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Abstract. In this paper, we study an implicit predictor-corrector iteration process for

finitely many asymptotically quasi-nonexpansive self-mappings on a nonempty closed convex

subset of a Banach space E. We derive a necessary and sufficient condition for the strong

convergence of this iteration process to a common fixed point of these mappings. In the case

E is a uniformly convex Banach space and the mappings are asymptotically nonexpansive, we

verify the weak (resp. strong) convergence of this iteration process to a common fixed point of

these mappings if Opial’s condition is satisfied (resp. one of these mappings is semi-compact).

Our results improve and extend earlier and recent ones in the literature.
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1 Introduction and Preliminaries

Let E be a real Banach space equipped with norm ‖ · ‖, let C be a nonempty subset of E,

and let T : C → C. The set F (T ) = {x ∈ C : Tx = x} consists of all fixed points of T .

Definition 1.1. T is said to be

(1) nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C;

(2) asymptotically nonexpansive [4] if there exists a sequence {kn}∞n=1 ⊂ [1,∞) with limn→∞ kn

= 1 such that

‖T nx− T ny‖ ≤ kn‖x− y‖, ∀x, y ∈ C, n ≥ 1;

(3) asymptotically quasi-nonexpansive if F (T ) 6= ∅, and there exists a sequence {kn}∞n=1 ⊂

[1,∞) with limn→∞ kn = 1 such that

‖T nx− p‖ ≤ kn‖x− p‖, ∀x ∈ C, p ∈ F (T ), n ≥ 1;

(4) semi-compact [2] if for any bounded sequence {xn} ⊂ C with limn→∞ ‖xn − Txn‖ = 0,

there exists a strongly convergent subsequence of {xn}.

The class of asymptotically nonexpansive mappings, as a natural extension of that of

nonexpansive mappings, was introduced by Goebel and Kirk [4] in 1972. They proved that if

C is a nonempty bounded closed convex subset of a uniformly convex Banach space E, then

every asymptotically nonexpansive self-mapping T on C has a fixed point. Furthermore, the

study of iterative construction for fixed points of asymptotically nonexpansive mappings began
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in 1978. Bose [1] first proved that if the uniformly convex Banach space E satisfies Opial’s

condition [6] then {T nx} converges weakly to a fixed point of T , provided T is asymptotically

regular at x, i.e., limn→∞ ‖T nx − T n+1x‖ = 0. A Banach space E is said to satisfy Opial’s

condition [6] if whenever {xn} is a sequence in E which converges weakly to x, one has

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖, for all y ∈ E, y 6= x.

It is well known that every Hilbert space satisfies Opial’s condition (see, for example, [6]).

In 2001, Xu and Ori [9] first introduced an implicit iteration process for N nonexpansive

mappings in a Hilbert space and proved the following weak convergence theorem.

Theorem 1.2 ([9]). Let H be a Hilbert space and let C be a nonempty closed convex subset

of H. Let {Ti}N
i=1 be N nonexpansive self-mappings on C such that F =

⋂N
i=1 F (Ti) 6= ∅. Let

x0 ∈ C and let {αn}∞n=1 be a sequence in (0, 1) such that limn→∞ αn = 0. Then the sequence

{xn} defined implicity by

xn = αnxn−1 + (1− αn)Tn(modN)xn, n ≥ 1,

converges weakly to a common fixed point of mappings {Tj}N
j=1.

Later, Sun [8] introduced and studied another implicit iteration process

xn = αnxn−1 + (1− αn)T ln+1
n(modN)xn, n ≥ 1,

for N asymptotically quasi-nonexpansive self-mappings {Tj}N
j=1 on a nonempty bounded closed

convex subset C of a Banach space E, where {αn} is a sequence in (0, 1), x0 is an initial point

in C, and n = lnN + n(modN). Moreover, he proved that the sequence {xn} defined by

4



his iteration process converges strongly to a common fixed point of {Tj}N
j=1 under suitable

conditions.

At the same time, Zhou and Chang [10] introduced and studied the following implicit

iteration process

xn = αnxn−1 + βnT
n
n(modN)xn + γnun, n ≥ 1,

for N asymptotically nonexpansive self-mappings {Tj}N
j=1 on a nonempty closed convex subset

C of a Banach space E, where {αn}, {βn}, {γn} are three sequences in [0, 1], x0 is an initial

point in C, and {un} is a bounded sequence in C. Moreover, they proved that the sequence

{xn} defined by their iteration process converges weakly to a common fixed point of {Tj}N
j=1

under suitable conditions.

