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CHI-WAI LEUNG AND NGAI-CHING WONG

Abstract. In this paper, we try to attack a conjecture of Araujo and Jarosz that
every bijective linear map θ between C*-algebras, with both θ and its inverse θ−1

preserving zero products, arises from an algebra isomorphism followed by a central
multiplier. We show it is true for CCR C*-algebras with Hausdorff spectrum, and
in general, some special C*-algebras associated to continuous fields of C*-algebras.

1. Introduction

The theory of general C*-algebras is made easy by observing the interplay between

their algebraic and analytical structures. For example, the norm structure can be

recovered from the *-algebraic structure in a C*-algebra. It is further shown by

Gardner [10] (see also [16, Theorem 4.1.20]) that two C*-algebras are *-algebraic

isomorphic if and only if they are algebraic isomorphic.

Extending results in [18, 17], they are shown in [6] for the unital case and in [19,

Corollary 2.6] for the general case that two C*-algebras A,B are algebraic isomorphic

if and only if there is a continuous bijective linear map θ between them preserving

zero products, that is,

θ(a)θ(b) = 0 in B whenever ab = 0 in A.

In this case,

(1.1) θ = θ∗∗(1)Ψ,

where θ∗∗ is the bidual map of θ, and θ∗∗(1) is an invertible central multiplier of B,

while Ψ is an algebra isomorphism form A onto B. Consequently, the topological,

linear and zero product structures determine a C*-algebra.

In [2], Araujo and Jarosz show that every bijective linear map θ between uni-

tal standard operator algebras on Banach spaces, with both θ and its inverse θ−1

preserving zero products, carries the standard form (1.1). In particular, such maps

are automatically bounded. Their results apply to those maps between standard

C*-algebras, i.e., those containing compact operators. They state a conjecture in
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[2] to ask whether every such map between two arbitrary C*-algebras carries the

standard form (1.1). In other words, they want to know whether the linear and the

zero product structures suffice to determine a C*-algebra.

This might be a hard problem, as we do not have suitable functional calculus to

use if we do not know in advance the map is bounded. As a matter of facts, the

structure of unbounded zero product preserving linear functionals of C*-algebras is

quite complicated (see [4]). Furthermore, we know that Banach algebra homomor-

phisms can be unbounded (see, e.g., [7]). One possible way to attack this problem is

to decompose a general C*-algebra into a family of simple C*-algebras, e.g., the ones

consist of compact operators. Together with [13], this suggests us to study contin-

uous fields of C*-algebras whose fibers are elementary C*-algebras, which give rise

to exactly all CCR C*-algebras with Hausdorff spectrum.

In Section 2, we shall develop a structure theory of zero product preserving linear

maps θ between two continuous fields of C*-algebras (X, {Ax},A) and (Y, {By},B).

These maps carry a standard form

θ(f)(y) = Hy(f(ϕ(y))), ∀f ∈ A,∀y ∈ Y,(1.2)

where ϕ is a map from Y into X, and each fiber linear map Hy : Aϕ(y) → By is zero

product preserving. In Section 3, we assume, in addition, θ is bijective and its inverse

θ−1 also preserves zero products. Then, ϕ is a homeomorphism. Moreover, all fiber

linear maps Hy are bounded whenever X (or Y ) contains no isolated points, or all

the fiber C*-algebras are standard operator algebras. In these cases, θ is bounded

and thus, by results in [6, 19], carries the standard form (1.1). Eventually, we solve

the open problem in affirmative for the CCR C*-algebra case; namely, two CCR

C*-algebras with Hausdorff spectrum are *-isomorphic if and only if they have the

same linear and zero product structures.

It might be worthwhile to mention that the group C*-algebra of a compact group

is a direct sum of matrix algebras, and thus a CCR with Hausdorff spectrum (see,

e.g., [8, 15.1]). Consequently, results in this paper can be applied. Of course, the

most interesting part is to characterize further the group structure through this kind

of maps. We hope this will be achieved in coming future.

Finally, we would like to express our deep gratitude to the Referee for his/her

careful reading and helpful comments.

