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Abstract. Assume that F is a nonlinear operator on a real Hilbert space H which is η-strongly

monotone and κ-Lipschitzian on a nonempty closed convex subset C of H. Assume also that

C is the intersection of the fixed point sets of a finite number of nonexpansive mappings on

H. We construct an iterative algorithm with variable parameters which generates a sequence

{xn} from an arbitrary initial point x0 ∈ H. The sequence {xn} is shown to converge in norm

to the unique solution u∗ of the variational inequality

〈F (u∗), v − u∗〉 ≥ 0, ∀ v ∈ C.

Applications to constrained generalized pseudoinverse are included.

Key Words: Iterative algorithms, modified hybrid steepest-descent methods with variable

parameters, convergence, nonexpansive mappings, Hilbert space, constrained generalized pseu-

doinverses.
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1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively. Let C

be a nonempty closed convex subset of H and let F : H → H be a nonlinear operator. Then

we consider the following variational inequality problem: find a point u∗ ∈ C such that

VI(F, C) 〈F (u∗), v − u∗〉 ≥ 0 ∀v ∈ C.

Variational inequalities were initially studied by Stampacchia (cf. Ref, 1). These problems

have been widely studied since they cover as diverse disciplines as partial differential equations,

optimal control, optimization, mathematical programming, mechanics and finance. The reader

is referred to Refs.1-5 and references therein.

It is well known that if F is a strongly monotone and Lipschitzian mapping on C then

the VI(F, C) has a unique solution, see e.g., Ref. 6. We remark that not only the existence

and uniqueness of solutions are important in the study of the VI(F, C), but also how to find

a solution of the VI(F, C) is important. A great deal of effort has gone into this problem. See

Refs. 2 and 7.

It is also well known that the VI(F, C) is equivalent to the following fixed-point equation:

u∗ = PC(u∗ − µF (u∗)), (1)

where PC is the (nearest point) projection from H onto C, i.e.,

PCx = argminy∈C‖x− y‖, for x ∈ H,
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and µ > 0 is an arbitrarily fixed constant. If F is a strongly monotone and Lipschitzian

mapping on C and µ > 0 is small enough, then the mapping determined by the right-hand

side of (1) is a contraction. Hence the Banach Contraction Principle guarantees that the Picard

iterates converge strongly to the unique solution of the VI(F, C). Such a method is called

the projection method. It has been widely extended and developed to compute approximate

solutions of various classes of variational inequalities and complementarity problems; see Zeng

(Refs. 8-10). Unfortunately, the projection method involves the projection PC which may not

be easy to compute due to the complexity of convex set C.

On the other hand, in order to reduce the complexity probably caused by the projection

PC , Yamada (Ref. 11, see also Ref. 12) recently introduced a hybrid steepest-descent method

for solving the VI(F, C). His idea is stated now. Let C be the fixed point set of a nonexpansive

mapping T : H → H; that is, C = {x ∈ H : Tx = x}. Recall that T is nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, for x, y ∈ H.

Let Fix(T ) = {x ∈ H : Tx = x} denote the fixed-point set of T . Let F be η-strongly

monotone and κ-Lipschitzian on C. Take a fixed number µ ∈ (0, 2η/κ2) and a sequence {λn}

of real numbers in (0,1) satisfying the conditions below:

(L1) limλn = 0,

(L2)
∑

λn = ∞,

(L3) lim(λn − λn+1)/λ
2
n+1 = 0.
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Starting with an arbitrary initial guess u0 ∈ H, one can generate a sequence (un) by the

following algorithm:

un+1 := Tun − λn+1µF (Tun), n ≥ 0. (2)

Then Yamada (Ref. 11) proved that {un} converges strongly to the unique solution of the

VI(F, C). An example of a sequence {λn}, which satisfies conditions (L1)-(L3), is given by

λn = 1/nσ, where 0 < σ < 1. Note that condition (L3) was first used by Lions (Ref. 13).

In the case when C is expressed as the intersection of fixed-point sets of N nonexpansive

mappings Ti : H → H with N ≥ 1 an integer, Yamada (Ref. 11) proposed another algorithm:

un+1 := T[n+1]un − λn+1µF (T[n+1]un), n ≥ 0, (3)

where T[k] := TkmodN for integer k ≥ 1 with the mod function taking values in the set

{1, 2, · · · , N} (i.e., if k = jN + q for some integers j ≥ 0 and 0 ≤ q < N , then T[k] = TN if

q = 0 and T[k] = Tq if 0 < q < N), where µ ∈ (0, 2η/κ2) and where the sequence {λn} of

parameters satisfies conditions (L1),(L2), and (L4),

(L4)
∑ |λn − λn+N | is convergent.

