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Abstract. The purpose of this paper is to investigate the asymptotic behavior

of algorithms for finding solutions for a certain class of variational inequalities
V ID(C, I−f) involving nonexpansive type mappings in smooth Banach spaces.

We study existence of solutions of variational inequalities V ID(C, I− f) when

D is the set of solutions of zeros of accretive operators or the set of fixed points
of nonexpansive mappings or the set of fixed points of pseudocontractive map-

pings. Our convergence analysis covers proximal point algorithm for finding

zeros accretive operators as well as functional Helpern algorithm for finding
fixed points of nonexpansive mappings in Banach spaces. Our results improve

a number of results concerned with viscosity approximation methods in the

context of weakly contraction mappings.

1. Introduction

Let H be a real Hilbert space with inner product 〈., .〉 and norm ‖.‖, respectively.
Let C be a nonempty closed convex subset of H and A : C → H a nonlinear
mapping. A is said to be monotone if 〈Ax − Ay, x − y〉 ≥ 0 for all x, y ∈ C. A
monotone operator A is said to be maximal monotone if its graph is not properly
contained in the graph of any other monotone operator on H.

The variational inequality V I(C,A) is formulated as finding a point z ∈ C such
that

〈Az, z − v〉 ≥ 0 for all v ∈ C.

The variational inequalities were initially studied by Stampachhia [10, 12] and
ever since have been widely studied. Such a problem is connected with the convex
minimization problem, the complementarity problem, the problem of finding a point
u ∈ H satisfying 0 = Au and so on.

Existence and approximation of solutions are important aspects of study of varia-
tional inequalities. It is well known that if A is Lipschitzian and strongly monotone,
then for small µ > 0, the mapping PC(I − µA) is a contraction. In this case, the
Banach contraction principle guarantees that V I(C,A) has unique solution x∗ and
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the sequence of Picard iteration process, given by, xn+1 = PC(I−µA)xn, converges
strongly to x∗, where PC is the metric projection from H onto C.

Throughout this paper X is a real Banach space. Let C be a convex subset of
a smooth Banach space X, D a nonempty subset of C and f : C → C a mapping.
We consider the following variational inequality V ID(C, I − f):

to find a z ∈ D such that 〈(I − f)z, J(z − v)〉 ≤ 0 for all v ∈ D,
where J is the duality mapping from X into X∗.

The set of solutions of the variational inequality V ID(C, I − f) is denoted by
ΩD(I − f), i.e.,

ΩD(I − f) = {u ∈ C : 〈(I − f)z, J(z − v)〉 ≤ 0 for all v ∈ D}.
We denote F (T ) the set of fixed points of mapping T : C → C.

The viscosity approximation method is one of the important methods for exis-
tence and approximation solutions of variational inequalities V ID(C, I − f). The
viscosity approximation method was first discussed by Moudafi [16] as below:

Theorem 1.1. (Theorem 2.1, Moudafi [16]) Let C be a nonempty closed convex
subset of a Hilbert space H. Let T : C → C be a nonexpansive mapping and
f : C → C a contraction mapping with F (T ) 6= ∅. Let {xn} be the sequence defined
by the scheme:

xn =
1

1 + εn
Txn +

εn

1 + εn
fxn for all ∈ N,

where εn is a sequence (0, 1) with εn → 0. Then {xn} converges strongly to the
unique solution of the variational inequality:

to find a x̃ ∈ D such that 〈(I − f)x̃, x̃− x〉 ≤ 0 for all x ∈ F (T ),

where I is the identity mapping. In other word, x̃ is the unique fixed point of
PF (T )f .

Xu [24] extended the viscosity approximation method proposed by Moudafi [16]
for a nonexpansive mapping in a uniformly smooth Banach space. If ΠC denotes
the set of all contractions on C, then he proved the following theorem.

Theorem 1.2. (Theorem 4.1, Xu [24]) Let C be a nonempty closed convex subset
of a uniformly smooth Banach space X, f ∈ ΠC and T : C → C a nonexpansive
mapping with F (T ) 6= ∅. Then the path {xt : t ∈ (0, 1)} defined by

(1.1) xt = tfxt + (1− t)Txt

converges strongly to a point in F (T ). If we define Q : ΠC → F (T ) by

Q(f) = lim
t→0+

xt, f ∈ ΠC ,

then Q(f) solves the variational inequality:

〈(I − f)Q(f), J(Q(f)− v)〉 ≤ 0, f ∈ ΠC and v ∈ F (T ).

There are already several viscosity-like methods in Hilbert and Banach spaces,
and the research is intensively continued which are very useful for approximating to
the common element of F (T ) and ΩD(I−f), when f is a contraction mapping and
T is a nonexpansive mapping. In such viscosity methods, the contraction mapping
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f not only guarantees the existence of approximating curve {xt} defined by (1.1),
but it also ensures the strong convergence of both {xt} and {xn} to an element
of F (T ) ∩ ΩD(I − f), where {xn} is a sequence in C generated by the functional
Halpern iteration process:

(1.2) xn+1 = αnfxn + (1− αn)Txn, n ∈ N,
where {αn} is a sequence in [0,1] satisfying appropriate conditions. When fx = u
for all x ∈ C, then f is a contraction with the Lipschitz constant 0 and (1.2) reduces
to xn+1 = αnu+ (1− αn)Txn which was first studied by Halpern [7].

At this stage, the following natural question arises:

Question 1.3. Let C be a nonempty closed convex subset of a smooth Banach
space X, D a nonempty closed convex subset of C and f : C → C a nonexpansive
mapping. Under what conditions ΩD(I − f) 6= ∅?

On the other hand, a variety of problems, including convex programming and
variational inequalities, can be formulated as finding of zeros of maximal monotone
operators. Therefore, one of the most interesting and important problems in the
theory of maximal monotone operators is to find an efficient iterative algorithm to
compute approximately zeroes of maximal monotone operators. One method for
solving zeros of maximal monotone operators is proximal point algorithm. Let T be
a maximal monotone operator in a Hilbert space H. The proximal point algorithm
generates, for starting x1 ∈ H, a sequence {xn} in H by

(1.3) xn+1 = (I + rnT )−1xn for all n ∈ N,
where {rn} is a sequence in (0,∞). Note that (1.3) is equivalent to

0 ∈ 1
rn

(xn+1 − xn) + Txn+1 for all ∈ N.

This was first introduced by Martinet [15]. If f : H → (∞,∞] is a proper lower
semicontinuous convex function, then the algorithm reduces to

xn+1 = argmin
y∈H

{
f(y) +

1
2rn

‖xn − y‖2

}
for all n ∈ N.

Rockafellar [20] studied the proximal point algorithm in the framework of Hilbert
space and he proved the following:

Theorem 1.4. Let H be a Hilbert space, A ⊂ H× H a maximal monotone operator
and Jr = (I + rA)−1 for all r > 0. Let {xn} be a sequence in H defined by
x1 = x ∈ H and

(1.4) xn+1 = Jrn
xn for all n ∈ N,

where {rn} is a sequence in (0,∞) such that lim infn→∞ rn > 0. If A−10 6= ∅, then
the sequence {xn} converges weakly to an element of A−10.

Gulär [4] constructed a counterexample showing that the sequence generated
by (1.4) does not converge strongly, in general. This brings us a natural question
how to modify the proximal point algorithm so that strongly convergent sequence
is guaranteed. Recently, Benavides, Acedo and Xu [2], Kamimura and Takahashi
[8], Kim and Xu [9], Mainge [13], Nakajo [17] and Solodov and Svaiter [21] modi-
fied proximal point algorithm to generate strongly convergent sequences. Now our
concern is the following:
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Question 1.5. Is it possible to modify the proximal point algorithm by noncontrac-
tion viscosity method so that it can generate a strongly convergent sequence?

It is our purpose in this paper to give affirmative answers of Questions 1.3 and 1.5.
In Section 2, we will recall the useful definitions and lemmas. Section 3 is devoted
to deal with the problem of existence of common element of D and ΩD(I − f)
when f is a weakly contraction. Section 4 is focused on existence of solutions of
variational inequalities V ID(C, I − f), under the hypothesis of nonexpansiveness
or pseudocontractivity of the mapping f . The results of this section are of interest
in their own right in the constructive fixed point theory. Section 5 focuses on
iterative algorithms for finding solutions of variational inequalities V ID(C, I − f)
when f is a weakly contraction or nonexpansive mapping. Using the established
results, we consider the problem of finding a common fixed point of finitely many
nonexpansive mappings and the problem of finding a common zero of finitely many
accretive operators in Section 6.