2. Zero product preservers between continuous fields of Banach

algebras

We shall follow [9, 8] for notations. Let T be a locally compact Hausdorff space,

called base space. For each t in T there is a (complex) Banach space Et. A vector

field x is an element in the product space
∏

t∈T Et, that is, x(t) ∈ Et,∀t ∈ T .
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Definition 2.1. A continuous field E = (T, {Et},A) of Banach spaces over a locally

compact space T is a family {Et}t∈T of Banach spaces, with a set A of vector fields

such that

(i) A is a (complex) vector subspace of
∏

t∈T Et.

(ii) For every t in T , the set of all x(t) with x in A is dense in Et.

(iii) For every x in A, the function t 7→ ‖x(t)‖ is continuous on T and vanishes at

infinity.

(iv) Let x be a vector field. Suppose for every t in T and every ε > 0, there is a

neighborhood U of t and a y in A such that ‖x(t) − y(t)‖ < ε for all t in U .

Then x ∈ A.

Elements in A are called continuous vector fields.

It is not difficult to see that A becomes a Banach space under the norm ‖x‖ =

supt∈T ‖x(t)‖. If g is in Cb(T ), i.e., g is a bounded continuous complex-valued

function on T , and x is in A then t 7→ g(t)x(t) defines a continuous vector field gx

on T . The set {x(t) : x ∈ A} coincides with Et for every t in T . Moreover, for any

distinct points s, t in T and any α in Es and β in Et, there is a continuous vector

field x such that x(s) = α and x(t) = β (see, e.g., [9, 14]).

Definition 2.2. A continuous field of Banach algebras (resp. C*-algebras) (X, {Ax},
A) is a continuous field of Banach spaces with Banach algebra (resp. C*-algebra)

fibres Ax such that A becomes a Banach algebra (resp. C*-algebra) under the point-

wise algebraic (resp. *-algebraic) operations and norm ‖f‖ = sup ‖f(x)‖.

Example 2.3. Recall that a C*-algebra A is called a CCR if every irreducible rep-

resentation of A consists of compact operators. The spectrum Â of A is the family

of unitary equivalence classes of non zero irreducible representations under the hull-

kernel topology. This topology is always locally compact, and the spectrum of a

CCR C*-algebra is T1. Let A be a CCR C*-algebras with Hausdorff spectrum

X = Â. According to [8, Theorem 10.5.4], we can represent A as a continuous field

of C*-algebras (X, {Ax},A), where Ax consists of compact linear operators on a

Hilbert space Hx for each x in X.

Let (X, {Ax},A) and (Y, {By},B) be two continuous fields of C*-algebras, and

let θ : A → B be a zero product preserving linear map. Denote by X∞ = X ∪ {∞}
and Y∞ = Y ∪ {∞} the one-point compactifications of X and Y , respectively. Note

that the point ∞ at infinity will be isolated in X∞ if X is already compact. Set for

each x in X the sets

Ix = {f ∈ A : f vanishes in a neighborhood in X∞ of x},

Mx = {f ∈ A : f(x) = 0}.



4 CHI-WAI LEUNG AND NGAI-CHING WONG

In particular,

I∞ = {f ∈ A : f has a compact support},

M∞ = A.

Similar conventions are also made for each y in Y . Furthermore, denote by δy the

evaluation map at y in Y , i.e.,

δy(g) = g(y) ∈ By, ∀g ∈ B.

We call a Banach algebra A primitive if it has an (isometric) faithful irreducible

representation π : A→ B(E) into the Banach algebra of all bounded linear operators

on a Banach space E. We call a linear map between Banach algebras has a primitive

range if the Banach algebra generated by its range is primitive.

Theorem 2.4. Let (X, {Ax},A), (Y, {By},B) be continuous fields of Banach alge-

bras over locally compact Hausdorff spaces X, Y , respectively. Let θ : A → B be a

zero product preserving linear map such that δy ◦ θ : A → By has primitive range for

every y in Y .

If we set

Y0 = {y ∈ Y∞ : δy ◦ θ = 0},

then there is a unique continuous map ϕ : Y \Y0 → X∞ satisfying the condition that

θ(Iϕ(y)) ⊆My.