Under these conditions, Yamada (Ref. 11) proved the strong convergence of {un} to the

unique solution of the VI(F, C). Note that condition (L4) was first used by Bauschke (Ref.

14). In the special case of N = 1, (L4) was introduced by Wittmann (Ref. 15).

Recently, Xu and Kim (Ref. 16) continued the convergence study of the hybrid steepest-

decent algorithms (2) and (3). Their major contribution is that the strong convergence of
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algorithms (2) and (3) holds with condition (L3) replaced by the condition

(L3)’ limλn/λn+1 = 1, or equivalently, lim(λn − λn+1)/λn+1 = 0,

and with condition (L4) replaced by the condition

(L4)’ limλn/λn+N = 1, or equivalently, lim(λn − λn+N)/λn+N = 0.

It is clear that condition (L3)’ is strictly weaker than condition (L3), coupled with con-

ditions (L1) and (L2). Moreover, (L3)’ includes the important and natural choice {1/n} for

{λn} while (L3) does not. It is easy to see that if limn→∞λn/λn+N exists then condition (L4)

implies condition (L4)’. However, in general, conditions (L4) and (L4)’ are not comparable;

neither of them implies the other (see Ref. 17 for details). Furthermore, under conditions (L1),

(L2), (L3)’ and (L4)’, they gave the applications of algorithms (2) and (3) to the constrained

generalized pseudoinverses.

Motivated and inspired by Yamada’s algorithms (2) and (3), we introduce and study the

following modified hybrid steepest-descent algorithms (I) and (II) with variable parameters

for computing approximate solutions of the VI(F, C):

Algorithm (I): Let {λn} ⊂ (0, 1), and {µn} ⊂ (0, 2η/κ2). Starting with an arbitrary initial

guess u0 ∈ H, one can generate a sequence {un} by the following iterative scheme:

un+1 := Tun − λn+1µn+1F (Tun), n ≥ 0.

Algorithm (II): Let {λn} ⊂ (0, 1), and {µn} ⊂ (0, 2η/κ2). Starting with an arbitrary initial
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guess u0 ∈ H, one can generate a sequence {un} by the following iterative scheme:

un+1 := T[n+1]un − λn+1µn+1F (T[n+1]un), n ≥ 0.

Compared with algorithms (2) and (3) respectively, Algorithms (I) and (II) introduce the

sequence {µn} of positive parameters so as to take into account possible inexact computation.

In this paper, we give two assumptions (A), (B):

(A) lim supn→∞〈Tun − un+1, Tun − un〉 ≤ 0 for Algorithm (I).

(B) lim supn→∞〈T[n+N ] · · ·T[n+1]un−un+N , T[n+N ] · · ·T[n+1]un−un〉 ≤ 0 for Algorithm (II).

Firstly, under (A), (L2) and conditions (d1), (d2):

(d1) |µn − η
κ2 | ≤

√
η2−cκ2

κ2 for some c ∈ (0, η2/κ2),

(d2) limn→∞(µn+1 − λn

λn+1
· µn) = 0,

we prove that the sequence {un} generated by Algorithm (I) converges in norm to the unique

solution of the VI(F, C). Secondly, under (B), (L2), (d1) and condition (d3):

(d3) limn→∞(µn+N − λn

λn+N
· µn) = 0,

we prove that the sequence {un} generated by Algorithm (II) converges strongly to the unique

solution of the VI(F, C). Furthermore, we apply these two results to consider the constrained

generalized pseudoinverses. Note that for µ ∈ (0, 2η/κ2) whenever µn = µ ∀n ≥ 1, then the

above condition (d1) holds. Indeed, since

lim
t→0+

η −
√

η2 − tκ2

κ2
= 0 < µ and lim

t→0+

η +
√

η2 − tκ2

κ2
=

2η

κ2
> µ,
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so there exist some δ1, δ2 ∈ (0, η2/κ2) such that

η−
√

η2−tκ2

κ2 < µ, ∀t ∈ (0, δ1),
η+
√

η2−tκ2

κ2 > µ, ∀t ∈ (0, δ2).

Hence, it is obvious that we can pick a number c ∈ (0, η2/κ2) such that

η −
√

η2 − cκ2

κ2
< µ <

η +
√

η2 − cκ2

κ2
,

that is,

|µ− η

κ2
| <

√
η2 − cκ2

κ2
.

