞n=1 be sequences of nonnegative real numbers
such that

∑∞
n=1 bn < ∞ and an+1 < an + bn, ∀n ≥ 1. Then limn→∞an exists.

3. Main Results

In this section, Let λ be the constant appearing in (1.1), L be the Lipschitz constant of
T , and cq, dq, wq(t), and L∗ be the constants appearing in equations (2.2)-(2.4), respectively.

Lemma 3.1. Let q > 1 and E be a real q−uniformly smooth Banach space. Let K be a
nonempty convex subset of E, T : K → K be strictly pseudocontractive with F (T ) 6= ∅. Let
{un}∞n=1 be a bounded sequence in K, {αn}∞n=1, {βn}∞n=1 and {γ}∞n=1 be real sequences in [0,1]
with αn + γn ≤ 1, ∀n ≥ 1. Let {xn} be the sequence generated from an arbitrary x1 ∈ K by
the following Ishikawa iteration method with errors:{

yn = (1− βn)xn + βnTxn,
xn+1 = (1− αn − γn)xn + αnTyn + γnun.

(3.1)

Then,

‖xn+1 − x∗‖q ≤ (1 + 2anβnλ
q−1qdq(1 + L)q + anβ

q−1
n qL∗(1 + L)q+1

+anβnqλ
q−1(1 + L2)q)‖xn − x∗‖q

−an(qλq−1 − cqa
q−1
n )‖xn − Tyn‖q

+q‖en‖‖xn+1 − en − x∗‖q−1 + cq‖en‖q, (3.2)

where an = αn + γn, and en = γn(un − Tyn), ∀n ≥ 1.
Proof. For each n ≥ 1, set an = αn + γn and en = γn(un − Tyn). Then it follows from (3.1)
that for each n ≥ 1,

xn+1 = (1− an)xn + anTyn + en.

Let x∗ be an arbitrary fixed point of T . Then from (2.2) we obtain

‖xn+1 − x∗‖q = ‖(1− an)xn + anTyn + en − x∗‖q

≤ ‖(1− an)xn + anTyn − x∗‖q + q〈en, jq(xn+1 − en − x∗)〉+ cq‖en‖q

≤ ‖(1− an)xn + anTyn − x∗‖q + q‖en‖‖xn+1 − en − x∗‖q−1 + cq‖en‖q.(3.3)

Observe that

‖(1− an)xn + anTyn − x∗‖q = ‖xn − x∗ − an(xn − Tyn)‖q

≤ ‖xn − x∗‖q − qan〈xn − Tyn, jq(xn − x∗)〉
+aq

ncq‖xn − Tyn‖q, (3.4)
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〈xn − Tyn, jq(xn − x∗)〉 = 〈xn − yn, jq(xn − x∗)〉+ 〈yn − Tyn, jq(xn − x∗)〉
= βn〈xn − Txn − (x∗ − Tx∗), jq(xn − x∗)〉+ 〈yn − Tyn, jq(xn − x∗)〉
≥ βnλ

q−1‖xn − Txn − (x∗ − Tx∗)‖q + 〈yn − Tyn, jq(xn − x∗)〉
= βnλ

q−1‖xn − Txn‖q + 〈yn − Tyn, jq(xn − x∗)〉, (3.5)

and

〈yn − Tyn, jq(xn − x∗)〉 = 〈yn − Tyn − (x∗ − Tx∗), jq(xn − x∗)− jq(yn − x∗)〉
+〈yn − Tyn − (x∗ − Tx∗), jq(yn − x∗)〉

≥ λq−1‖yn − Tyn − (x∗ − Tx∗)‖q

+〈yn − Tyn − (x∗ − Tx∗), jq(xn − x∗)− jq(yn − x∗)〉.(3.6)

Furthermore, using (2.3), we have

‖yn − Tyn‖q = ‖(1− βn)(xn − Tyn) + βn(Txn − Tyn)‖q

≥ (1− βn)‖xn − Tyn‖q + βn‖Txn − Tyn‖q − ωq(βn)dq‖xn − Txn‖q.(3.7)

Thus, from (3.4)-(3.7) we get

‖xn+1 − x∗‖q ≤ ‖xn − x∗‖ − qan{βnλ
q−1‖xn − Txn‖q + λq−1(1− βn)‖xn − Tyn‖q

+λq−1βn‖Txn − Tyn‖q − λq−1ωq(βn)dq‖xn − Txn‖q

+〈yn − Tyn, jq(xn − x∗)− jq(yn − y∗)〉}
+aq

ncq‖xn − Tyn‖q + q‖en‖‖xn+1 − en − x∗‖q−1 + cq‖en‖q

≤ ‖xn − x∗‖q − an(qλq−1(1− βn)− aq−1
n cq)‖xn − Tyn‖q

+qdqλ
q−1anωq(βn)‖xn − Txn‖q

+qan‖yn − Tyn‖‖jq(xn − x∗)− jq(yn − x∗)‖
+q‖en‖‖xn+1 − en − x∗‖q−1 + cq‖en‖q.