2. Preliminaries

Let C be a nonempty subset of a Banach space X and T : C → C a mapping.
T is called a Lipschitzian mapping if there exists a constant L > 0 such that
‖Tx − Ty‖ ≤ L‖x − y‖ for all x, y ∈ C and L is called Lipschitz constant of T .
A Lipschitzian mapping with Lipschitz constant L is said to be a contraction if
L ∈ [0, 1) and a nonexpansive if L = 1. T is called pseudocontractive if there exists
j(x− y) ∈ J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2 for all x, y ∈ C,

where J : X → 2X∗
is the normalized duality mapping which is defined by

J(u) = {j ∈ X∗ : 〈u, j〉 = ‖u‖2, ‖j‖. = ‖u‖}.

An operator T with domain D(T ) and range R(T ) in a Banach space X is said
to be a weakly contraction if

‖Tx− Ty‖ ≤ ‖x− y‖ − ψ(‖x− y‖) for all x, y ∈ C,

where ψ : [0,∞) → [0,∞) is a continuous and nondecreasing function such that
ψ(0) = 0, ψ(t) > 0 for t > 0 and limt→∞ ψ(t) = ∞.

Remark 2.1. (1) If ψ(t) = kt for all t ≥ 0, where k ∈ (0, 1), then T is a contraction
with Lipschitz constant 1− k.

(2) If domain D(T ) of T is bounded, then the hypothesis limt→∞ ψ(t) = ∞ is
not necessary.

The concept of weakly contraction mappings was introduced by Alber and Guerre-
Delabriere [1] in Hilbert space in 1997. They proved that every weakly contraction
mapping has a unique fixed point in a Hilbert space. In 2001, Rhoades [19] proved
the following very interesting fixed point theorem which is one of generalizations
of weakly contraction principle of Alber and Guerre-Delabriere [1] in metric space
setting.

Theorem 2.2. (Theorem 1, Rhoades [19]) Let (X, d) be a complete metric space
and f : X → X a weakly contraction mapping. Then f has a unique fixed point.



SOLVING VARIATIONAL INEQUALITIES INVOLVING NONEXPANSIVE TYPE MAPPINGS 5

Theorem 2.3. (Theorem 2, Rhoades [19]) Let C a nonempty closed convex subset
of a Banach space X and f : C → C a weakly contraction mapping with the function
ψ. Then the sequence {xn} degenerated by the algorithm:

xn+1 = fxn for all ∈ N,
converges strongly to p, with the following error estimate:

‖xn − p‖ ≤ Φ−1(Φ(‖x1 − p‖))− (n− 1),

where Φ is defined by antiderivative

Φ(t) =
∫

dt

ψ(t)
, Φ(0) = 0,

and Φ−1 is the inverse of Φ.

Recall that an operator A with domain D(A) and range R(A) in a Banach space
X is said to be accretive if, for each xi ∈ D(A) and yi ∈ Axi (i = 1, 2), there is
j ∈ J(x1−x2) such that 〈y1−y2, j〉 ≥ 0, where J is the duality mapping from X to
the dual space X∗. An accretive operator A is said to satisfy the range condition
if D(A) ⊂ R(1 + λA) for all λ > 0. If A is accretive, then we can define, for
each λ > 0, a nonexpansive single-valued mapping Jλ : R(1 + λA) → D(A) by
Jλ = (I + λA)−1. It is called the resolvent of A. It is well known that for an
accretive operator A which satisfies the range condition , A−1(0) = F (Jλ) for all
λ > 0. We also define the Yosida approximation Ar by Ar = (I − Jr)/r. We know
that Arx ∈ AJrx for all x ∈ R(I + rA) and ‖Arx‖ ≤ |Ax| = inf{‖y‖ : y ∈ Ax}
for all x ∈ D(A) ∩R(I + rA). An accretive operator A is said to be m-accretive if
R(I + rA) = X for all r > 0.

A continuous mapping T with domain D(T ) and range R(T ) in a Banach space
X is said to be demicompact at 0 if for any bounded sequence {yn} in D(T ) such
that yn − Tyn → 0 as n → ∞, there exists a subsequence {ynk

} of {yn} and
y ∈ D(T ) such that ynk

→ y as k →∞.

A closed convex subset C of a Banach space X is said to have normal structure
if for each closed convex bounded subset D of C which contains at least two points,
there exists an element x of D which is not a diametral point of D, i.e.,

sup{‖x− y‖ : y ∈ D} < diam(D),

where diam(D) is the diameter of D.

The following theorem related to the existence of fixed points of nonexpansive
mappings was proved in Kirk [11].

Theorem 2.4. (Kirk’s fixed point theorem [11]). Let X be a reflexive Banach space
and let C be a nonempty closed convex bounded subset of X which has normal
structure. Let T be a nonexpansive mapping from C into itself. Then F (T ) is
nonempty.

Recall that a Banach space X is said to be smooth provided the limit

lim
t→0+

‖x+ ty‖ − ‖x‖
t

exists for each x and y in S = {x ∈ X : ‖x‖ = 1}. In this case, the norm of X is
said to be Gâteaux differentiable. It is said to be uniformly Gâteaux differentiable
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if for each y ∈ S, this limit is attained uniformly for x ∈ S. It is well known that X
is smooth if and only if any duality mapping on X is single-valued. Also if X has a
uniformly Gâteaux differentiable norm, then the duality mapping is norm-to-weak∗

uniformly continuous on bounded sets. It is also well known that every uniformly
smooth space (e.g., Lp space, 1 < p < ∞) has uniformly Gâteaux differentiable
norm (see e.g., [3]).

Let C be a convex subset of a Banach space X, D a nonempty subset of C, and
P a retraction from C onto D, that is, Px = x for each x ∈ D. A retraction P
is said to be sunny if P (Px + t(x − Px)) = Px for each x ∈ C and t ≥ 0 with
Px+ t(x−Px) ∈ C. If the sunny retraction P is also nonexpansive, then D is said
to be a sunny nonexpansive retract of C. The sunny nonexpansive retraction QD

from C onto D is unique if X is smooth. The following lemmas will be needed in
the sequel.

Lemma 2.5. (Lemma 13.1, Goebel and Reich [5]) Let C be a convex subset of a
smooth Banach space X, D a nonempty subset of C and QD a retraction from C
onto D. Then the following are equivalent:

(a) QD is a sunny and nonexpansive.
(b) 〈x−QDx, J(z −QDx)〉 ≤ 0 for all x ∈ C, z ∈ D.
(c) 〈x− y, J(QDx−QDy)〉 ≥ ‖QDx−QDy‖2 for all x, y ∈ C.

Lemma 2.6. (Cioranescu [3], p.85) Let C be a nonempty closed convex subset of
a reflexive strictly convex Banach space X. Then there exists a unique point x ∈ C
such that ‖x‖ = inf{‖z‖ : z ∈ C}.

Lemma 2.7. (Proposition 5.3, Goebel and Reich [5]) Let C be a nonempty closed
convex subset of a strictly convex Banach space X and T : C → C a nonexpansive
mapping with F (T ) 6= ∅. Then F (T ) is closed and convex.

Lemma 2.8. Let C be a nonempty closed convex subset of a reflexive strictly convex
Banach space X and T : C → C a nonexpansive mapping with F (T ) 6= ∅. Then
there exists a unique point v ∈ F (T ) such that ‖v‖ = inf{‖z‖ : z ∈ F (T )}.

Proof. It follows from Lemmas 2.6 and 2.7. �

Lemma 2.9. (Alber and Guerre-Delabriere [1]) Let {αn} and {βn} be two sequences
of nonnegative real numbers such that limn→∞

βn

αn
= 0 and

∑∞
n=1 αn = ∞. Let

{λn} be a sequence of nonnegative real numbers satisfying the recursive inequality:

λn+1 ≤ λn − αnφ(λn) + βn for all n ∈ N,

where φ : [0,∞) → [0,∞) is a continuous and nondecreasing function such that
φ(0) = 0 and φ(t) > 0 for t > 0. Then {λn} converges to zero.