Moreover, obviously (L3)’ implies that for µ ∈ (0, 2η/κ2) whenever µn = µ, ∀n ≥ 1, the

above condition (d2) holds; (L4)’ implies that for µ ∈ (0, 2η/κ2) whenever µn = µ, ∀n ≥ 1,

the above condition (d3) holds. On the other hand, under (L1), (L2) and (L3)’, Xu and Kim

(Ref. 16) proved that {un} is bounded and limn→∞ ‖un − Tun‖ = 0; see Steps 1 and 4 in the

proof of their Theorem 3.1 (Ref. 16). Hence we derive

lim sup
n→∞

〈Tun − un+1, Tun − un〉 = 0.

This shows that (L1), (L2) and (L3)’ imply (A). Also, under (L1), (L2) and (L4)’, Xu and

Kim (Ref. 16) proved that {un} is bounded and limn→∞ ‖un − T[n+N ] · · · T[n+1]un‖ = 0; see

Steps 1 and 4 in the proof of their Theorem 3.2 (Ref. 16). Thus, we obtain

lim sup
n→∞

〈T[n+N ] · · · T[n+1]un − un+N , T[n+N ] · · · T[n+1]un − un〉 = 0.
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This shows that (L1), (L2) and (L4)’ imply (B). In conclusion, our results improve, extend

and unify the corresponding ones in Xu and Kim (Ref. 16).

2. Preliminaries

The following lemmas will be used for the proofs of our main results in Section 3.

Lemma 2.1 (Ref. 16). Let {sn} be a sequence of nonnegative numbers satisfying the condi-

tions: sn+1 ≤ (1−αn)sn +αnβn, ∀ n ≥ 0 where {αn} and {βn} are sequences of real numbers

such that

(i) {αn} ⊂ [0, 1] and
∑∞

n=0 αn = ∞, or equivalently,

∏∞
n=0(1− αn) := limn→∞

∏n
k=0(1− αk) = 0;

(ii) limsupn→∞βn ≤ 0, or

(ii)’
∑

n αnβn is convergent.

Then, limn→∞sn = 0.

Lemma 2.2 (Ref. 18). Demiclosedness Principle. Assume that T is a nonexpansive self-

mapping of a closed convex subset C of a Hilbert space H. If T has a fixed point, then I − T

is demiclosed; that is, whenever {xn} is a sequence in C weakly converging to some x ∈ C and

the sequence {(I − T )xn} strongly converges to some y, it follows that (I − T )x = y. Here I

is the identity operator of H.
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The following lemma is an immediate consequence of an inner product.

Lemma 2.3. In a real Hilbert space H, there holds the inequality:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, ∀x, y ∈ H.

3. Modified Hybrid Steepest-Descent Algorithms with Variable

Parameters

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let

F : H → H be an operator such that, for some constants κ, η > 0, F is κ-Lipschitzian and

η-strongly monotone on C; that is, F satisfies the following conditions, respectively:

‖Fx− Fy‖ ≤ κ‖x− y‖, x, y ∈ C, (4)

〈Fx− Fy, x− y〉 ≥ η‖x− y‖2, x, y ∈ C. (5)

Under these conditions, it is well known that the variational inequality problem

VI(F, C) 〈Fu∗, v − u∗〉 ≥ 0 v ∈ C

has a unique solution u∗ ∈ C.

Denote by PC the projection of H onto C. Namely, for each x ∈ H, PCx is the unique

element in C satisfying

‖x− PCx‖ = min{‖x− y‖ : y ∈ C}.
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Recall that the projection PC is characterized by the inequality:

〈x− PCx, y − PCx〉 ≤ 0, y ∈ C.

In this section, assume that T : H → H is a nonexpansive mapping with Fix(T ) = C.

Note that obviously Fix(PC) = C. Then we propose a modified steepest-descent algorithm with

variable parameters which produces a sequence converging in norm to the unique solution u∗ of

V I(F, C). We introduce now some notation. Let λ be a number in (0,1) and let 0 < µ < 2η/κ2.

Associated with the nonexpansive mapping T : H → H, define the mapping T (λ,µ) : H → H

by

T (λ,µ)x := Tx− λµF (Tx), x ∈ H.

Lemma 3.1 (Ref. 11; see also Ref. 16). T (λ,µ) is a contraction provided 0 < µ < 2η/κ2.

Indeed,

‖T (λ,µ)x− T (λ,µ)y‖ ≤ (1− λτ)‖x− y‖, x, y ∈ H, (6)

where τ = 1−
√

1− µ(2η − µκ2) ∈ (0, 1).

Algorithm 3.1. Modified Hybrid Steepest-Descent Algorithm (I).

Let {λn} be a sequence in (0,1) and let {µn} be a sequence in (0, 2η/κ2). Starting with

an arbitrary initial guess u0 ∈ H, one can generate a sequence {un} by the following iterative
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scheme

un+1 := T (λn+1,µn+1)un = Tun − λn+1µn+1F (Tun), n ≥ 0. (7)

We have the following convergence result.