On the other hand, observe that

ωq(βn) = βn(1− βn)q + βq
n(1− βn) ≤ 2βn,

‖xn − Txn‖ ≤ (1 + L)‖xn − x∗‖,

‖jq(xn − x∗)− jq(yn − x∗)‖ ≤ L∗β
q−1
n ‖xn − Txn‖ (using (2.4))

≤ L∗(1 + L)q−1βq−1
n ‖xn − x∗‖q−1,

and

‖yn − Tyn‖ ≤ (1 + L)‖yn − x∗‖
≤ (1 + L)[(1− βn)‖xn − x∗‖+ βnL‖xn − x∗‖]
≤ (1 + L)2‖xn − x∗‖.
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Hence,

‖xn+1 − x∗‖q ≤ (1 + 2anβnλ
q−1qdq(1 + L)q + anβ

q−1
n qL∗(1 + L)q+1)‖xn − x∗‖q

−an(qλq−1(1− βn)− aq−1
n cq)‖xn − Tyn‖q

+q‖en‖‖xn+1 − en − x∗‖q−1 + cq‖en‖q. (3.8)

Note that

‖Tyn − x∗‖ ≤ L‖yn − x∗‖ ≤ L((1− βn)‖xn − x∗‖+ βn‖Txn − x∗‖) ≤ L2‖xn − x∗‖,

and

‖xn − Tyn‖ ≤ ‖xn − x∗‖+ ‖Tyn − x∗‖ ≤ (1 + L2)‖xn − x∗‖.

Therefore, from (3.8) we get

‖xn+1 − x∗‖q ≤ (1 + 2anβnλ
q−1qdq(1 + L)q + anβ

q−1
n qL∗(1 + L)q+1

+anβnqλ
q−1(1 + L2)q)‖xn − x∗‖q

−an(qλq−1 − aq−1
n cq)‖xn − Tyn‖q

+q‖en‖‖xn+1 − en − x∗‖q−1 + cq‖en‖q.

Lemma 3.2. Let q > 1 and E be a real q−uniformly smooth Banach space. Let K be a
nonempty convex subset of E, and T : K → K be strictly pseudocontractive with F (T ) 6= ∅.
Let {un} be a bounded sequence in K, and {αn}, {βn} and {γn} be real sequences in [0,1]
satisfying the following conditions:

(i) αn + γn ≤ 1, ∀n ≥ 1;
(ii) limn→∞αn < λ(q/cq)

1/(q−1), limn→∞βn < 1/L and
∑∞

n=1 αn = ∞;
(iii)

∑∞
n=1 γn < ∞ and

∑∞
n=1 αnβ

τ
n < ∞, where τ = min{1, (q − 1)}.

Let {xn} be the bounded sequence generated from an arbitrary x1 ∈ K by the Ishikawa
iteration method (3.1) with errors. Then,

(a) for each x∗ ∈ F (T ), limn→∞‖xn − x∗‖ exists;
(b) there exists a subsequence {xni

} of {xn} such that limi→∞‖xni
− Txni

‖ = 0.
Proof. From Lemma 3.1, we obtain

‖xn+1 − x∗‖q ≤ (1 + δn)‖xn − x∗‖q − an(qλq−1 − cqa
q−1
n )‖xn − Tyn‖q

+q‖en‖‖xn+1 − en − x∗‖q−1 + cq‖en‖q, (3.9)

where an = αn + γn, en = γn(un − Tyn), and

δn = 2anβnλ
q−1qdq(1 + L)q + anβ

q−1
n qL∗(1 + L)q+1 + anβnqλ

q−1(1 + L2)q, ∀n ≥ 1.
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Since ‖xn−Tyn‖ ≤ (1+L2)‖xn−x∗‖, it follows from the boundedness of {xn} that {Tyn}
is bounded. Hence, we know that {un − Tyn} is bounded. Note that

∑∞
n=1 γn < ∞. Thus, we

infer that ∞∑
n=1

‖en‖ =
∞∑

n=1

‖γn(un − Tyn)‖ < ∞,

which hence implies that
∞∑

n=1

‖en‖q < ∞.