Set

Y1 = {y ∈ Y \ Y0 : θ(Mϕ(y))⊆My},

Y2 = {y ∈ Y \ Y0 : θ(Mϕ(y)) * My}.

Then ∞ ∈ Y0 and Y0 is compact,

θ(f)|Y0 = 0, ∀f ∈ A,

and Y2 is open in Y∞. Moreover, there is a linear map Hy : Aϕ(y) → By for each y

in Y1 such that

θ(f)(y) = Hy(f(ϕ(y))), ∀f ∈ A,∀y ∈ Y1.(2.1)

The exceptional set ϕ(Y2) consists of finitely many non-isolated points in X∞. Fur-

thermore, θ is bounded if and only if Y2 = ∅ and all Hy are bounded. In this case,

‖θ‖ = sup
y
‖Hy‖.

Finally, the fiber maps Hy are zero product preserving if (X, {Ax},A) is a continuous

field of C*-algebras.
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Composing δy ◦ θ with a faithful irreducible representation of the Banach algebra

generated by {θ(f)(y) ∈ By : f ∈ A}, we can assume that By is an irreducible

subalgebra of the algebra B(Ey) of all bounded linear operators on some Banach

space Ey and δy ◦ θ is again zero-product preserving with range generating By.

It is clear that Y0 is compact, contains the point at infinity, and

θ(f)|Y0 = 0, ∀f ∈ A.

On the other hand, for each y ∈ Y \Y0, the range θ(A) is not trivial at y. For every

open subset U of X, denote by AU the subalgebra of all f in A vanishing outside a

compact subset of U . For each y in Y \ Y0, denote by

Sy =

{
x ∈ X∞ : for every open neighborhood U of x,

there is an f in AU such that θ(f)(y) 6= 0

}
.

We divide the proof of Theorem 2.4 into several lemmas.

Lemma 2.5. The set Sy is nonempty for each y in Y \ Y0.

Proof. Suppose on the contrary that for each x in X∞ there is an open neighborhood

Ux of x inX∞ such that θ(f)(y) = 0 for all f in AUx . Let Vx be an open neighborhood

of x with compact closure V ⊆ U . By compactness,

X∞ = Vx0 ∪ Vx1 ∪ · · · ∪ Vxn

for some points x0 = ∞, x1, . . . , xn in X∞. Let

1 = h0 + h1 + · · ·+ hn

be a continuous partition of unity such that hi vanishes outside Vxi
for i = 0, 1, . . . , n.

For any g in A, observe that

(hig) ∈ AUxi
implies θ(hig)(y) = 0,

and then θ(g)(y) = 0,∀g ∈ A. This gives a contradiction y ∈ Y0. �

Lemma 2.6. Sy consists of exactly one point for all y in Y \ Y0.

Proof. We shall verify that x1, x2 ∈ Sy implies x1 = x2. Suppose x2 6= x1. Let U1

and U2 be disjoint open neighborhoods of x1 and x2, respectively. Since

f1f2 = f2f1 = 0 for all fi in AUi
, i = 1, 2,

we have

θ(f1)θ(f2) = θ(f2)θ(f1) = 0 in B.

Let E1 be the intersection of the kernels of all θ(f1)(y) with f1 in AU1 . Because both

θ|AU1
and θ|AU2

are not trivial at y, we see that E1 is a proper nontrivial subspace

of Ey, that is, {0} 6= E1 6= Ey.
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Let V be a nonempty open set in Y such that the compact closure V ⊆ U1. For any

h in AV , let g be in C(X∞) such that g = 1 on the support of h and g vanishes outside

V . Then for each f in A, since fg vanishes outside V , we have θ(fg)(y)|E1 = 0.

On the other hand, we have h(f(1 − g)) = 0. This implies θ(h)(y)θ(f)(y)|E1 =

θ(h)(y)θ(fg)(y)|E1 = 0,∀f ∈ A. Since V is an arbitrary nonempty open set with

compact closure contained in U1, we have θ(h)(y)θ(f)(y)|E1 = 0 for all f ∈ A and for

all h ∈ AU1 . Therefore, θ(A)(y)(E1) ⊆ E1. Since θ(A)(y) generates the irreducible

algebra By, we see that E1 could not be proper. This is a contradiction. �

Define a map ϕ from Y \ Y0 into X∞ by Sy = {ϕ(y)}.