As indicated in [10], if T1, T2, ..., TN : C → C are N asymptotically nonexpansive map-

pings, then there exists a sequence, called common Lipschitz constants, {kn} ⊂ [1,∞) with

limn→∞ kn = 1 such that for each i = 1, 2, ..., N ,

‖T n
i x− T n

i y‖ ≤ kn‖x− y‖, ∀x, y ∈ C, n ≥ 1.

A similar situation occurs when T1, T2, . . . , TN are asymptotically quasi-nonexpansive. By

convention, we write Tn := Tn(modN), for integer n ≥ 1, with the mod function taking values

in the set {1, 2, ..., N}. In other words, if n = lnN + q for some unique integers ln ≥ 0 and

1 ≤ q ≤ N , then we set Tn = Tq.

In this paper, we introduce the following implicit predictor-corrector iteration process with

an auxiliary finite family of asymptotically quasi-nonexpansive self-mappings on C.
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Definition 1.3 (Basic set up). Let C be a nonempty closed convex subset of a Banach

space E, and {T1, T2, ..., TN} and {T̂1, T̂2, . . . , T̂N̂} be two families of asymptotically quasi-

nonexpansive mappings from C into C with common Lipschitz constants {kn} and {k̂n} such

that
∑∞

n=1(kn − 1) < +∞ and
∑∞

n=1(k̂n − 1) < +∞, respectively. Let {xn} be an iterative

sequence in C generated from an arbitrary x0 ∈ C by three steps:

Auxiliary step. With xn−1 (n ≥ 1) established, yn is computed implicitly by

yn = α̂nxn−1 + β̂nT̂
l̂n
n yn + γ̂nûn; (1.1a)

Predictor step. With yn obtained in the auxiliary step, zn is computed implicitly by

zn = ᾱnyn + β̄nT
ln
n zn + γ̄nūn; (1.1b)

Corrector step. With zn obtained in the predictor step, xn is computed explicitly by

xn = αnyn + βnT
ln
n zn + γnun, (1.1c)

Here, Tn := Tn(modN) and T̂n := T̂n(modN̂) for n = 1, 2, . . .. On the other hand, {un}∞n=1,

{ûn}∞n=1, {ūn}∞n=1 are three bounded sequences in C; and {αn}∞n=1, {α̂n}∞n=1, {ᾱn}∞n=1, {βn}∞n=1,

{β̂n}∞n=1, {β̄n}∞n=1, {γn}∞n=1, {γ̂n}∞n=1, {γ̄n}∞n=1 are nine real sequences in [0, 1] such that
αn + βn + γn = 1 (∀n ≥ 1),

∑∞
n=1 γn < +∞,

α̂n + β̂n + γ̂n = 1 (∀n ≥ 1),
∑∞

n=1 γ̂n < +∞,
ᾱn + β̄n + γ̄n = 1 (∀n ≥ 1),

∑∞
n=1 γ̄n < +∞,

0 < β̂n, β̄n ≤ c < K−1 (∀n ≥ 1), K = max{supn≥1 kn, supn≥1 k̂n} ≥ 1.

(1.2)

Remark 1.4. Since 0 < β̂n, β̄n ≤ c < K−1, it is clear that the mappings y 7→ α̂nxn−1 +

β̂nT̂
l̂n
n y + γ̂nûn and z 7→ ᾱnyn + β̄nT

ln
n z + γ̄nūn are two contractions from the nonempty closed
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convex set C into itself. Thus, by the Banach Contraction Principle there exist the unique

points yn, zn ∈ C such that (1.1a) and (1.1b) hold, respectively. Therefore, the sequence {xn}

is well defined.

Our aim is to consider and study the strong and weak convergence of the above implicit

predictor-corrector iteration process. To this end, we need the following lemmas.

Lemma 1.5. Let {bn}, {b̄n}, {b̂n} be three nonnegative real sequences with finite sums. Then∑∞
n=1 λn < +∞, where λn = (1 + bn)(1 + b̄n)(1 + b̂n)− 1 for each ≥ 1.