Lemma 2.10. (Lemma 1, Ha and Jung [6]) Let X be a Banach space with a
uniformly Gâteaux differentiable norm, C a nonempty closed convex subset of X
and {xn} a bounded sequence in X. Let LIM be a Banach limit and y ∈ C. Then

LIMn||xn − y||2 = min
z∈C

LIMn||xn − z||2

if and only if
LIMn〈x− y, J(xn − y)〉 ≤ 0 for all x ∈ C.
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Lemma 2.11. Let X be a reflexive Banach space with a uniformly Gâteaux dif-
ferentiable norm, C a nonempty closed convex subset of X and T : C → C a
nonexpansive mapping. Let LIM be a Banach limit and {zn} a bounded sequence
in C such that zn − Tzn → 0 as n→∞. Let

M := {y ∈ C : LIMn||zn − y||2 = inf
x∈C

LIMn||zn − x||2}.

Suppose that every closed convex bounded subset of C has fixed point property for
nonexpansive self-mappings. Then we have the following:

(a) There exists a point u in M such that u = Tu.
(b) If f : C → C is a weakly contraction mapping with the function ψ and

〈zn − fzn, J(zn − u)〉 ≤ 0 for all n ∈ N, then there exists a subsequence {zni
}

of {zn} such that {zni
} converges strongly to u.

Proof. (a) Define the function ϕ : C → R by ϕ(x) := LIMn‖zn − x‖2, x ∈ C. Since
X is reflexive, ϕ(x) → ∞ as ‖x‖ → ∞, and ϕ is continuous convex function, we
have that the set

M := {y ∈ C : ϕ(y) = inf
x∈C

ϕ(x)},(2.1)

which is nonempty closed convex and bounded. Furthermore, M is invariant under
T . In fact, for each y ∈M , we have

ϕ(Ty) = LIMn‖zn − Ty‖2

≤ LIMn‖Tzn − Ty‖2

≤ LIMn‖zn − y‖2 = ϕ(y).

So, by the hypothesis, there exists a fixed point u of T in M .

(b) By Lemma 2.10, we have

LIMn〈z, J(zn − u)〉 ≤ 0 for all z ∈ C.

In particular,

LIMn〈fu− u, J(zn − u)〉 ≤ 0.(2.2)

Since f is a weakly contraction, we have

‖zn − u‖2 = 〈zn − fzn, J(zn − u)〉+ 〈fzn − fu, J(zn − u)〉+ 〈fu− u, J(zn − u)〉
≤ 〈zn − fzn, J(zn − u)〉+ ‖fzn − fu‖ ‖zn − u‖+ 〈fu− u, J(zn − u)〉
≤ 〈zn − fzn, J(zn − u)〉+ [‖zn − u‖ − ψ(‖zn − u‖)]‖zn − u‖

+〈fu− u, J(zn − u)〉.

Since 〈zn − fzn, J(zn − u)〉 ≤ 0 for all n ∈ N, it follows that

ψ(‖zn − u‖)‖zn − u‖ ≤ 〈zn − fzn, J(zn − u)〉+ 〈fu− u, J(zn − u)〉
≤ 〈fu− u, J(zn − u)〉.

From (2.2), we obtain

LIMnψ(‖zn − u‖)‖zn − u‖ ≤ 0.

Therefore, there exists a subsequence {zni
} of {zn} such that zni

→ u. �
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Lemma 2.12. Let X be a Banach space with a uniformly Gâteaux differentiable
norm, C a nonempty closed convex subset of X, f : C → C a continuous mapping,
T : C → C a nonexpansive mapping and {xn} a bounded sequence in C such that
limn→∞ ‖xn − Txn‖ = 0. Suppose {zt} is a path in C defined by zt = tfzt + (1−
t)Tzt, t ∈ (0, 1) such that zt → z as t→ 0+. Then

lim sup
n→∞

〈fz − z, J(xn − z)〉 ≤ 0.

Proof. Since
zt − xn = t(fzt − xn) + (1− t)(Tzt − xn),

we see that

‖zt − xn‖2 = t〈fzt − xn, J(zt − xn)〉+ (1− t)〈Tzt − xn, J(zt − xn)〉
≤ t[〈fzt − zt, J(zt − xn)〉+ ‖zt − xn‖2]

+(1− t)[〈Tzt − Txn, J(zt − xn)〉+ ‖xn − Txn‖ ‖zt − xn‖]
≤ t[〈fzt − zt, J(zt − xn)〉+ ‖zt − xn‖2]

+(1− t)[‖zt − xn‖2 + ‖xn − Txn‖ ‖zt − xn‖].

By boundedness of {xn} and {zt}, we have

〈fzt − zt, J(xn − zt)〉 ≤ 1
t
‖xn − Txn‖ ‖zt − xn‖

≤ 1
t
‖xn − Txn‖K1

for some K1 > 0. Since xn − Txn → 0 as n→∞, it infers that

lim sup
n→∞

〈fzt − zt, J(xn − zt)〉 ≤ 0.(2.3)

Further, since zt → z as t → 0+, the set {zt − xn} is bounded and the duality
mapping J is norm-to-weak∗ uniformly continuous on bounded subsets of X, it
follows that

| 〈fz − z, J(xn − z)〉 − 〈fzt − zt, J(xn − zt)〉 |
= | 〈fz − z, J(xn − z)− J(xn − zt)〉+ 〈fz − z − (fzt − zt), J(xn − zt)〉 |
≤ | 〈fz − z, J(xn − z)− J(xn − zt)〉 |

+‖fz − z − (fzt − zt)‖ ‖xn − zt‖ → 0 as t→ 0+.

Let ε > 0. Then there exists δ > 0 such that

〈fz − z, J(xn − z)〉 < 〈fzt − zt, J(xn − zt)〉+ ε for all n ∈ N and t ∈ (0, δ).

Using (2.3), we get

lim sup
n→∞

〈fz − z, J(xn − z)〉 ≤ lim sup
n→∞

〈fzt − zt, J(xn − zt)〉+ ε

≤ ε.

Since ε is arbitrary, we obtain that

lim sup
n→∞

〈fz − z, J(xn − z)〉 ≤ 0.

�



SOLVING VARIATIONAL INEQUALITIES INVOLVING NONEXPANSIVE TYPE MAPPINGS 9

3. Variational inequalities involving weakly contraction mappings

We begin with existence of solutions of V ID(C, I − f) in a reflexive smooth
Banach space when f is a weakly contraction and D = A−10.

Theorem 3.1. Let X be a reflexive Banach space with a uniformly Gâteaux dif-
ferentiable norm, C a nonempty closed convex subset of X, f : C → C a weakly
contraction mapping with the function ψ and A ⊂ X × X an accretive operator
with resolvent Jt for t > 0 such that

D(A) ⊂ C ⊂
⋂
t>0

R(I + tA)(3.1)

and

E = {x ∈ C : x = Jρfx for some ρ > 0} and f(E) are bounded.(3.2)

Suppose that every closed convex bounded subset of C has fixed point property for
nonexpansive self-mappings. Then we have the following:

(a) for each t > 0, Jtf has a unique fixed point zt ∈ C;
(b) {zt} converges strongly to u ∈ A−10 as t→∞;
(c) u is the unique solution of the variational inequality:

find x̃ ∈ A−10 such that 〈(I − f)x̃, J(x̃− v)〉 ≤ 0 for all v ∈ A−10.

Proof. (a) For each t > 0, the mapping T f
t : C → C defined by

T f
t x = Jtfx, x ∈ C

is a weakly contraction mapping with the function ψ. Indeed, for x, y ∈ C, we have

‖T f
t x− T f

t y‖ = ‖Jtfx− Jtfy‖ ≤ ‖fx− fy‖ ≤ ‖x− y‖ − ψ(‖x− y‖).