Theorem 3.1. Let the sequence {un} be generated by algorithm (7). Assume that

(i)
∑∞

n=1 λn = ∞ where {λn} ⊂ (0, 1);

(ii) |µn − η
κ2 | ≤

√
η2−cκ2

κ2 for some c ∈ (0, η2/κ2);

(iii) limn→∞(µn+1 − λn

λn+1
· µn) = 0.

If

lim sup
n→∞

〈Tun − un+1, Tun − un〉 ≤ 0,

then {un} converges strongly to the unique solution u∗ of the VI(F, C).

Remark 3.1. In Theorem 3.1, we take T = I, c = η2

2κ2 , λn = 1
2

and µn = η
2κ2 for all n ≥ 1.

Then it is clear that all the conditions in Theorem 3.1 are satisfied. But since λn → 1
2
6= 0

and µn → η
2κ2 6= 0, it is known that (L1) is not satisfied. In this case Xu and Kim’s Theorem

3.1 (Ref. 16) can not guarantee that the sequence {un} generated by

un+1 = un −
η

4κ2
F (un),

converges strongly to the unique solution u∗ of the VI(F, C).

Proof of Theorem 3.1. We divide the proof into several steps.
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Step 1. {un} is bounded. Indeed, we have (note that

T (λn+1,µn+1)u∗ = u∗ − λn+1µn+1F (u∗) )

‖un+1 − u∗‖ = ‖T (λn+1,µn+1)un − u∗‖

≤ ‖T (λn+1,µn+1)un − T (λn+1,µn+1)u∗‖+ ‖T (λn+1,µn+1)u∗ − u∗‖

≤ (1− λn+1τn+1)‖un − u∗‖+ λn+1µn+1‖F (u∗)‖, (8)

where τn+1 := 1−
√

1− µn+1(2η − µn+1κ2). By virtue of condition (ii) we claim that τn+1 ≥ τ

where τ = 1−
√

1− c. Indeed, it follows from condition (ii) that

η −
√

η2 − cκ2

κ2
≤ µn+1 ≤

η +
√

η2 − cκ2

κ2
<

2η

κ2
:= µ

and hence

(µn+1 −
η

κ2
+

√
η2 − cκ2

κ2
) · (µn+1 −

η

κ2
−
√

η2 − cκ2

κ2
) ≤ 0.

This implies that

κ2µ2
n+1 − 2ηµn+1 + c ≤ 0.

Observe that

µn+1(2η − µn+1κ
2) ≥ c = 1− [1− (1−

√
1− c)]2 = 1− (1− τ)2,

where τ := 1−
√

1− c. Hence, we derive

τn+1 = 1−
√

1− µn+1(2η − µn+1κ2) ≥ τ.
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Therefore, it follows from (8) that

‖un+1 − u∗‖ ≤ (1− λn+1τ)‖un − u∗‖+ λn+1µ‖F (u∗)‖.

By induction, it is easy to see that

‖un − u∗‖ ≤ max{‖u0 − u∗‖, (µ/τ)‖F (u∗)‖} n ≥ 0.

Step 2. ‖un+1 − un‖ → 0, n →∞. Indeed, we have

‖un+1 − un‖ = ‖T (λn+1,µn+1)un − T (λn,µn)un−1‖

≤ ‖T (λn+1,µn+1)un − T (λn+1,µn+1)un−1‖+ ‖T (λn+1,µn+1)un−1 − T (λn,µn)un−1‖

≤ (1− λn+1τn+1)‖un − un−1‖+ |λn+1µn+1 − λnµn| · ‖F (Tun−1)‖

≤ (1− λn+1τ)‖un − un−1‖+ |λn+1µn+1 − λnµn| · ‖F (Tun−1)‖.

Note that by Step 1 {un} is bounded. Then, {F (Tun)} is bounded since

‖F (Tun)− F (u∗)‖ ≤ κ‖un − u∗‖.

Putting M = sup{‖F (Tun)‖ : n ≥ 0}, we obtain

‖un+1 − un‖ ≤ (1− λn+1τ)‖un − un−1‖+ (λn+1τ)βn+1

where

βn+1 = M |λn+1µn+1 − λnµn|/(τλn+1) → 0 (using condition (iii)).
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By Lemma 2.1, we deduce that ‖un+1 − un‖ → 0.

Step 3. ‖Tun − un‖ → 0, n →∞. Indeed, observe that

‖un − un+1‖2 = ‖un − Tun + λn+1µn+1F (Tun)‖2

= ‖un − Tun‖2 + 2λn+1µn+1〈F (Tun), un − Tun〉+ λ2
n+1µ

2
n+1‖F (Tun)‖2

≥ ‖un − Tun‖2 + 2λn+1µn+1〈F (Tun), un − Tun〉
= ‖un − Tun‖2 + 2〈Tun − un+1, un − Tun〉,

and hence

‖Tun − un‖2 ≤ ‖un+1 − un‖2 + 2〈Tun − un+1, Tun − un〉.