Lemma 1.6 ([10]). Let {an}, {λn}, {µn} be three nonnegative real sequences such that
∑∞

n=1 λn <

+∞,
∑∞

n=1 µn < +∞, and

an+1 ≤ (1 + λn)an + µn, ∀n ≥ 1.

Then limn→∞ an exists.

Lemma 1.7 ([7]). Let E be a uniformly convex Banach space, {tn} ⊂ [b, c] ⊂ (0, 1), and

{xn}, {yn} ⊂ E. If limn→∞ ‖tnxn + (1 − tn)yn‖ = d < +∞, lim supn→∞ ‖xn‖ ≤ d, and

lim supn→∞ ‖yn‖ ≤ d, then limn→∞ ‖xn − yn‖ = 0.

Lemma 1.8 (Demi-closed principle [3]). Let E be a uniformly convex Banach space, C

be a nonempty closed convex subset of E, and T : C → C be an asymptotically nonexpansive

mapping with F (T ) 6= ∅. Then I−T is demiclosed at zero, that is, for any sequence {xn} ⊂ C,

xn → q ∈ C weakly
(I − T )xn → 0 strongly

}
=⇒ (I − T )q = 0.
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2 Main Results

Lemma 2.1. Let C be a nonempty closed convex subset of a Banach space E, and {Ti}N
i=1 and

{T̂j}N̂
j=1 be two finite families of asymptotically quasi-nonexpansive self-mappings on C such

that
⋂N

i=1 F (Ti) ∩
⋂N̂

j=1 F (T̂j) 6= ∅. If {xn}, {yn} and {zn} are the iterative sequences defined

by (1.1a), (1.1b) and (1.1c), then for each p ∈
⋂N

i=1 F (Ti) ∩
⋂N̂

j=1 F (T̂j), there hold

lim
n→∞

‖xn − p‖ = d, lim sup
n→∞

‖yn − p‖ ≤ d, and lim sup
n→∞

‖zn − p‖ ≤ d.

Proof. Since {un}∞n=1, {ûn}∞n=1, {ūn}∞n=1 are three bounded sequences in C, for any given p ∈⋂N
i=1 F (Ti) ∩

⋂N̂
j=1 F (T̂j) we have

M := max{sup
n≥1

‖un − p‖, sup
n≥1

‖ûn − p‖, sup
n≥1

‖ūn − p‖} < +∞.

Note that 1− β̄nkln ≥ 1− cK > 0 and 1− β̂nk̂l̂n
≥ 1− cK > 0. Put

L =
1

1− cK
, bn = βn(kln − 1), b̄n =

1− β̄n

1− β̄nkln

− 1, and b̂n =
1− β̂n

1− β̂nk̂l̂n

− 1.

Then we have 
0 ≤ bn = βn(kln − 1) ≤ kln − 1, and 1 + bn ≤ K,

0 ≤ b̄n =
β̄n(kln−1)

1−β̄nkln
≤ L(kln − 1), and 1 + b̄n ≤ L,

0 ≤ b̂n =
β̂n(k̂l̂n

−1)

1−β̂nk̂l̂n

≤ L(k̂l̂n
− 1), and 1 + b̂n ≤ L.

(2.1)

Observe that

‖yn − p‖ = ‖α̂n(xn−1 − p) + β̂n(T̂ l̂n
n yn − p) + γ̂n(ûn − p)‖

≤ α̂n‖xn−1 − p‖+ β̂nk̂l̂n
‖yn − p‖+ γ̂n‖ûn − p‖.

It follows
‖yn − p‖ ≤ α̂n

1−β̂nk̂l̂n

‖xn−1 − p‖+ γ̂n

1−β̂nk̂l̂n

‖ûn − p‖

≤ 1−β̂n

1−β̂nk̂l̂n

‖xn−1 − p‖+ LMγ̂n

= (1 + b̂n)‖xn−1 − p‖+ LMγ̂n.

(2.2)
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Similarly,

‖zn − p‖ = ‖ᾱn(yn − p) + β̄n(T ln
n zn − p) + γ̄n(ūn − p)‖

≤ ᾱn‖yn − p‖+ β̄nkln‖zn − p‖+ γ̄n‖ūn − p‖.

Consequently,
‖zn − p‖ ≤ ᾱn

1−β̄nkln
‖yn − p‖+ γ̄n

1−β̄nkln
‖ūn − p‖

≤ 1−β̄n

1−β̄nkln
‖yn − p‖+ LMγ̄n

= (1 + b̄n)‖yn − p‖+ LMγ̄n.