By Theorem 2.2, there exists a unique fixed point zt ∈ C of T f
t and hence

zt = Jtfzt.(3.3)

(b) By (3.2), we see that {zt} is bounded. Since f(E) is bounded, it follows that
{‖zt − fzt‖} is bounded. Hence, for r > 0, we have

‖zt − Jrzt‖ = r‖Arzt‖
≤ r|Azt| = r|AJtfzt|

≤ r‖Atfzt‖ =
r

t
‖fzt − Jtfzt‖ =

r

t
‖zt − fzt‖

≤ r

t
K2(3.4)

for some K2 > 0. We may assume that {tn} is a sequence in (0,∞) such that
lim

n→∞
tn = ∞ and {ztn

} is bounded. Set zn := ztn
. For r > 0, we see from (3.4)

that

‖zn − Jrzn‖ ≤
r

tn
K2 → 0 as n→∞.

By Lemma 2.11 (a), there exists an element u ∈M ∩F (Jr). Thus, A−10 6= ∅. Since
A is accretive, we obtain from (3.3) that

1
t
(fzt − zt) =

1
t
(I − Jt)fzt = Atfzt ∈ AJtfzt = Azt,(3.5)



10 N. C. WONG, D. R. SAHU AND J. C. YAO

which implies that
1
t
〈fzt − Jtfzt, J(zt − u)〉 = 〈Atfzt, J(zt − u)〉 ≥ 0.

Thus, we have

〈zt − fzt, J(zt − u)〉 ≤ 0.(3.6)

It is easy to see from Lemma 2.11 (b) that there exists a subsequence {zni
} of {zn}

such that {zni
} converges strongly to u.

In order to prove that {zn} converges strongly to an element ofA−10, assume that
there is another subsequence {znj

} of {zn} such that znj
→ ũ. Since zn−Jrzn → 0,

it follows from the continuity of T and the fact zni
→ z that ũ ∈ F (Jr). Using

(3.6), we have that

〈zt − fzt, J(zt − v)〉 ≤ 0 for all v ∈ F (Jr).(3.7)

By norm to weak* uniform continuity of J , we obtain

〈u− fu, J(u− ũ)〉 ≤ 0

and
〈ũ− fũ, J(ũ− u)〉 ≤ 0.

Adding these two inequalities yields that

〈u− ũ+ fũ− fu, J(u− ũ)〉 ≤ 0,

from which it follows that

‖u− ũ‖2 ≤ ‖fu− fũ‖ ‖u− ũ‖
≤ [‖u− ũ‖ − ψ(‖u− ũ‖)]‖u− ũ‖.

Thus, we see that u = ũ and hence {zn} converges strongly to u.
We finally prove that the path {zt} converges strongly. Towards this end, we

assume that {tn′} is another subsequence in (0,∞) such that ztn′ → u′ as tn′ →∞.
By (3.4), we obtain u′ ∈ F (Jr). From (3.7), we have that

〈u− fu, J(u− u′)〉 ≤ 0 and 〈u′ − fu′, J(u′ − u)〉 ≤ 0.

We must have u = u′. Therefore, {zt} converges strongly to u ∈ A−10.

(c) Since zt → u ∈ A−10 as t→∞, it follows from (3.7) that

〈u− fu, J(u− v)〉 ≤ 0 for all v ∈ A−10.

�

Remark 3.2. Similar results can be found in Reich [18], Takahashi and Ueda [23]
and Xu [25] when f is constant.

Remark 3.3. If A−10 is nonempty, then the path {zt} defined by (3.3) is bounded.
Indeed, for v ∈ A−10 and t > 0, we have

‖zt − v‖ ≤ ‖Jtfzt − Jtv‖ ≤ ‖fzt − v‖
≤ ‖fzt − fv‖+ ‖fv − v‖
≤ ‖zt − v‖ − ψ(‖zt − v‖) + ‖fv − v‖,

which implies that

ψ(‖zt − v‖) ≤ ‖fv − v‖.(3.8)
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Suppose {zt − v} is not bounded. Then there exists a sequence {tk} in (0,∞) with
tk →∞ as k →∞ such that

‖ztk
− v‖ > k for all k ∈ N.

Since ψ is nondecreasing and limt→∞ ψ(t) = ∞, it follows from (3.8) that

ψ(k) < ψ(‖ztk
− v‖) ≤ ‖fv − v‖,

a contradiction.

Corollary 3.4. Let X be a reflexive Banach space with a uniformly Gâteaux dif-
ferentiable norm, C a nonempty closed convex subset of X and A ⊂ X × X an
accretive operator such that A−10 6= ∅ and D(A) ⊂ C ⊂

⋂
t>0R(I + tA). Suppose

that every closed convex bounded subset of C has fixed point property for nonexpan-
sive self-mappings. Then we have the following:

(a) A−10 is a sunny nonexpansive retract of C,
(b) for each x ∈ C, {Jtx} converges strongly to QA−10x as t→∞, where QA−10

is the sunny nonexpansive retraction from C onto A−10.

Proof. (a) In this case the mapping f : C → C defined by fz = x0 for all z ∈ C is a
weakly contraction. It is easy to see from Theorem 3.1 that {zt = Jtx0} converges
strongly to u ∈ A−10 as t→∞.

Now, let x ∈ C. Then limt→∞ Jtx ∈ A−10 and there exists a mapping Q from C
onto A−10 defined by limt→∞ Jtx = Qx since x is an arbitrary element of C. From
(3.7), we have

〈zt − x, J(zt − v)〉 ≤ 0 for all v ∈ A−10,

it follows that

〈Qx− x, J(Qx− v)〉 ≤ 0 for all v ∈ A−10.

Therefore, Q is the sunny nonexpansive retraction by Proposition 2.5.
(b) It follows from part (a). �

We now replace the fixed point property assumption, mentioned in Theorem 3.1
by imposing certain conditions on the space X or on the set C.

Theorem 3.5. Let X be a reflexive Banach space with a uniformly Gâteaux dif-
ferentiable norm, C a nonempty closed convex subset of X, f : C → C a weakly
contraction mapping with the function ψ and A ⊂ X × X an accretive operator
with A−10 6= ∅ such that D(A) ⊂ C ⊂

⋂
t>0R(I + tA). Suppose that X is strictly

convex or C has normal structure. Then we have the following:
(a) for each t > 0, Jtf has a unique fixed point zt ∈ C;
(b) {zt} converges strongly to u ∈ A−10 as t→∞;
(c) u is the unique solution of the variational inequality:

find x̃ ∈ A−10 such that 〈(I − f)x̃, J(x̃− v)〉 ≤ 0 for all v ∈ A−10.

Proof. Note that Remark 3.3 implies that {zt} is bounded. Observe that

‖fzt − v‖ ≤ ‖fzt − fv‖+ ‖fv − v‖
≤ ‖zt − v‖ − ψ(‖zt − v‖) + ‖fv − v‖
≤ ‖zt − v‖+ ‖fv − v‖,
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which implies by boundedness of {zt} that {fzt} is bounded.
To be able to use the argument of the proof of Theorem 3.1, we just need to

show that the set M defined by (2.1) has a fixed point of Jr. Suppose that X is
strictly convex. Since A−10 6= ∅, let v ∈ F (Jr). Then the set M0 defined by

M0 = {u ∈M : ‖u− v‖ = inf
x∈M

‖x− v‖}

is a singleton since X is strictly convex. Let M0 = {u0} for some u0 ∈M . Observe
that

‖Jru0 − v‖ = ‖Jru0 − Jrv‖ ≤ ‖u0 − v‖ = inf
x∈M

‖x− v‖.

Therefore, Jru0 = u0.
If C has normal structure, then the Kirk’s fixed point theorem implies that Jr

has a fixed point in M . We now follow the proof of Theorem 3.1. �

Next, we derive a result for existence of solutions of V IF (T )(C, I−f) in a reflexive
Banach space when D is a set of fixed points of nonexpansive self-mapping T on C
and f : C → C is a weakly contraction.

Theorem 3.6. Let X be a reflexive Banach space with a uniformly Gâteaux dif-
ferentiable norm, C a nonempty closed convex subset of X, f : C → C a weakly
contraction mapping with the function ψ and T : C → C a nonexpansive mapping
such that F (T ) 6= ∅. Suppose that every closed convex bounded subset of C has fixed
point property for nonexpansive self-mappings. Then we have the following:

(a) For each t ∈ (0, 1), the mapping defined by T f
t : C → C by

T f
t x = tfx+ (1− t)Tx, x ∈ C

has a unique fixed point zt ∈ C such that zt → u ∈ F (T ) as t→ 0+,

(b) u is the unique solution of the variational inequality:

find x̃ ∈ F (T ) such that 〈(I − f)x̃, J(x̃− v)〉 ≤ 0 for all v ∈ F (T ).