Combining Step 2 with the assumption that lim supn→∞〈Tun − un+1, Tun − un〉 ≤ 0, we

conclude that

lim sup
n→∞

‖Tun − un‖2 leq lim sup
n→∞

[‖un+1 − un‖2 + 2〈Tun − un+1, Tun − un〉]
≤ lim supn→∞ ‖un+1 − un‖2 + 2leq lim supn→∞〈Tun − un+1, Tun − un〉
≤ 0.

Thus ‖Tun − un‖ → 0.

Step 4. limsupn→∞〈−F (u∗), un− u∗〉 ≤ 0. To prove this, we pick a subsequence {uni
} of {un}

so that

lim sup
n→∞

〈−F (u∗), un − u∗〉 = lim
i→∞

〈−F (u∗), uni
− u∗〉.

Without loss of generality, we may further assume that uni
→ ũ weakly for some ũ ∈ H. But

by Lemma 2.2 and Step 3, we derive ũ ∈ Fix(T ) = C. Since u∗ is the unique solution of the

VI(F, C), we obtain

lim sup
n→∞

〈−F (u∗), un − u〉 = 〈−F (u∗), ũ− u∗〉 ≤ 0.
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Step 5. un → u∗ in norm. Indeed, by applying Lemma 2.3, we get

‖un+1 − u∗‖2 = ‖(T (λn+1,µn+1)un − T (λn+1,µn+1)u∗) + (T (λn+1,µn+1)u∗ − u∗)‖2

≤ ‖T (λn+1,µn+1)un − T (λn+1,µn+1)u∗‖2 + 2〈T (λn+1,µn+1)u∗ − u∗, un+1 − u∗〉

≤ (1− λn+1τn+1)‖un − u∗‖2 + 2λn+1µn+1〈−F (u∗), un+1 − u∗〉

≤ (1− λn+1τ)‖un − u∗‖2 + (λn+1τ) · 2 mun+1

τ
〈−F (u∗), un+1 − u∗〉.

Since {µn} is a positive and bounded sequence, an application of Lemma 2.1 combined with

Step 4 yields that ‖un − u∗‖ → 0. 2

Next we consider a more general case when

C =
N⋂

i=1

Fix(Ti),

with N ≥ 1 an integer and Ti : H → H being nonexpansive for each 1 ≤ i ≤ N.

We introduce now another modified hybrid steepest-descent algorithm with variable pa-

rameters for solving the VI(F, C).

Algorithm 3.2. Modified Hybrid Steepest-descent Algorithm (II).

Let {λn} be a sequence in (0,1) and let {µn} be a sequence in (0, 2η/κ2). Starting with

an arbitrary initial guess u0 ∈ H, one can generate a sequence {un} by the following iterative

scheme

un+1 = T
(λn+1,µn+1)
[n+1] un = T[n+1]un − λn+1µn+1F (T[n+1]un), n ≥ 0. (9)
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We prove now the main result of this paper.

Theorem 3.2. Let the sequence {un} be generated by algorithm (9). Suppose that

(i)
∑∞

n=1 λn = ∞ where {λn} ⊂ (0, 1);

(ii) |µn − η
κ2 | ≤

√
η2−cκ2

κ2 for some c ∈ (0, η2/κ2);

(iii) limn→∞(µn+N − λn

λn+N
· µn) = 0.

Assume in addition that

C =
N⋂

i=1

Fix(Ti) = Fix(T1T2 · · ·TN) = Fix(TNT1 · · ·TN−1) = · · · = Fix(T2T3 · · ·TNT1). (10)

If

lim sup
n→∞

〈T[n+N ] · · ·T[n+1]un − un+N , T[n+N ] · · ·T[n+1]un − un〉 ≤ 0,

then {un} converges in norm to the unique solution u∗ of the VI(F, C).

Remark 3.2. In Theorem 3.2 we take T1 = · · · = TN = I, c = η2

2κ2 , λn = 1
2

and µn = η
2κ2

for all n ≥ 1. Then it is clear that all the conditions in Theorem 3.2 are satisfied. But since

λn → 1
2
6= 0 and µn → η

2κ2 6= 0, it is known that (L1) is not satisfied. In this case, Xu and

Kim’s Theorem 3.2 (Ref. 16) can not guarantee that the sequence {un} generated by

un+1 = un −
η

4κ2
F (un)

converges strongly to the unique solution u∗ of the VI(F, C).