Lemma 2.7. The point ϕ(y) is the unique point in X∞ satisfying the condition that

θ(Iϕ(y))⊆My, ∀y ∈ Y \ Y0.(2.2)

Proof. Let f ∈ Iϕ(y) vanish in an open neighborhood U of ϕ(y). For all x /∈ U , by the

definition of Sy there is an open neighborhood Vx of x such that θ(AVx)(y) = {0}.
By compactness, we can write X∞ = U∪Vx1∪· · ·∪Vxn for some x1, . . . , xn in X∞\U .

Let 1 = h+ h1 + · · ·hn be a corresponding continuous partition of unity. Note that

θ(hig)(y) = 0 for all g in A and i = 1, . . . , n. Hence, θ(g)(y) = θ(hg)(y) for all g in

A. As f(hg) = 0, we see that θ(f)(y)θ(g)(y) = θ(f)(y)θ(hg)(y) = 0. Since δy ◦ θ
has a primitive range, θ(f)(y) = 0, or θ(f) ∈ My. Finally, the uniqueness assertion

follows from the definition of Sy. �

It is clear that the map ϕ is uniquely characterized by (2.2). Now the definitions

of the sets Y1 and Y2 make sense.

Lemma 2.8. ϕ : Y \ Y0 → X∞ is continuous.

Proof. Suppose yλ → y in Y \ Y0, but xλ = ϕ(yλ) → x 6= ϕ(y). By Lemma 2.7,

θ(Ix) * My. Let Ux, Uϕ(y) be disjoint compact neighborhoods of x, ϕ(y), respectively.

Let g ∈ C(X∞) such that g = 1 on Ux and g = 0 on Uϕ(y). Since xλ → x,

(1 − g)f ∈ Ixλ
eventually. Thus, θ((1 − g)f) ∈ Myλ

eventually. By the continuity

of the norm function, θ((1 − g)f)(y) = 0. On the other hand, gf ∈ Iϕ(y) implies

θ(gf) ∈My. Hence, θ(f)(y) = 0,∀f ∈ A. This gives y ∈ Y0, a contradiction. �

Lemma 2.9. Let {yn} be an infinite sequence in Y \Y0 such that ϕ(yn) are distinct

points in X∞. Then

lim sup ‖δyn ◦ θ‖ < +∞.

Proof. Suppose not, by passing to a subsequence if necessary, we can assume that

‖δyn ◦θ‖ > n4, and there is an element fn in A such that ‖fn‖ ≤ 1 and ‖θ(fn)(yn)‖ >
n3, for n = 1, 2, . . .. Let Vn, Un be compact neighborhoods of xn in X∞ such that Vn
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is contained in the interior of Un, and Un ∩Um = ∅, for distinct n,m = 1, 2, . . .. Let

gn ∈ C(X∞) such that gn = 1 on Vn and gn = 0 outside Un for n = 1, 2, . . .. Observe

θ(fn)(yn) = θ(gnf)(yn) + θ((1− gn)f)(yn)

= θ(gnf)(yn), as (1− gn)f ∈ Ixn .

So we can assume fn is supported in Un, for n = 1, 2, . . .. Let

f =
∞∑

n=1

1

n2
fn ∈ A.

Since n2f−fn ∈ Ixn , we have n2θ(f)(yn) = θ(fn)(yn) by (2.2), and thus ‖θ(f)(yn)‖ >
n, for n = 1, 2, . . .. As θ(f) in B has a bounded norm, we arrive at a contradiction.

�

Lemma 2.10. ϕ(Y2) is a finite set of non-isolated points in X∞.

Proof. Let x = ϕ(y) with y in Y2. Then by (2.2) we have

θ(Ix)⊆My but θ(Mx) * My.