Proof. (a) It is obvious that there exists a unique fixed point zt of T f
t such that

(3.9) zt = tfzt + (1− t)Tzt.

First, we show that {zt} is bounded. Let v ∈ F (T ). Observe that

‖zt − v‖ ≤ t‖fzt − v‖+ (1− t)‖Tzt − v‖
≤ t(‖fzt − fv‖+ ‖fv − v‖) + (1− t)‖zt − v‖
≤ t(‖zt − v‖ − ψ(‖zt − v‖) + ‖fv − v‖) + (1− t)‖zt − v‖,

which implies that

ψ(‖zt − v‖) ≤ ‖fv − v‖.
Hence {zt} satisfies (3.8). Using the argument of Remark 3.3, we obtain that {zt}
is bounded.

It is well known from Theorem 4.6.4 of Takahashi [22] that if T is nonexpansive,
then A = I − T is accretive and D(A) = C ⊂

⋂
λ>0R(I + λA). Hence A satisfies

(3.1). Also from (3.9) we obtain that zt + 1−t
t (zt − Tzt) = fzt, which implies that

Jµ(t)fzt = zt, where µ(t) = 1−t
t . Therefore, zt → z ∈ A−10 = F (T ) by Theorem

3.5.
(b) It follows from Theorem 3.5. �
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Theorem 3.7. Let X be a reflexive Banach space with a uniformly Gâteaux dif-
ferentiable norm, C a nonempty closed convex subset of X and T : C → C a non-
expansive mapping such that F (T ) 6= ∅. Suppose that every closed convex bounded
subset of C has fixed point property for nonexpansive self-mappings. Then F (T ) is
the sunny nonexpansive retract of C.

Corollary 3.8. Let X be a reflexive Banach space with a uniformly Gâteaux dif-
ferentiable norm, C a nonempty closed convex subset of X, f : C → C a weakly
contraction mapping with the function ψ and T : C → C a nonexpansive mapping
such that F (T ) 6= ∅. For each t ∈ (0, 1), define T f

t : C → C by

T f
t x = tfx+ (1− t)Tx, x ∈ C.

Suppose that X is strictly convex or C has normal structure. Then we have the
following:

(a) T f
t has a unique fixed point zt ∈ C,

(b) {zt} converges strongly to u ∈ F (T ) as t→ 0+,
(c) u is the unique solution of the variational inequality:

find x̃ ∈ F (T ) such that 〈(I − f)x̃, J(x̃− v)〉 ≤ 0 for all v ∈ F (T ).

Remark 3.9. Corollary 3.8 improves a number of results concerning viscosity
approximation methods, particularly the results of Moudafi [16] and Xu [24] in the
following way:

(1) in variational inequality V IF (T )(C, I − f), the mapping f is not necessarily
a contraction,

(2) the underlying space X is not necessarily Hilbert or uniformly smooth.

4. Variational inequalities involving nonexpansive mappings

In this section we give sufficient conditions on X, C and T which provides affir-
mative answer of Question 1.3.

Theorem 4.1. Let X be a reflexive strictly convex smooth Banach space. Let C
be a nonempty closed convex bounded subset of X with normal structure and let
f, T : C → C be two nonexpansive mappings. If T is demicompact at zero, then we
have the following:

(a) there exists a sequence {zn} in C such that

zn = tnfzn + (1− tn)Tzn for all n ∈ N,(4.1)

where {tn} is a sequence in (0,1) with tn → 0,
(b) the sequence {zn} in C generated by (4.1) converges strongly to an element

of F (T ) ∩ ΩF (T )(I − f).

Proof. (a) For each t ∈ (0, 1), the mapping T f
t : C → C defined by

T f
t x = tfx+ (1− t)Tx, x ∈ C

is nonexpansive. Indeed, for x, y ∈ C, we have

‖T f
t x− T f

t y‖ ≤ t‖fx− fy‖+ (1− t)‖Tx− Ty‖ ≤ ‖x− y‖.
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By Kirk’s theorem, F (T f
t ) 6= ∅ and hence Lemma 2.8 implies that there exists the

unique minimum norm solution zt of equation x = T f
t x, i.e.,

zt = tfzt + (1− t)Tzt.(4.2)

Observe that

‖zt − Tzt‖ ≤ ‖fzt − Tzt‖ ≤ t diam(C) → 0 as t→ 0+,

where diam(C) is the diameter of C. Since T is demicompact at zero, we may
assume that ztn

→ z ∈ C as n → ∞, where {tn} is a sequence in (0, 1) such that
lim

n→∞
tn = 0. Set zn := ztn

. Then from (4.2), there exists a sequence in C satisfying

(4.1).

(b) Since zn − Tzn → 0 and zn → z, it follows that z ∈ F (T ). So, it remains to
show that z is a solution of the variational inequality:

find x ∈ F (T ) such that 〈(I − f)x, J(x− v)〉 ≤ 0 for all v ∈ F (T ).

Let v ∈ F (T ). Observe that

〈zt − Tzt, J(zt − v)〉 = 〈zt − v + Tv − Tzt, j(zt − v)〉
= ‖zt − v‖2 − 〈Tzt − Tz, J(zt − v)〉
≥ ‖zt − v‖2 − ‖Tzt − Tv‖ ‖zt − v‖
≥ 0.(4.3)

Hence from (4.2), we have

〈zt − fzt, J(zt − v)〉 = (1− t)〈Tzt − fzt, J(zt − v)〉
≤ (1− t)〈Tzt − zt + zt − fzt, J(zt − v)〉,

which implies form (4.3) that

〈zt − fzt, J(zt − v)〉 ≤ 0.

and hence, we get

(4.4) 〈zn − fzn, J(zn − v)〉 ≤ 0 for all n ∈ N.
Since J is norm-to-weak∗ continuous, it follows from zn → z that J(zn − v) ⇀∗

J(z − v). Observe that

| 〈zn − fzn, J(zn − v)〉 − 〈z − fz, J(z − v)〉 |
= | 〈zn − fzn − (z − fz), J(zn − v)〉+ 〈z − fz, J(zn − v)− J(z − v)〉 |
≤ ‖zn − fzn − (z − fz)‖ ‖zn − v‖+ | 〈z −Az, J(zn − v)− J(z − v)〉 |→ 0,

it follows from (4.4) that

〈z − fz, J(z − v)〉 = lim
n→∞

〈zn − fzn, J(zn − v)〉 ≤ 0.

�

It is well known that a closed convex subset of a uniformly convex Banach space
has normal structure and a compact convex subset of a Banach space has normal
structure.

Theorem 4.2. Let X be a smooth uniformly convex Banach space. Let C be a
nonempty closed convex bounded subset of X and let f, T : C → C be two nonex-
pansive mappings. If T is demicompact at zero, then F (T ) ∩ ΩF (T )(I − f) 6= ∅.
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Corollary 4.3. Let X be a reflexive strictly convex smooth Banach space. Let C be
a nonempty compact convex subset of X and let f, T : C → C be two nonexpansive
mappings. Then F (T ) ∩ ΩF (T )(I − f) 6= ∅.

Next, we consider the variational inequality V IF (T )(C, I−f) for pseudocontrac-
tive mappings f : C → C.

Theorem 4.4. Let X be a reflexive strictly convex smooth Banach space. Let C be
a nonempty closed convex bounded subset of X with normal structure, f : C → C
a continuous pseudocontractive mapping and T : C → C a nonexpansive mapping.
If T is demicompact at zero, then there exists a sequence {zn} in C such that

zn = tnfzn + (1− tn)Tzn for all n ∈ N,(4.5)

where {tn} is a sequence in (0,1) with tn → 0, and the sequence {zn} in C generated
by (4.5) converges strongly to an element of F (T ) ∩ ΩF (T )(I − f).