Proof of Theorem 3.2. We shall again divide the proof into several steps.
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Step 1. {un} is bounded. Indeed, we have (note that T
(λn,µn)
[n] u∗ = u∗ − λnµnF (u∗) n ≥ 1)

‖un+1 − u∗‖ = ‖T (λn+1,µn+1)
[n+1] un − u∗‖

≤ ‖T (λn+1,µn+1)
[n+1] un − T

(λn+1,µn+1)
[n+1] u∗‖+ ‖T (λn+1,µn+1)

[n+1] u∗ − u∗‖

≤ (1− λn+1τn+1)‖un − u∗‖+ λn+1µn+1‖F (u∗)‖

where τn+1 := 1−
√

1− µn+1(2η − µn+1κ2). As in Step 1 of the proof of Theorem 3.1, according

to condition (ii) we can derive τn+1 ≥ τ , where τ = 1−
√

1− c. Therefore we conclude that

‖un+1 − u∗‖ ≤ (1− λn+1τ)‖un − u∗‖+ λn+1µ‖F (u∗)‖

where µ = 2η/κ2. From this we get by induction

‖un − u∗‖ ≤ max{‖u0 − u∗‖, (µ/τ)‖F (u∗)‖} n ≥ 0.

Step 2. ‖un+N − un‖ → 0. As a matter of fact observing that T[n+N ] = T[n], we have

‖un+N − un‖
= ‖T (λn+N ,µn+N )

[n+N ] un+N−1 − T
(λn,µn)
[n] un−1‖

≤ ‖T (λn+N ,µn+N )
[n+N ] un+N−1 − T

(λn+N ,µn+N )
[n+N ] un−1‖+ ‖T (λn+Nµn+N )

[n+N ] un−1 − T
(λn,µn)
[n] un−1‖

≤ (1− λn+Nτn+N)‖un+N−1 − un−1‖+ |λn+Nµn+N − λnµn| · ‖F (T[n]un−1)‖
≤ (1− λn+Nτ)‖un+N−1 − un−1‖+ |λn+Nµn+N − λnµn| · ‖F (T[n]un−1)‖.

Note that by Step 1 {un} is bounded. Then {F (T[n]un−1)} is bounded since

‖F (T[n]un−1)− F (u∗)‖ ≤ κ‖un − u∗‖.

Putting M = sup{‖F (T[n]un−1)‖ : n ≥ 1}, we obtain
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‖un+N − un‖ ≤ (1− λn+Nτ)‖un+N−1 − un−1‖+ (λn+Nτ)βn+N ,

where

βn+N = M |λn+Nµn+N − λnµn|/(τλn+N) → 0 (using condition (iii)).

Now we apply Lemma 2.1 to get that ‖un+N − un‖ → 0.

Step 3. T[n+N ] · · ·T[n+1]un − un → 0 in norm. Indeed observe that

‖un+N − un‖2

= ‖un − T[n+N ] · · ·T[n+1]un + T[n+N ] · · ·T[n+1]un − un+N‖2

≥ ‖un − T[n+N ] · · ·T[n+1]un‖2 + 2〈T[n+N ] · · ·T[n+1]un − un+N , un − T[n+N ] · · ·T[n+1]un〉,

and hence

‖un − T[n+N ] · · ·T[n+1]un‖2

≤ ‖un+N − un‖2 + 2〈T[n+N ] · · ·T[n+1]un − un+N , T[n+N ] · · ·T[n+1]un − un〉.

According to Step 2 and the assumption that

lim sup
n→∞

〈T[n+N ] · · ·T[n+1]un − un+N , T[n+N ] · · ·T[n+1]un − un〉 ≤ 0,

we deduce that limn→∞ ‖un − T[n+N ] · · ·T[n+1]un‖ = 0.

Step 4. lim supn→∞〈−F (u∗), un − u∗〉 ≤ 0. To see this, we pick a subsequence {uni
} of {un}

such that

lim sup
n→∞

〈−F (u∗), un − u∗〉 = lim
i→∞

〈−F (u∗), uni
− u∗〉.
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Since {un} is bounded, we may also assume that uni
→ ũ weakly for some ũ ∈ H. Since the

pool of mapping {Ti : 1 ≤ i ≤ N} is finite, we may further assume (passing to a further

subsequence if necessary) that for some integer k ∈ {1, 2, ..., N}, T[ni] ≡ Tk ∀i ≥ 1. Then it

follows from Step 3 that uni
− T[i+N ] · · ·T[i+1]uni

→ 0. Hence by Lemma 2.2 we deduce that

ũ ∈ Fix(T[i+N ] · · ·T[i+1]).