This implies the linear operator δy ◦ θ is unbounded, since Ix is dense in Mx by

Uryshon’s Lemma. By Lemma 2.9, we can have only finitely many of such x’s. So

ϕ(Y2) is a finite set. Moreover, if x is an isolated point in X∞ then Ix = Mx, and

thus x /∈ ϕ(Y2). �

Proof of Theorem 2.4. Let y ∈ Y1, we have θ(Mϕ(y))⊆My. Hence, there is a linear

operator Hy : Eϕ(y) → Fy such that

θ(f)(y) = Hy(f(ϕ(y))), ∀f ∈ A.(2.3)

Next we want to see that Y2 is open, or equivalently, Y0 ∪ Y1 is closed in Y∞.

Let yλ → y with yλ in Y0 ∪ Y1. We want to show that y ∈ Y0 ∪ Y1. Since Y0 is

compact, we may assume yλ ∈ Y1 for all λ. Suppose y 6∈ Y0. By Lemma 2.8, we

see that ϕ(yλ) → ϕ(y). In the case there is a subnet of {ϕ(yλ)} consisting of only

finitely many points, we can assume ϕ(yλ) = ϕ(y) for all λ. Then for all f in A,

f(ϕ(y)) = 0 implies f(ϕ(yλ)) = 0, and thus θ(f)(yλ) = 0 for all λ by (2.3). By

continuity, θ(f)(y) = 0. Consequently, θ(Mϕ(y))⊆My, and thus y ∈ Y1. In the other

case, every subnet of {ϕ(yλ)} contains infinitely many points. Lemma 2.9 asserts

that M = lim sup ‖Hyλ
‖ < +∞. This gives

‖θ(f)(y)‖ = lim ‖θ(f)(yλ)‖ = lim ‖Hyλ
(f(ϕ(yλ)))‖ ≤M‖f(ϕ(y))‖.

Thus, if f(ϕ(y)) = 0 we have θ(f)(y) = 0. Consequently, y ∈ Y1.
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Now observe that the boundedness of θ implies Y2 = ∅. Moreover,

‖θ‖ = sup{‖θ(f)‖ : f ∈ A with ‖f‖ = 1}

= sup{‖Hy(f(ϕ(y)))‖ : f ∈ A with ‖f‖ = 1, y ∈ Y1}(2.4)

≤ sup{‖Hy‖ : y ∈ Y1}.

The reverse inequality is plain. Conversely, we suppose Y2 = ∅ and all Hy are

bounded. We claim that sup ‖Hy‖ < +∞. For else, there is a sequence {yn} in Y1

such that limn→∞ ‖Hyn‖ = +∞. By Lemma 2.9, we can assume all ϕ(yn) = x in X.

Let e ∈ Ax and f ∈ A such that f(x) = e. Then

‖Hyn(e)‖ = ‖θ(f)(yn)‖ ≤ ‖θ(f)‖, n = 1, 2, . . . .

It follows from the uniform boundedness principle that sup ‖Hyn‖ < +∞, a contra-

diction. It then follows from (2.4) that θ is bounded.

Finally, suppose (X, {Ax},A) is a continuous field of C*-algebras, and in par-

ticular, A is a C*-algebra. Let αβ = 0 in Ax for some x in ϕ(Y1). Consider the

closed two-sided ideal I = {c ∈ A : c(x) = 0} of A. Let a, b in A be such that

a(x) = α, b(x) = β. Then ab ∈ I. By a result of Akemann and Pedersen [1] (see

also [6, Lemma 4.14]), we shall have a′, b′ in A such that a′(x) = α, b(x′) = β and

a′b′ = 0. Now θ(a′)θ(b′) = 0 implies Hy(α)Hy(β) = 0. So each Hy preserves zero

products. �

3. Zero product preservers between CCR C*-algebras

Recall that an algebra A of continuous linear operators on some locally convex

space E is called standard if A contains all finite rank operators. Note that we do

not assume A contains the identity map on E or A is closed under any topology.

The following result belongs to Araujo and Jarosz [2, Theorem 1]. They verify the

case of unital standard operator algebras on Banach spaces. The arguments below

slightly simplify theirs.