(2.3)

Therefore,

‖xn − p‖ = ‖αn(yn − p) + βn(T ln
n zn − p) + γn(un − p)‖

≤ αn‖yn − p‖+ βnkln‖zn − p‖+ γn‖un − p‖
≤ (1− βn)‖yn − p‖+ βnkln [(1 + b̄n)‖yn − p‖+ LMγ̄n] + γnM
≤ (1 + βn(kln − 1))(1 + b̄n)‖yn − p‖+ M [KLγ̄n + γn]
≤ (1 + bn)(1 + b̄n)‖yn − p‖+ KLM [γ̄n + γn]

≤ (1 + bn)(1 + b̄n)[(1 + b̂n)‖xn−1 − p‖+ LMγ̂n] + KLM [γ̄n + γn]

≤ (1 + bn)(1 + b̄n)(1 + b̂n)‖xn−1 − p‖+ KL2Mγ̂n + KLM [γ̄n + γn]

≤ (1 + bn)(1 + b̄n)(1 + b̂n)‖xn−1 − p‖+ KL2M [γn + γ̄n + γ̂n]
= (1 + λn)‖xn−1 − p‖+ µn,

(2.4)

where λn = (1 + bn)(1 + b̄n)(1 + b̂n)− 1, and µn = KL2M [γn + γ̄n + γ̂n].

Since
∑∞

n=1(kln−1) < +∞ and
∑∞

n=1(k̂l̂n
−1) < +∞, it follows from (2.1) that

∑∞
n=1 bn <

+∞,
∑∞

n=1 b̄n < +∞, and
∑∞

n=1 b̂n < +∞. Hence, we derive
∑∞

n=1 λn < +∞ by Lemma 1.5.

Note that
∑∞

n=1 γn < +∞,
∑∞

n=1 γ̄n < +∞, and
∑∞

n=1 γ̂n < +∞. This provides
∑∞

n=1 µn <

+∞. By Lemma 1.6, limn→∞ ‖xn − p‖ exists. Let limn→∞ ‖xn − p‖ = d.

Since limn→∞ b̂n = limn→∞ γ̂n = 0, from (2.2) we obtain

lim sup
n→∞

‖yn − p‖ ≤ lim sup
n→∞

(1 + b̂n)‖xn−1 − p‖+ LM lim sup
n→∞

γ̂n ≤ d.

Further, since limn→∞ b̄n = limn→∞ γ̄n = 0, from (2.3) we obtain

lim sup
n→∞

‖zn − p‖ ≤ lim sup
n→∞

(1 + b̄n)‖yn − p‖+ LM lim sup
n→∞

γ̄n ≤ d.

9



Theorem 2.2. Let C be a nonempty closed convex subset of a Banach space E. Let {Ti}N
i=1

and {T̂j}N̂
j=1 be two finite families of asymptotically quasi-nonexpansive self-mappings on C

such that F :=
⋂N

i=1 F (Ti) ∩
⋂N̂

j=1 F (T̂j) 6= ∅. Let {xn} be the iterative sequence defined by

(1.1a), (1.1b) and (1.1c). Then {xn} converges strongly to an element of F if and only if

lim inf
n→∞

d(xn, F ) = 0.

Proof. The necessity is obvious. For the sufficiency, we assume lim infn→∞ d(xn, F ) = 0. Let

p be any given element in F . Then from (2.4) we obtain

‖xn − p‖ ≤ (1 + λn)‖xn−1 − p‖+ µn, (2.5)

where
∑∞

n=1 λn < +∞ and
∑∞

n=1 µn < +∞. Taking the infimum over all p ∈ F , we get

d(xn, F ) ≤ (1 + λn)d(xn−1, F ) + µn.

Hence, limn→∞ d(xn, F ) exists. Furthermore, we have limn→∞ d(xn, F ) = 0.

By Lemma 2.1, we know that limn→∞ ‖xn − p‖ exists. Hence {xn} is bounded. Put

δn = λn‖xn−1 − p‖+ µn. Then
∑∞

n=1 δn < +∞, and (2.5) can be rewritten as

‖xn − p‖ ≤ ‖xn−1 − p‖+ δn.