Together with assumption (10) this implies that ũ ∈ C. Now since u∗ solves the VI(F, C), we

obtain

lim sup
n→∞

〈−F (u∗), un − u∗〉 = 〈−F (u∗), ũ− u∗〉 ≤ 0.

Step 5. un → u∗ in norm. Indeed, applying Lemma 2.3, we get

‖un+1 − u∗‖2

= ‖T (λn+1,µn+1)
[n+1] un − u∗‖2

= ‖(T (λn+1,µn+1)
[n+1] un − T

(λn+1,µn+1)
[n+1] u∗) + (T

(λn+1,µn+1)
[n+1] u∗ − u∗)‖2

≤ ‖T (λn+1,µn+1)
[n+1] un − T

(λn+1,µn+1)
[n+1] u∗‖2 + 2〈T (λn+1,µn+1)

[n+1] u∗ − u∗, un+1 − u∗〉
≤ (1− λn+1τn+1)‖un − u∗‖2 + 2λn+1µn+1〈−F (u∗), un+1 − u∗〉
≤ (1− λn+1τ)‖un − u∗‖2 + (λn+1τ) · 2µn+1

τ
〈−F (u∗), un+1 − u∗〉.

Since {µn} is a positive and bounded sequence by Lemma 2.1 and Step 4, we conclude that

‖un − u∗‖ → 0. 2

Remark 3.3. Recall that a self-mapping of a closed convex subset K of a Hilbert space H is

said to be attracting nonexpansive (Refs. 14, 19) if T is nonexpansive and if for x, p ∈ K with

x /∈ Fix(T) and p ∈ Fix(T ), ‖Tx − p‖ < ‖x − p‖. Recall also that T is firmly nonexpansive
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(Refs. 14, 19) if

〈x− y, Tx− Ty〉 ≥ ‖Tx− Ty‖2, ∀x, y ∈ K.

It is known that assumption (10) in Theorem 3.2 is automatically satisfied if each Ti is attract-

ing nonexpansive. Since a projection is firmly nonexpansive, we have the following consequence

of Theorem 3.2.

Corollary 3.1. Suppose that there hold conditions (i), (ii) and (iii) in Theorem 3.2. Let

u0 ∈ H and let the sequence {un} be generated by iterative algorithm

un+1 := P[n+1]un − λn+1µn+1F (P[n+1]un), n ≥ 0,

where Pk = PCk
, 1 ≤ k ≤ N . If

lim sup
n→∞

〈P[n+N ] · · ·P[n+1]un − un+N , P[n+N ] · · ·P[n+1]un − un〉 ≤ 0,

then {un} converges strongly to the unique solution u∗ of the V I(F, C) with C =
⋂N

k=1 Ck. In

particular, let µ ∈ (0, 2η/κ2). Then the sequence {un} determined by the algorithm

un+1 := P[n+1]un − (µ/(n + 1))F (P[n+1]un), n ≥ 0,

converges in norm to the unique solution u∗ of the VI(F, C).

Proof. The former part of the conclusion follows immediately from Theorem 3.2. Next, we

prove only the latter part of the conclusion. Put λn = 1/(n + 1) and µn = µ. As in Steps 1

and 2 of the proof of Theorem 3.2, we can see that {un} is bounded and ‖un+N − un‖ → 0.

Now, note that

21



‖un+1 − P[n+1]un‖ =
µ

n + 1
‖F (P[n+1]un)‖ → 0.

Hence, un+1 − P[n+1]un → 0 in norm. Since each Pk is nonexpansive, we get the finite table

un+N − P[n+N ]un+N−1 → 0,
P[n+N ]un+N−1 − P[n+N ]P[n+N−1]un+N−2 → 0,
...
P[n+N ] · · ·P[n+2]un+1 − P[n+N ] · · ·P[n+1]un → 0.

Adding up this table yields un+N−P[n+N ] · · ·P[n+1]un → 0 in norm. Thus, P[n+N ] · · ·P[n+1]un−

un → 0 in norm. Consequently the latter part of the conclusion follows from the former one.

2

4. Applications to Constrained Generalized Pseudoinverse

Let K be a nonempty closed convex subset of a real Hilbert space H. Let A be a bounded

linear operator on H. Given an element b ∈ H, consider the minimization problem

minx∈K‖Ax− b‖2. (11)

Let Sb denote the solution set. Then, Sb is closed and convex. It is known that Sb is nonempty

if and only if PA(K)(b) ∈ A(K) where A(K) is the closure of A(K). In this case, Sb has a

unique element with minimun norm; that is, there exists a unique point x̂ ∈ Sb satisfying

‖x̂‖2 = min{‖x‖2 : x ∈ Sb}. (12)
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Definition 4.1 (Ref. 20). The K-constrained pseudoinverse of A (symbol ÂK) is defined as

D(ÂK) = {b ∈ H : PA(K)(b) ∈ A(K)}, ÂK(b) = x̂ and b ∈ D(ÂK),

where x̂ ∈ Sb is the unique solution to (12).