Proposition 3.1 ([2]). Let θ : A → B be a bijective linear map between standard

operator algebras A,B on locally convex spaces M,N , respectively, such that both θ

and its inverse θ−1 preserve zero products. Then there is a nonzero scalar λ and a

weak-weak bi-continuous invertible linear map S : M → N such that

θ(a) = λSaS−1, ∀a ∈ A.

In case both M,N are Frechet spaces, S is bi-continuous in the metric topologies.

In particular, θ is bounded if both M,N are Banach spaces.

Proof. Put

a⊥ = {c ∈ A : ca = 0}, for all nonzero a in A.
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We see that a⊥⊆ b⊥ if and only if the closure of the range space of a contains that of

b. Consequently, a⊥ is maximum among all b⊥ if and only if a is of rank one. By the

zero product preserving property of θ and θ−1, we see that θ preserves the order of

a⊥’s, and thus sends the maxima onto the maxima. In other words, θ sends rank one

operators onto rank one operators. It then follows from the Fundamental Theorem

of Affine Geometry that there exist linear maps S : M → N and T : N → M such

that

θ(a) = SaT, ∀a ∈ F(M),

where F(M) is the algebra of all continuous finite rank operators onM . In particular,

θ(x⊗ y′) = Sx⊗ T ′y′,

for every rank one operator x⊗ y′ with x in M , y′ in the topological dual space M ′

of M . Here, T ′ is the (algebraic) dual map of T , and (x ⊗ y′)(z) = y′(z)x defines

a rank at most one continuous operator on M . Consequently, T ′M ′⊆N ′ and thus

T is weak-weak continuous. Dealing with the inverse θ−1, we see that T−1 is also

weak-weak continuous. Moreover, if y′2(x1) = 0 then (x2 ⊗ y′2)(x1 ⊗ y′1) = 0. Thus,

θ(x2 ⊗ y′2)θ(x1 ⊗ y′1) = 0. In other words,

y′2(x1) = 0

implies (T ′y′2)(Sx1)(Sx2 ⊗ T ′y′1) = 0, ∀x1, x2 ∈M, y′1, y
′
2 ∈M ′

implies y′2(TSx1) = 0, ∀x1 ∈M, y′2 ∈M ′.

By linearity, T = λS−1 for some nonzero scalar λ, and

θ(a) = λSaS−1, ∀a ∈ F(M).

In general, let a ∈ A. For any x 6= 0 in M , let x′ ∈ M ′ such that x′(x) = 1. Set

b = a− (ax⊗ x′). Observe b(x⊗ x′) = 0. Thus,

θ(b)θ(x⊗ x′) = λ(θ(b)Sx)⊗ (S−1)′x′ = 0.

This implies

θ(a)Sx = λ(Sax⊗ (S−1)′x′)(Sx) = λSax, ∀x ∈M.

Hence,

θ(a) = λSaS−1, ∀a ∈ A.
In case M,N are Frechet spaces, the Closed Graph Theorem ensures that both

S, S−1 are continuous in the metric topology. If they are Banach spaces, then θ is

automatically bounded. �
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Theorem 3.2. Let (X, {Ax},A), (Y, {By},B) be continuous fields of primitive Ba-

nach algebras over locally compact base spaces. Let θ : A → B be a bijective linear

map such that both θ, θ−1 preserve zero products. Suppose, in addition, at least one

of the following conditions hold.

(1) X (or Y ) contains no isolated points.

(2) All fibers Ax and By are standard operator algebras.

Then θ is automatically bounded and X,Y are homeomorphic. Indeed, θ assumes

the standard form (1.2) with all fiber linear maps being bounded.

If the case (2) holds, and A (resp. B) is a continuous field of standard C*-algebras

Ax (resp. By) on Hilbert spaces Hx (resp. Ky), then there exist a homeomorphism

ϕ : Y → X, a bounded and away from zero continuous scalar function λ on Y , a

bounded invertible linear map Sy from Hϕ(y) onto Ky for each y in Y such that

θ(f)(y) = λ(y)Syf(ϕ(y))S−1
y , ∀f ∈ A, y ∈ Y.