For arbitrary ε > 0, choose N0 such that d(xN0 , F ) < ε/4 and
∑∞

j=N0
δj < ε/4. Conse-

quently, for all n, m ≥ N0 we have

‖xn − xm‖ ≤ ‖xn − p‖+ ‖xm − p‖
≤ ‖xN0 − p‖+

∑n
j=N0+1 δj + ‖xN0 − p‖+

∑m
j=N0+1 δj

≤ 2‖xN0 − p‖+ 2
∑∞

j=N0
δj.
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Taking the infimum over all p ∈ F , we obtain

‖xn − xm‖ ≤ 2d(xN0 , F ) + 2
∞∑

j=N0

δj ≤
2ε

4
+

2ε

4
= ε.

This shows that {xn}∞n=1 is Cauchy. Let limn→∞ xn = u. It is easy to verify that F is closed.

Since limn→∞ d(xn, F ) = 0, we must have that u ∈ F .

As a consequence of Lemma 2.1, the iterated sequence {xn} is bounded. If the underlying

space E is reflexive then we can expect that its weak cluster points provide common fixed

points of T1, T2, . . . , TN . This leads to the following

Theorem 2.3. Let E be a uniformly convex Banach space, let C be a nonempty closed convex

subset of E, and let {Ti}N
i=1 (resp. {T̂j}N̂

j=1) be a finite family of asymptotically nonexpan-

sive (resp. asymptotically quasi-nonexpansive) self-mappings on C such that
⋂N̂

j=1 F (T̂j) ∩⋂N
i=1 F (Ti) 6= ∅. Suppose limn→∞ β̂n = 0 and {βn}∞n=1 ⊂ [b, c] ⊂ (0, K−1), where K is as in

(1.2). Then every weak cluster point of the bounded iterative sequence {xn} defined by (1.1a),

(1.1b) and (1.1c) belongs to
⋂N

i=1 F (Ti).

Proof. Let p ∈
⋂N̂

j=1 F (T̂j) ∩
⋂N

i=1 F (Ti). By Lemma 2.1, we have

lim
n→∞

‖xn − p‖ = d, lim sup
n→∞

‖yn − p‖ ≤ d, and lim sup
n→∞

‖zn − p‖ ≤ d.

Obviously, {xn}, {yn} and {zn} are bounded sequences in C.

Observe that

‖xn − p‖ = ‖(1− βn)[yn − p + γn(un − yn)] + βn[T ln
n zn − p + γn(un − yn)]‖ → d,
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as n →∞. Since limn→∞ γn = 0 and {un} is bounded, we have

lim sup
n→∞

‖yn − p + γn(un − yn)‖ ≤ lim sup
n→∞

[‖yn − p‖+ γn‖un − yn‖] ≤ d,

and

lim sup
n→∞

‖T ln
n zn − p + γn(un − yn)‖ ≤ lim sup

n→∞
[kln‖zn − p‖+ γn‖un − yn‖] ≤ d.

It follows from Lemma 1.7 that

lim
n→∞

‖T ln
n zn − yn‖ = 0.

Thus,

lim
n→∞

‖zn − yn‖ = lim
n→∞

‖ᾱnyn + β̄nT
ln
n zn + γ̄nūn − yn‖

= lim
n→∞

‖β̄n(T ln
n zn − yn) + γ̄n(ūn − yn)‖ = 0.

Similarly,

lim
n→∞

‖xn − yn‖ = lim
n→∞

‖αnyn + βnT
ln
n zn + γnun − yn‖

= lim
n→∞

‖βn(T ln
n zn − yn) + γn(un − yn)‖ = 0.

Moreover,

‖yn − xn−1‖ = ‖α̂nxn−1 + β̂nT̂
l̂n
n yn + γ̂nûn − xn−1‖

= ‖β̂n(T̂ l̂n
n yn − xn−1) + γ̂n(ûn − xn−1)‖

≤ β̂n‖T̂ l̂n
n yn − xn−1‖+ γ̂n‖ûn − xn−1‖ → 0, as n →∞,

since limn→∞ β̂n = limn→∞ γ̂n = 0. As a result, we have

‖xn − xn−1‖ ≤ ‖xn − yn‖+ ‖yn − xn−1‖ → 0, as n →∞.

It forces

lim
n→∞

‖xn − xn+i‖ = 0, for each i = 1, 2, ..., N.