Proof. For each t ∈ (0, 1), the mapping T f
t : C → C defined by

T f
t x = tfx+ (1− t)Tx, x ∈ C

is pseudocontractive. Indeed, for x, y ∈ C, we have

〈T f
t x− T f

t y, J(x− y)〉 = t〈fx− fy, J(x− y)〉+ (1− t)〈Tx− Ty, J(x− y)〉
≤ ‖x− y‖2.

It follows from Theorem 6 of Martin [14] that gf
t = (2I−T f

t )−1 is a nonexpansive
mapping from C into itself with F (gf

t ) = F (T f
t ). By Kirk’s theorem, F (gf

t ) 6= ∅
and hence Lemma 2.8 implies that there exists the unique minimum norm solution
zt of x = gf

t x, i.e.,

zt = tfzt + (1− t)Tzt.

Similar to the argument of proof of Theorem 4.1, we have a sequence {zn} in C
such that

zn = tnfzn + (1− tn)Tzn for all n ∈ N,

where {tn} is a sequence in (0,1) with tn → 0, and the sequence {zn} in C converges
strongly to an element of F (T ) ∩ ΩF (T )(I − f). �

It is well known that if C is a closed convex subset of a Hilbert space H, then
a sunny nonexpansive retraction is coincident with the metric projection mapping
PC from H onto C. This is not true in general, since outside Hilbert space, the
metric projection mappings, although sunny, are no longer nonexpansive. From
Theorem 3.8 we can derive the following result for existence of sunny nonexpansive
retractions (from C onto F (T )) in Banach spaces.

Theorem 4.5. Let X be a reflexive Banach space whose norm is uniformly Gâteaux
differentiable, C a nonempty closed convex subset of X and T : C → C a nonex-
pansive mapping with F (T ) 6= ∅. Suppose that X is strictly convex or C has normal
structure. Then F (T ) is a sunny nonexpansive retract of C.

We now turn our attention to deal with the problem of existence of solutions of
V ID(C, I − f) by sunny nonexpansive retractions.
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Let C be a convex subset of a smooth Banach space X and D a nonempty subset
of C. Let QD be the sunny nonexpansive retraction from C onto D. Let x ∈ C
and x0 ∈ D. Then from Lemma 2.5, we have

x0 = QDx if and only if 〈x0 − x, J(x0 − v)〉 ≤ 0 for all v ∈ D.(4.6)

Following relation (4.6), we can show that the variational inequality V ID(C, I −
f) is equivalent to the fixed point problem.

Proposition 4.6. Let C be a convex subset of a smooth Banach space X and D
a nonempty subset of C. Let f : C → C be a mapping and let QD be the sunny
nonexpansive retraction from C onto D. Then we have the following:

(a) ΩD(I − f) = F (QDf).
(b) If f : C → C is a Lipschitzian mapping with Lipschitz constant L, then QDf

is also a Lipschitzian mapping with the same Lipschitz constant.

Proof. (a) For any z ∈ C, we obtain from (4.6) that

z = QDfz if and only if 〈z − fz, J(z − v)〉 ≤ 0 for all v ∈ D.
(b) For x, y ∈ C, we have

‖QDfx−QDfy‖ ≤ ‖fx− fy‖ ≤ L‖x− y‖.
�

The following result shows that the Kirk’s fixed point theorem plays an impor-
tant role in existence of common element of D and set of solutions of variational
inequality V ID(C, I − f) when f : C → C is a nonexpansive mapping.

Theorem 4.7. Let X be a reflexive smooth Banach space, C a nonempty closed
convex bounded subset of X with normal structure and D a nonempty subset of C
which is a sunny nonexpansive retract of C. Let f : C → C be a nonexpansive
mapping and let QD be the sunny nonexpansive retraction from C onto D. Then
variational inequality V I(C, I − f) has a solution in D.

Proof. Since QDf is a nonexpansive mapping from C into D ⊆ C with ΩD(I −
f) = F (QDf). It follows from Kirk’s fixed point theorem that F (QDf) 6= ∅. Let
z ∈ F (QDf). Then z = QDfz ∈ D. �

Invoking Theorem 4.5, we obtain the following existence theorem:

Theorem 4.8. Let X be a reflexive Banach space whose norm is uniformly Gâteaux
differentiable and C a nonempty closed convex bounded subset of X with normal
structure. Let f, T : C → C be two nonexpansive mappings. Then variational
inequality V I(C, I − f) has a solution in F (T ).

Proof. Note that F (T ) 6= ∅ by Theorem 2.4. By Theorem 4.5, there exists a
sunny nonexpansive retraction C onto F (T ). Let QF (T ) be the sunny nonexpansive
retraction C onto F (T ). Then the result follows from Theorem 4.7. �

Theorem 4.9. Let X be a reflexive Banach space whose norm is uniformly Gâteaux
differentiable and C a nonempty closed convex bounded subset of X with normal
structure. Let f : C → C be a nonexpansive mapping and T : C → C a continuous
pseudocontractive mapping. Then variational inequality V IF (T )(C, I − f) has a
solution in F (T ).
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Proof. Since g = (2I−T )−1 is nonexpansive mapping from C into itself with F (g) =
F (T ). Then F (g) 6= ∅ by Theorem 2.4. Let QF (g) be the sunny nonexpansive
retraction from C onto F (g). Then the result follows from Theorem 4.7. �

5. Strong convergence of iterative algorithms

In this section, we apply the results investigated in Sections 3 and 4 for computing
solutions of variational inequalities V IC(I−f) in Banach spaces when f is a weakly
contraction or nonexpansive mapping. In order to prove our main convergence
theorems, we start with a key preliminary result.

Lemma 5.1. Let C be a nonempty closed convex subset of a smooth Banach space
X, f : C → C a weakly contraction mapping with the function ψ and {Tn} a
sequence of nonexpansive self-mappings on C such that

⋂
n∈N F (Tn) 6= ∅. For given

x1 ∈ C, let {xn} be a sequence in C generated by algorithm:

(5.1) xn+1 = αnfxn + (1− αn)Tnxn for all ∈ N,

where {αn} is a sequence in [0,1] such that
∑∞

n=1 αn = ∞. Then we have the
following:

(a) If inf{ψ(‖xn − p‖)/‖xn − p‖ : xn 6= p, n ∈ N} = δ > 0 for p ∈
⋂

n∈N F (Tn),
then {xn} is bounded.

(b) If {xn} is bounded and there exists a point z ∈
⋂

n∈N F (Tn) such that

(5.2) lim sup
n→∞

〈fz − z, J(xn − z)〉 ≤ 0,

then {xn} converges strongly to z.

Proof. (a) Let p ∈
⋂

n∈N F (Tn). From (5.1), we have

‖xn+1 − p‖ = ‖αn(fxn − fp+ fp− p) + (1− αn)(Tnxn − p)‖
≤ αn‖fxn − fp‖+ αn‖fp− p‖+ (1− αn)‖Tnxn − p‖
≤ αn(‖xn − p‖ − ψ(‖xn − p‖)) + αn‖fp− p‖+ (1− αn)‖xn − p‖
= ‖xn − p‖ − αnψ(‖xn − p‖) + αn‖fp− p‖.(5.3)

Since 0 < δ = inf{ψ(‖xn− p‖)/‖xn− p‖ : xn 6= p, n ∈ N}, it follows from (5.3) that

‖xn+1 − p‖ ≤ (1− αnδ)‖xn − p‖+ αn‖fp− p‖
≤ max{‖xn − p‖, ‖fp− p‖/δ}
...
≤ max{‖x1 − p‖, ‖fp− p‖/δ}.