In other words, the standard form (1.1) holds:

θ = θ∗∗(1)Ψ,

where the invertible central multiplier θ∗∗(1) of B is represented by the operator field

y 7→ λ(y)Iy with Iy being the identity map on each fiber Hilbert space Ky, and the

algebra isomorphism Ψ is given by Ψ(f)(y) = Syf(ϕ(y))S−1
y .

Proof. We first note that Y0 = {∞}. Moreover, it follows from (2.2) that ϕ(Y ) =

ϕ(Y1) ∪ ϕ(Y2) is dense in X. Since ϕ(Y2) is a finite set of non-isolated points in X,

we see that ϕ(Y1) alone is dense in X. On the other hand, let y ∈ Y1 with ϕ(y) = x

in X, and ψ(x) = z in Y∞. Here, the map ψ : X → Y∞, and the decomposition

X = X1 ∪X2 is induced by θ−1 in an analogous way. In particular, we have

θ(Mx)⊆My and θ−1(Iz)⊆Mx.

Consequently, Iz⊆θ(Mx)⊆My gives y = z ∈ ψ(X). In case y ∈ ψ(X1), we have

θ(Mx) = My. Since ψ(X2) is a finite set of non-isolated points in Y , we have

θ(Mϕ(y)) = My for all but at most finitely many y in Y1. Therefore, the linear map

Hy is bijective for all but at most finitely many y in Y1, which are non-isolated points

in Y . Hence, if θ(f) vanishes on Y1 then f vanishes on the dense set ϕ(Y1) by (2.1),

and thus f = 0. Therefore, Y1 is dense in Y by the surjectivity of θ. The openness

of Y2 forces itself to be empty.

Now, Y = Y1 and X = X1 imply that both θ and θ−1 can be written as weighted

composition operators:

θ(f)(y) = Hy(f(ϕ(y))), ∀f ∈ A,∀y ∈ Y,

θ−1(g)(x) = Tx(g(ψ(x))), ∀g ∈ B,∀x ∈ X.
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It is easy to see that the linear map Hy : Eϕ(y) → Fy has Ty as the inverse for

every y in Y , and thus it is bijective. By Lemma 2.9, at most finitely many Hy are

unbounded.

Let y be a non-isolated point in Y . We shall show that the linear map Hy is

bounded. Suppose not, then for each n = 1, 2, . . . there is an fn in A of norm one

such that ‖θ(fn)(y)‖ = ‖Hy(fn(ϕ(y)))‖ > n4. By the continuity of the norm of

θ(fn), there are all distinct points yn in Y nearby y such that ‖θ(fn)(yn)‖ > n3. Let

xn = ϕ(yn) in X for n = 1, 2, . . .. Since ϕ is a homeomorphism, we can assume also

that all xn are distinct with disjoint compact neighborhoods Un. By multiplying

with a norm one continuous scalar function, we can assume each fn is supported in

Un. Let f =
∑

n
1
n2fn in A. Since n2f − fn ∈ Ixn , we have n2θ(f)(yn) = θ(fn)(yn)

and thus ‖θ(f)(yn)‖ > n for n = 1, 2, . . .. This absurdity tells us that Hy is bounded

for all non-isolated y in Y1.

For the case (1), if Y (or equivalently, its homeomorphic image X) contains no

isolated points then all fiber linear maps Hy are bounded. By Theorem 2.4, we have

‖θ‖ = sup ‖Hy‖ < +∞.

Suppose now the case (2) holds. By Proposition 3.1, each fiber linear map as-

sumes the form Hy(a) = λ(y)SyaS
−1
y , and θ is uniformly bounded. To see that

λ is continuous on Y , we make use of a result of Lee [14, Lemma 2] which as-

serts that the multiplier algebras M(A) and M(B) can be represented as families

of bounded operator fields in (X, {M(Ax)}) and (Y, {M(Bx)}), respectively. By

restricting the double dual map of θ to M(A), we see that the invertible central

multiplier θ∗∗(1)(y) = λ(y)Iy. It follows from the Dauns-Hofmann theorem (see,

e.g., [15, Theorem A.34]) that λ is a continuous function on X. Since θ∗∗(1) is

invertible, we see that λ is bounded and away from zero. It is also plain that the

algebra isomorphism Ψ = θ∗∗(1)−1θ is given by sending a continuous operator field

{f(y)} to {Syf(ϕ(y))S−1
y }. �

As a special case of Theorem 3.2(2), here comes

Theorem 3.3. Let A and B be CCR C*-algebras with Hausdorff spectrum X = Â

and Y = B̂, respectively. Let θ : A → B be a bijective linear map such that

ab = 0 in A if and only if θ(a)θ(b) = 0 in B.(3.1)

Then θ is automatically bounded. Indeed, θ = mΨ where m = θ∗∗(1) is an invertible

central multiplier of B and Ψ is an algebra isomorphism from A onto B.