On the other hand, we have

‖xn − T ln
n xn‖ ≤ ‖xn − yn‖+ ‖yn − T ln

n zn‖+ ‖T ln
n zn − T ln

n xn‖
≤ ‖xn − yn‖+ ‖yn − T ln

n zn‖+ kln‖zn − xn‖ → 0, as n →∞.
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As n = lnN + n(modN) for n > N , we get

n−N = (ln − 1)N + n(modN),

and hence ln−N = ln − 1. Thus, we have

T ln−1
n = T

ln−N

n−N .

Consequently, we derive

‖xn − Tnxn‖ ≤ ‖xn − T ln
n xn‖+ ‖T ln

n xn − Tnxn‖
≤ ‖xn − T ln

n xn‖+ K‖T ln−1
n xn − xn‖

= ‖xn − T ln
n xn‖+ K‖T ln−N

n−N xn − xn‖
≤ ‖xn − T ln

n xn‖+ K[‖T ln−N

n−N xn − T
ln−N

n−N xn−N‖
+ ‖T ln−N

n−N xn−N − xn−N‖+ ‖xn−N − xn‖]
≤ ‖xn − T ln

n xn‖+ K[(1 + K)‖xn−N − xn‖
+ ‖T ln−N

n−N xn−N − xn−N‖] → 0 as n →∞.

This implies that for each j = 1, 2, ..., N ,

‖xn − Tn+jxn‖ ≤ ‖xn − xn+j‖+ ‖xn+j − Tn+jxn+j‖+ ‖Tn+jxn+j − Tn+jxn‖
≤ (1 + K)‖xn − xn+j‖+ ‖xn+j − Tn+jxn+j‖ → 0, as n →∞.

(2.6)

Note that the closedness and convexity of C imply the weak closedness of C. Let x̃ ∈ C

be any weak cluster point of the bounded sequence {xn}. Let {xni
} be a subsequence of {xn}

such that xni
→ x̃ weakly (see, e.g., [5, p. 313]). Since the pool of mappings {Ti : 1 ≤ i ≤ N}

is finite, we may further assume (passing to a further subsequence if necessary) that for some

integer l ∈ {1, 2, ..., N}, Tni
= Tl for all i ≥ 1. Then it follows from (2.6) that for each

j = 1, 2, ..., N ,

xni
− Tl+jxni

→ 0, as i →∞,

that is, for each j = 1, 2, ..., N ,

xni
− Tjxni

→ 0, as i →∞, (2.7)
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By Lemma 1.8, we can conclude that x̃ ∈
⋂N

j=1 F (Tj).

Theorem 2.4. In addition to the conditions in Theorem 2.3, we assume further that ∅ 6=⋂N
i=1 F (Ti) ⊆

⋂N̂
j=1 F (T̂j).

(a) If E satisfies Opial’s condition, then {xn} converges weakly to an element of
⋂N

i=1 F (Ti).

(b) If one of {Ti}N
i=1 is semi-compact, then {xn} converges strongly to an element of

⋂N
i=1 F (Ti).

Proof. We continue the argument in the proof of Theorem 2.3.

For (a), we claim that {xn} is weakly convergent. Were this false, there existed another

subsequence {xnj
} of {xn} such that xnj

→ x̄ ∈ C weakly and x̄ 6= x̃. Utilizing the same

argument as in Theorem 2.3, we can prove that x̄ ∈
⋂N

j=1 F (Tj). Note that by Lemma 2.1

both limn→∞ ‖xn − x̃‖ and limn→∞ ‖xn − x̄‖ exists. It follows from the Opial condition of E

that
lim

n→∞
‖xn − x̃‖ = lim inf

i→∞
‖xni

− x̃‖
< lim inf

i→∞
‖xni

− x̄‖ = lim
n→∞

‖xn − x̄‖ = lim inf
j→∞

‖xnj
− x̄‖

< lim inf
j→∞

‖xnj
− x̃‖ = lim

n→∞
‖xn − x̃‖.

This contradiction indicates that x̄ = x̃, and so {xn} converges weakly to x̃.

For (b), by (2.7), we can assume a subsequence {xni
} of {xn} exists such that xni

→ x̂ ∈⋂N
i=1 F (Ti) in norm. It then follows from Lemma 2.1 that

lim
n→∞

‖xn − x̂‖ = lim
i→∞

‖xni
− x̂‖ = 0.

This completes the proof.
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