Since {en} and {xn} are both bounded, there exists a number M > 0 such that

‖xn − x∗‖ ≤ M and ‖xn+1 − en − x∗‖ ≤ M, ∀n ≥ 1

Hence, from (3.9) we get

‖xn+1 − x∗‖q ≤ ‖xn − x∗‖q − an(qλq−1 − aq−1
n cq)‖xn − Tyn‖q

+δnM
q + q‖en‖M q−1 + cq‖en‖q. (3.10)

Since limn→∞αn < λ(q/cq)
1/(q−1), we have limn→∞an < λ(q/cq)

1/(q−1). So, for any given
ε > 0, there exists an integer N0 ≥ 1 such that supn≥N0

an < λ(q/cq)
1/(q−1). Let b = supn≥N0

an.

Then for all n ≥ N0, we have an ≤ b < λ(q/cq)
1/(q−1). Obviously, it is easy to see that

qλq−1 − aq−1
n cq ≥ qλq−1 − bq−1cq = cq(λ

q−1(q/cq)− bq−1) > 0.

Consequently, (3.10) reduces to

‖xn+1 − x∗‖q ≤ ‖xn − x∗‖q − an(qλq−1 − bq−1cq)‖xn − Tyn‖q

+δnM
q + ‖en‖qM q−1 + cq‖en‖q, ∀n ≥ N0, (3.11)

which hence implies that

‖xn+1 − x∗‖q ≤ ‖xn − x∗‖q + δnM
q + ‖en‖qM q−1 + cq‖en‖q.

Since

∞∑
n=1

‖en‖ < ∞,
∞∑

n=1

‖en‖q < ∞,
∞∑

n=1

γn < ∞ and
∞∑

n=1

αnβ
τ
n < ∞,

we conclude that ∞∑
n=1

(δnM
q + ‖en‖qM q−1 + cq‖en‖q) < ∞.

Hence, it follows from Lemma 2.1 that limn→∞‖xn − x∗‖ exists.
On the other hand, from (3.11) we deduce that for all n ≥ N0

(qλq−1 − bq−1cq)an‖xn − Tyn‖q ≤ ‖xn − x∗‖q − ‖xn+1 − x∗‖q + δnM
q

+‖en‖qM q−1 + cq‖en‖q
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from which it follows

(qλq−1 − bq−1cq)
∑n

j=N0
aj‖xj − Tyj‖q ≤ ‖xN0 − x∗‖q − ‖xn+1 − x∗‖q

+
∑n

j=N0
(δjM

q + ‖ej‖qM q−1 + cq‖ej‖q)
≤ ‖xN0 − x∗‖q +

∑∞
j=1(δjM

q + ‖ej‖qM q−1 + cq‖ej‖q)
< ∞.

Therefore,
∑∞

n=1 an‖xn − Tyn‖q < ∞.
Next, we claim that there exists a subsequence {xni

} of {xn} such that

limi→∞‖xni
− Txni

‖ = 0.

Indeed, since
∑∞

n=1 αn = ∞,
∑∞

n=1 an = ∞ and we have limn→∞‖xn − Tyn‖ = 0. If it is
false, then limn→∞‖xn − Tyn‖ = δ > 0. Hence, there exists an integer N1 > 1 such that
infn≥N1‖xn − Tyn‖ > δ/2. This implies that

∞ = (
δ

2
)q

∞∑
n=N1

an ≤
∞∑

n=1

an‖xn − Tyn‖q < ∞,

which leads to a contradiction. Thus, limn→∞‖xn − Tyn‖ = 0. Since

‖xn − Txn‖ ≤ ‖xn − Tyn‖+ ‖Tyn − Txn‖
≤ ‖xn − Tyn‖+ L‖yn − xn‖
≤ ‖xn − Tyn‖+ Lβn‖xn − Txn‖,

we have
(1− Lβn)‖xn − Txn‖ ≤ ‖xn − Tyn‖.

So, we derive

L(
1

L
− limn→∞βn) · limn→∞‖xn − Txn‖ ≤ limn→∞‖xn − Tyn‖ = 0.

Note that limn→∞βn < 1/L. Hence we have limn→∞‖xn − Txn‖ = 0. This shows that there
exists a subsequences {xni

} of {xn} such that

limi→∞‖xni
− Txni

‖ = 0.

Now we can state and prove our main results in this paper.

Theorem 3.1. Let q > 1 and E be a real q−uniformly smooth Banach space. Let K be a
nonempty closed convex subset of E, and T : K → K be compact and strictly pseudocontac-
tive with F (T ) 6= ∅. Let {un} be a bounded sequence in K, and {αn}, {βn} and {γn} be real
sequences in [0,1] satisfying the following conditions:
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(i) αn + γn ≤ 1, ∀n ≥ 1;
(ii) limn→∞αn < λ(q/cq)

1/(q−1), limn→∞βn < 1/L and
∑∞

n=1 αn = ∞;
(iii)

∑∞
n=1 γn < ∞ and

∑∞
n=1 αnβ

τ
n < ∞, where τ = min{1, (q − 1)}.