Corollary 3.4. Two CCR C*-algebras with Hausdorff spectrum are isomorphic as

C*-algebras if and only if they have the same linear and zero product structures.
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Proof. It follows from Theorem 3.3 that if there is a bijective linear map θ : A → B

between two CCR C*-algebras with Hausdorff spectrum, then A and B are alge-

braically isomorphic (via the map Ψ = θ∗∗(1)−1θ). As shown in [10] (see also [16,

Theorem 4.1.20]), A and B are also *-isomorphic. On the other hand, the norm of

an element a of a C*-algebra equals the square root of the spectral radius of a∗a,

which is a *-algebraic property. So A and B are isometrically *-isomorphic. �

Remark 3.5. (a) The two way zero product preserving assumption (3.1) in Theorem

3.3 cannot be dropped easily. For example, abelian C*-algebras C0(X) are CCR.

In [4], there are many examples of unbounded zero product preserving linear

functionals of C0(X), provided X is an infinite set. In [12], an unbounded

zero product preserving linear map from c onto `∞ is given, where both c, the

C*-algebra of convergent scalar sequences, and `∞ are CCR with Hausdorff

spectrum.

(b) In [9], Fell defines the notion of a full algebra of operator fields A as those

satisfying conditions (i), (ii), (iii) in Definition 2.1 and A becomes a C*-algebra

in Definition 2.2. Fell calls those satisfied in addition condition (iv) in Definition

2.1 a maximal full algebra of operator fields. He has pointed out that A is

maximal if and only if for all αx in a fiber algebra Ax and βy in another fiber

Ay there is a continuous field a in A such that a(x) = αx and a(y) = βy. This is

also equivalent to saying that for all a in A, and for all bounded complex scalar

continuous function g on X, we have ga ∈ A. In our discussion, we follow the

usage of notations of Dixmier [8] and simply assume that all continuous fields

are maximal.

(c) We note that every C*-algebra with Hausdorff spectrum can be represented as

a continuous field of primitive C*-algebras over the spectrum [15, §5.1]. Hence,

Theorems 2.4 and 3.2 apply to every zero product preserving linear map between

two C*-algebras with Hausdorff spectrum.

(d) It is pointed out by Fell in [9, p. 243] that a CCR C*-algebra has Hausdorff

spectrum if and only if it can be represented as a (maximal) continuous field of

primitive C*-algebras over some locally compact Hausdorff base space.

(e) One might observe that Theorem 3.3 can be extended to GCR C*-algebras.

However, for a GCR C*-algebra A with Hausdorff spectrum, A is automatically a

CCR, and thus nothing new can be achieved in this plausible generality. Indeed,

a separable C*-algebra is a GCR (resp. CCR) if and only if its spectrum is T0

(resp. T1); see, e.g., [5]. In general, a GCR C*-algebra is a CCR if and only if

its spectrum is T1 ([11, Theorem 4]).

To end the paper we present an other example as an evident to support our general

conjecture that linear and zero product structures suffice to determine a C*-algebra.
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Example 3.6 ([6]). Let M be a properly infinite W ∗-algebra and θ a zero product

preserving linear map from M onto a unital algebra N. Then

θ(a) = θ(1)Ψ(a), for all a in M,

where θ(1) is an invertible element in the center of N and Ψ is an algebra homomor-

phism from M onto N. In particular, if N is a semi-simple Banach algebra then θ

is automatically bounded, by, e.g., a result of Aupetit [3] which ensures that every

surjective algebra homomorphism between semi-simple Banach algebras is bounded.
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