Now we recall the K-constrained generalized pseudoinverse of A; see Refs. 11, 16.

Let θ : H → R be a differentiable convex function such that θ′ is a κ-Lipschitzian and

η-strongly monotone operator for some constants κ > 0 and η > 0. Under these assumptions,

there exists a unique point x̂0 ∈ Sb for b ∈ D(ÂK) such that

θ(x̂0) = min{θ(x) : x ∈ Sb}. (13)

Definition 4.2 (Ref. 16). The K-constrained generalized pseudoinverse of A associated with

θ (symbol ÂK,θ is defined as

D(ÂK,θ) = D(ÂK), ÂK,θ(b) = x̂0, and b ∈ D(ÂK,θ)

where x̂0 ∈ Sb is the unique solution to (13). Note that if θ(x) = (1/2)‖x‖2, then the

K-constrained generalized pseudoinverse ÂK,θ of A associated with θ reduces to the K-

constrained pseudoinverse Âk of A in Definition 4.1.

We now apply the results in Section 3 to construct the K-constrained generalized pseu-

doinverse ÂK,θ of A. But first, observe that x̃ ∈ K solves the minimization problem (11) if
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and only if there holds the following optimality condition:

〈A∗(Ax̃− b), x− x̃〉 ≥ 0, x ∈ K,

where A∗ is the adjoint of A. This is equivalent to, for each λ > 0,

〈[λA∗b + (I − λA∗A)x̃]− x̃, x− x̃〉 ≥ 0, x ∈ K,

or

PK(λA∗b + (I − λA∗A)x̃) = x̃. (14)

Define a mapping T : H → H by

Tx = PK(A∗b + (I − λA∗A)x), x ∈ H. (15)

Lemma 4.1 (Ref. 16). If λ ∈ (0, 2‖A‖−2) and if b ∈ D(Âk), then T is attracting nonexpansive

and Fix(T ) = Sb.

Theorem 4.1. Assume that there hold conditions (i), (ii) and (iii) in Theorem 3.1. Given

an initial guess u0 ∈ H, let {un} be the sequence generated by algorithm

un+1 = Tun − λn+1µn+1θ
′(Tun), n ≥ 0, (16)

where T is given in (15). If

lim sup
n→∞

〈Tun − un+1, Tun − un〉 ≤ 0,
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then {un} strongly converges to ÂK,θ(b).

Proof. The minimization problem (13) is equivalent to the following variational inequality

problem:

〈θ′(x̂0), x− x̂0〉 ≥ 0, x ∈ Sb. (17)

Since Fix(T ) = Sb and θ′ is κ-Lipschitzian and η-strongly monotone, using Theorem 3.1 with

F := θ′, we infer that {un} converges in norm to x̂0 = ÂK,θ(b). 2

Lemma 4.2 (Refs. 14, 19). Let N be a positive integer and let {Ti}N
i=1 be N attracting non-

expansive mappings on H with a common fixed point. Then,
⋂N

i=1 Fix(Ti) = Fix(T1T2 · · ·TN).

Suppose {S1
b , ..., S

N
b } is a family of N closed convex subsets of K such that Sb =

⋂N
i=1 Si

b.

For each 1 ≤ i ≤ N, we define Ti : H → H by

Tix = PSi
b
(A∗b + (I − λA∗A)x), x ∈ H,

where PSi
b

is the projection from H onto Si
b.

Theorem 4.2. Assume that there hold conditions (i), (ii) and (iii) in Theorem 3.2. Given

an initial guess u0 ∈ H, let {un} be the sequence generated by the algorithm

un+1 = T
(λn+1,µn+1)
[n+1] un = T[n+1]un − λn+1µn+1θ

′(T[n+1]un), n ≥ 0. (18)

If

lim sup
n→∞

〈T[n+N ] · · ·T[n+1]un − un+N , T[n+N ] · · ·T[n+1]un − un〉 ≤ 0,
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then {un} converges in norm to ÂK,θ(b).

Proof. In the proof of (Ref. 16, Theorem 4.2), Xu and Kim have proved that

Sb = Fix(T ) = ∩N
i=1Fix(Ti). (19)

By Lemmas 4.1 and 4.2, we see that assumption (10) in Theorem 3.2 holds. By virtue of

(19), Theorem 3.2 ensures that the sequence {un} generated by (18) converges strongly to the

unique solution x̂0 = ÂK,θ(b) of (17). 2
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