Consequently, {xn} is bounded.
(b) From (5.2), there exists a sequence {γn} in (0,∞) with limn→∞ γn = 0 such

that

(5.4) 〈fz − z, J(xn+1 − z)〉 ≤ γn for all ∈ N.
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From (5.1), we obtain

‖xn+1 − z‖2 = 〈αn(fxn − fz + fz − z) + (1− αn)(Tnxn − z), J(xn+1 − z)〉
≤ ‖(1− αn)(Tnxn − z) + αn(fxn − fz)‖ ‖xn+1 − z‖

+αn〈fz − z, J(xn+1 − z)〉

≤ 1
2
[‖(1− αn)(Tnxn − z) + αn(fxn − fz)‖2 + ‖xn+1 − z‖2] + αnγn

≤ 1
2
[(1− αn)‖xn − z‖+ αn(‖xn − z‖ − ψ(‖xn − z‖))]2

+
1
2
‖xn+1 − z‖2 + αnγn,

which implies that

‖xn+1 − z‖2 ≤ ‖xn − z‖2 − 2αnψ(‖xn − z‖)‖xn − z‖+ α2
n(ψ(‖xn − z‖))2

+2αnγn

≤ ‖xn − z‖2 − 2αnψ(‖xn − z‖)‖xn − z‖+ α2
n(ψ(K3))2 + 2αnγn

for some K3 > 0 since {‖xn− z‖} is bounded. Thus, for λn = ‖xn− z‖2, we obtain
the following recursive inequality:

λn+1 ≤ λn − αnφ(λn) + βn,

where βn = αn(K3 αn + 2γn) and φ(t) = 2
√
t ψ(

√
t). Therefore, {xn} converges

strongly to z by Lemma 2.9. �

Remark 5.2. If f : C → C is a contraction mapping with Lipschitz constant
k ∈ (0, 1), then the assumption inf{ψ(‖xn − p‖)/‖xn − p‖ : xn 6= p, n ∈ N} = δ > 0
for p ∈

⋂
n∈N F (Tn) is satisfied with δ = k. Thus, the sequence {xn} defined by

(5.1) is always bounded for contraction mappings f : C → C.

Theorem 5.3. Let X be a reflexive Banach space with a uniformly Gâteaux dif-
ferentiable norm, C a nonempty closed convex subset of X, f : C → C a weakly
contraction mapping with the function ψ and A ⊂ X × X an accretive operator
with resolvent Jt for t > 0 such that A−10 6= ∅ and D(A) ⊂ C ⊂

⋂
t>0R(I + tA).

Suppose that X is strictly convex or C has normal structure. For given x1 ∈ C, let
{xn} be a sequence in C generated by algorithm:

(5.5) xn+1 = αnfxn + (1− αn)Jtn
xn for all n ∈ N,

where {αn} is a sequence in [0,1] and {tn} is a sequence in (0,∞) such that

lim
n→∞

αn = 0,
∞∑

n=1

αn = ∞ and lim
n→∞

tn = ∞.

Then {xn} converges strongly to the unique solution of the variational inequality:

find x̃ ∈ A−10 such that 〈(I − f)x̃, J(x̃− v)〉 ≤ 0 for all v ∈ A−10

provided that inf{ψ(‖xn − p‖)/‖xn − p‖ : xn 6= p, n ∈ N} = δ > 0 for p ∈ A−10.

Proof. Note that {xn} is bounded by Lemma 5.1(a) and hence both {fxn} and
{Jtn

xn} are bounded. Hence form (5.5), we have

‖xn+1 − Jtn
xn‖ = αn‖fxn − Jtn

xn‖ → 0 as n→∞.
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Observe that

‖Atn
xn‖ =

1
tn
‖xn − Jtn

xn‖ → 0 as n→∞.

By Theorem 3.5 for each t > 0, the mapping T f
t : C → C defined by

T f
t x = Jtfx, x ∈ C

has a unique fixed point zt ∈ C such that {zt} converges strongly to an element
z ∈ A−10 as t → ∞, and z is the unique solution of the variational inequality
V IA−10(C, I − f). From (3.5) we have

1
t
(fzt − zt) = Atfzt ∈ AJtfzt = Azt,

it follows from the fact Atn
xn ∈ AJtn

xn that

0 ≤ 〈Atn
xn −

1
t
(fzt − zt), J(Jtn

xn − zt)〉.

By boundedness of {Jtnxn − zt}, we have

〈fzt − zt, J(Jtn
xn − zt)〉 ≤ t〈Atn

xn, J(Jtn
xn − zt)〉

≤ t‖Atn
xn‖ ‖Jtn

xn − zt‖
≤ t‖Atn

xn‖ K4

for some K4 > 0. Since ‖Atn
xn‖ → 0 as n→∞, we see that

lim sup
n→∞

〈fzt − zt, J(Jtnxn − zt)〉 ≤ 0.(5.6)

Further, since zt → z as t → ∞, the set {zt − xn} is bounded and the duality
mapping J is norm-to-weak∗ uniformly continuous on bounded subsets of X, it
follows that

| 〈fz − z, J(Jtn
xn − z)〉 − 〈fzt − zt, J(Jtn

xn − zt)〉 |
= | 〈fz − z, J(Jtn

xn − z)− J(Jtn
xn − zt)〉

+〈fz − z − (fzt − zt), J(Jtn
xn − zt)〉 |

≤ | 〈fz − z, J(Jtn
xn − z)− J(Jtn

xn − zt)〉 |
+‖fz − z − (fzt − zt)‖ ‖xn − zt‖ → 0 as t→∞.

Let ε > 0. Then there exists t0 > 0 such that

〈fz − z, J(Jtn
xn − z)〉 < 〈fzt − zt, J(Jtn

xn − zt)〉+ ε for all n ∈ N and t ≥ t0.

Using (5.6), we get

lim sup
n→∞

〈fz − z, J(Jtnxn − z)〉 ≤ lim sup
n→∞

〈fzt − zt, J(Jtnxn − zt)〉+ ε

≤ ε.

Since ε is arbitrary, we obtain that

lim sup
n→∞

〈fz − z, J(Jtn
xn − z)〉 ≤ 0.

Since xn+1 − Jtn
xn → 0 as n → ∞ and the duality mapping J is norm-to-weak∗

uniformly continuous on bounded subsets of X, it follows that

lim
n→∞

| 〈fz − z, J(xn+1 − z)〉 − 〈fz − z, J(Jtn
xn − z)〉 |= 0.
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Therefore,
lim sup

n→∞
〈fz − z, J(xn+1 − z)〉 ≤ 0.

So, there exists a sequence {γn} in (0,∞) satisfying (5.4) such that limn→∞ γn = 0.
Therefore, since z ∈ F (Jtn) for all n ∈ N, {xn} converges strongly to z by Lemma
5.1. �

We now give a more general proximal point algorithm for resolvent operators in
a Banach space which provides an affirmative answer of Question 1.5.

Theorem 5.4. Let X be a reflexive Banach space with a uniformly Gâteaux dif-
ferentiable norm, C a nonempty closed convex subset of X, f : C → C a weakly
contraction mapping with the function ψ and A ⊂ X × X an accretive operator
with resolvent Jt for t > 0 such that A−10 6= ∅ and D(A) ⊂ C ⊂

⋂
t>0R(I + tA).

Suppose that X is strictly convex or C has normal structure. For given x1 ∈ C, let
{xn} be a sequence in C generated by algorithm:

xn+1 = αnfxn + (1− αn)Jtnxn for all n ∈ N,
where {αn} is a sequence in [0,1] and {tn} is a sequence in (0,∞) such that

lim
n→∞

αn = 0,
∞∑

n=1

αn = ∞ and lim
n→∞

tn = ∞.

If {xn} is bounded, then it converges strongly to the unique solution of the varia-
tional inequality:

find x̃ ∈ A−10 such that 〈(I − f)x̃, J(x̃− v)〉 ≤ 0 for all v ∈ A−10.

The following result improves and unifies several known results that were ob-
tained using stronger assumptions (see e.g. Theorem 2.5 of Benavides, Acedo and
Xu [2], Theorem 2 of Kim and Xu [9], Theorem 3.1 of Mainge [13], and Theorem
4.2 of Nakajo [17]).

Corollary 5.5. Let X be a reflexive Banach space with uniformly Gâteaux differ-
entiable norm, C a nonempty closed convex subset of X, f : C → C a contraction
mapping with Lipschitz constant k ∈ [0, 1) and A ⊂ X ×X an accretive operator
with resolvent Jt for t > 0 such that A−10 6= ∅ and D(A) ⊂ C ⊂

⋂
t>0R(I + tA).

Suppose that X is strictly convex or C has normal structure. For given x1 ∈ C, let
{xn} be a sequence in C generated by algorithm:

xn+1 = αnfxn + (1− αn)Jtnxn for all n ∈ N,
where {αn} is a sequence in [0,1] and {tn} is a sequence in (0,∞) such that

lim
n→∞

αn = 0,
∞∑

n=1

αn = ∞ and lim
n→∞

tn = ∞.