Let {xn} be the bounded sequence generated from an arbitrary x1 ∈ K by the Ishikawa
iteration method (3.1) with errors. Then {xn} converges strongly to a fixed point of T .
Proof. From Lemma 3.2, it follows that for each x∗ ∈ F (T ), limn→∞‖xn − x∗‖ exists, and
that there exists a subsequence {xni

} of {xn} such that limi→∞‖xni
− Txni

‖ = 0. Since {xni
}

is bounded and T is compact, so, {Txni
} has a strongly convergent subsequence. Without

loss of generality, we may assume that {Txni
} converges strongly to some p ∈ K. Observe

that
‖xni

− p‖ ≤ ‖xni
− Txni

‖+ ‖Txni
− p‖ → 0 (i →∞).

Hence, we know that {xni
} converges strongly to p ∈ K. Obviously, according to the Lipschitz

continuity of T , it is easy to see that

p = limi→∞xni
= limn→Txni

= Tp,

that is, p ∈ F (T ). Therefore, we have

limn→∞‖xn − p‖ = limi→∞‖xni
− p‖ = 0,

which hence implies that {xn} converges strongly to p ∈ F (T ).

Remark 3.1. If K is a compact subset of E, then it follows immediately from Theorem 3.1
that {xn} converges strongly to a fixed point of T .

Theorem 3.2. Let q > 1 and E be a real q−uniformly smooth Banach space. Let K
be a nonempty closed convex subset of E, and T : K → K be demicompact and strictly
pseudocontractive with F (T ) 6= ∅. Let {un} be a bounded sequence in K, and {αn}, {βn} and
{γn} be as in Theorem 3.1. Let {xn} be the bounded sequence generated from an arbitrary
x1 ∈ K by the Ishikawa iteration method (3.1) with errors. Then {xn} converges strongly to
a fixed point of T .
Proof. From Lemma 3.2, it follows that for each x∗ ∈ F (T ), limn→∞‖xn − x∗‖ exists, and
that there exists a subsequence {xni

} of {xn} such that limi→∞‖xni
− Txni

‖ = 0. Since {xni
}

is bounded and {xni
− Txni

} is strongly convergent, it follows from the demicompactness of
T that there exists a subsequence of {xni

} which converges strongly to some p ∈ K. Without
loss of generality, we may assume that {xni

} converges strongly to p ∈ K. Hence, taking into
account that limi→∞‖xni

− Txni
‖ = 0 and the Lipschitz continuity of T , we derive p ∈ F (T ).

Observe that
limn→∞‖xn − p‖ = limi→∞‖xni

− p‖ = 0.

Therefore, {xn} converges strongly to p ∈ F (T ).
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Remark 3.2. If we take βn = 0 ∀n ≥ 1 in Lemmas 3.1, 3.2 and Theorems 3.1, 3.2,
respectively, then we can obtain the results corresponding to Mann iteration method with
errors

xn+1 = (1− αn − γn)xn + αnTxn + γnun, ∀n ≥ 1.

In addition, if we take γn = 0 ∀n ≥ 1 in (3.1), then under the lack of the assumption that {xn}
is bounded, Lemmas 3.1, 3.2 and Theorems 3.1, 3.2 are still valid. Indeed, if γn = 0 ∀n ≥ 1,
then it follows from (3.9) that for all n ≥ N0

‖xn+1 − x∗‖q ≤ (1 + δn)‖xn − x∗‖q

≤ (1 + δn)(1 + δn−1) . . . (1 + δN0)‖xN0 − x ∗ ‖q

≤ e
∑∞

j=1
δj‖xN0 − x∗‖q

< ∞.

Therefore, {xn} is bounded. Consequently, Theorems 3.1 and 3.2 generalize Theorems 1.1
and 1.2, respectively.

Remark 3.3. It is well known that in the sense of Xu [2], the Ishikawa iteration method with
errors is defined as the following: for an arbitrary x1 ∈ K, the sequence {xn} is generated by
the iterative scheme{

yn = (1− βn − θn)xn + βnTxn + θnvn,
xn+1 = (1− αn − γn)xn + αnTyn + γnun, n ≥ 1,

(3.12)

where {un}, {vn} are bounded sequences in K, and {αn}, {βn}, {θn}, {γn} are real sequences
in [0,1] satisfying the restrictions: αn + γn ≤ 1, βn + θn ≤ 1, ∀n ≤ 1. Naturally, we put forth
the following open question.

Open Question: Can the Ishikawa iteration method (3.12) with errors in the sense of Xu
[2] be extended to Theorems 3.1 and 3.2, respectively?
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