Then {xn} converges strongly to the unique solution of the variational inequality:

find x̃ ∈ A−10 such that 〈(I − f)x̃, J(x̃− v)〉 ≤ 0 for all v ∈ A−10.

Theorem 5.6. Let X be a reflexive Banach space whose norm is uniformly Gâteaux
differentiable, C a nonempty closed convex subset of X, f : C → C a weakly
contraction mapping with the function ψ and T : C → C a nonexpansive mapping
with F (T ) 6= ∅. Suppose that X is strictly convex or C has normal structure. Let
{αn} be a sequence in [0,1] such that
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lim
n→∞

αn = 0,
∞∑

n=1

αn = ∞ and lim
n→∞

|αn − αn−1|
αn

= 0.

For given x1 ∈ C, let {xn} be a sequence in C generated by algorithm:

(5.7) xn+1 = αnfxn + (1− αn)Txn for all ∈ N.

If {xn} is bounded, then it converges strongly to the unique solution of the varia-
tional inequality:

find x̃ ∈ F (T ) such that 〈(I − f)x̃, J(x̃− v)〉 ≤ 0 for all v ∈ F (T ).

Proof. Boundedness of {xn} implies that both {fxn} and {Txn} are bounded.
Hence form (5.7), we have

‖xn+1 − Txn‖ = αn‖fxn − Txn‖ → 0 as n→∞.

Observe that

‖xn+1 − xn‖ = ‖αnfxn + (1− αn)Txn − (αn−1fxn−1 + (1− αn−1)Txn−1)‖
≤ ‖(1− αn)(Txn − Txn−1) + (αn − αn−1)(fxn−1 − Txn−1)‖

+αn‖fxn − fxn−1‖
≤ (1− αn)‖xn − xn−1‖+ αn(‖xn − xn−1‖ − ψ(‖xn − xn−1‖))

+|αn − αn−1| K5

= ‖xn − xn−1‖ − αnψ(‖xn − xn−1‖) + |αn − αn−1| K5

for some constant K5 > 0. Since limn→∞
|αn−αn−1|

αn
= 0, it follows from Lemma 2.9

that ‖xn+1 − xn‖ → 0 as n→∞. Hence

‖xn − Txn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − Txn‖ → 0 as n→∞.

For each t ∈ (0, 1), define T f
t : C → C by

T f
t x = tfx+ (1− t)Tx, x ∈ C.

Note that Theorem 3.8 implies that T f
t has a unique fixed point zt ∈ C such

that {zt} converges strongly to an element z ∈ F (T ) as t→ 0+, and z is the unique
solution of the variational inequality V IF (T )(C, I − f).

Since ‖xn − Txn‖ → 0 as n → ∞ and {zt} converges strongly to z ∈ F (T ),
it follows from Lemma 2.12 that lim supn→∞〈fz − z, J(xn − z)〉 ≤ 0. Since z ∈
F (T ) and (5.2) is satisfied, then we conclude from Lemma 5.1 that {xn} converges
strongly to z. �

As a direct consequence of Theorem 5.6, we have the following:

Corollary 5.7. Let X be a reflexive Banach space whose norm is uniformly Gâteaux
differentiable, C a nonempty closed convex subset of X, f : C → C a contraction
mapping with Lipschitz constant k ∈ [0, 1), and T : C → C a nonexpansive mapping
with F (T ) 6= ∅. Suppose that X is strictly convex or C has normal structure. Let
{αn} be a sequence in [0,1] such that

lim
n→∞

αn = 0,
∞∑

n=1

αn = ∞ and lim
n→∞

|αn − αn−1|
αn

= 0.
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For given x1 ∈ C, let {xn} be a sequence in C generated by the functional Halpern
iteration process:

xn+1 = αnfxn + (1− αn)Txn for all n ∈ N.

Then {xn} converges strongly to the unique solution of the variational inequality:

find x̃ ∈ F (T ) such that 〈(I − f)x̃, J(x̃− v)〉 ≤ 0 for all v ∈ F (T ).

Remark 5.8. Corollary 5.7 improves a number of results concerning viscosity
approximation methods, particularly the results of Moudafi [16] and Xu [24] in the
following way:

(1) in variational inequality V IF (T )(C, I − f), the mapping f is not necessarily
contraction,

(2) the underlying space X is not necessarily Hilbert or uniformly smooth.

Corollary 5.9. Let X be a reflexive Banach space whose norm is uniformly Gâteaux
differentiable, C a nonempty closed convex subset of X, and T : C → C a nonex-
pansive mapping with F (T ) 6= ∅. Suppose that X is strictly convex or C has normal
structure. Let {αn} be a sequence in [0,1] such that

lim
n→∞

αn = 0,
∞∑

n=1

αn = ∞ and lim
n→∞

|αn − αn−1|
αn

= 0.

For given x, x1 ∈ C, let {xn} be a sequence in C generated by the Halpern iteration
process:

xn+1 = αnx+ (1− αn)Txn for all n ∈ N.
Then {xn} converges strongly to QF (T )x, where QF (T ) is the sunny nonexpansive
retraction from C onto F (T ).

Note that the nonexpansive mapping T involving in algorithm (5.7) plays an
important role in strong convergence of the sequence {xn} defined by (5.7). In
our next result, we construct some iterative algorithms using sunny nonexpansive
retraction which are independent of such nonexpansive mappings.

Theorem 5.10. Let X be a reflexive Banach space whose norm is uniformly
Gâteaux differentiable, C a nonempty closed convex subset of X and D a nonempty
subset of C. Suppose that D is a sunny nonexpansive retract of C. Let f : C → C
be a weakly contraction mapping with the function ψ and let QD be the sunny non-
expansive retraction from C onto D. Then the sequence {xn} degenerated by the
algorithm:

xn+1 = QDfxn for all n ∈ N,

converges strongly to z, the unique solution of V ID(C, I − f), with the following
error estimate:

‖xn − z‖ ≤ Φ−1(Φ(‖x1 − z‖))− (n− 1).

Proof. Note that QDf is a weakly contraction mapping from C into itself with the
function ψ. In fact,

‖QDfx−QDfy‖ ≤ ‖fx− fy‖ ≤ ‖x− y‖ − ψ(‖x− y‖) for all x, y ∈ C.
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Since QDf is a self-mapping on C, {xn} is well defined. Applying Theorem 2.3,
we obtain that {xn} converges strongly to the unique fixed point z of QDf . The
reminder estimate follows from Theorem 2.3. �

Theorem 5.11. Let X be a reflexive Banach space whose norm is uniformly
Gâteaux differentiable, C a nonempty closed convex bounded subset of X and D
a nonempty subset of C with normal structure. Suppose that D is a sunny nonex-
pansive retract of C. Let f : C → C be a nonexpansive mapping and let QD be the
sunny nonexpansive retraction from C onto D. Let x, x1 be elements in C and let
{αn} be a sequence in [0,1] such that

lim
n→∞

αn = 0,
∞∑

n=1

αn = ∞ and lim
n→∞

|αn − αn−1|
αn

= 0.

Then the sequence {xn} degenerated by the Helpern iteration process:

xn+1 = αnx+ (1− αn)QDfxn for all n ∈ N,

converges strongly to an element of ΩD(I − f).

Proof. Since QDf is a nonexpansive mapping from C into itself, hence F (QDf) 6= ∅
and {xn} is well defined. Applying Corollary 5.9, we obtain that {xn} converges
strongly to a fixed point z of QDf . �

Next, we replace D by F (T ), the fixed point of a nonexpansive mapping T :
C → C.

Theorem 5.12. Let X be a reflexive Banach space whose norm is uniformly
Gâteaux differentiable norm and C a nonempty closed convex bounded subset of
X with normal structure. Let f, T : C → C be two nonexpansive mappings. Let
x, x1 be elements in C and let {αn} be a sequence in [0,1] such that

lim
n→∞

αn = 0,
∞∑

n=1

αn = ∞ and lim
n→∞

|αn − αn−1|
αn

= 0.

Then the sequence {xn} degenerated by the Helpern iteration process:

xn+1 = αnx+ (1− αn)QF (T )fxn for all n ∈ N,

converges strongly to z = PF (QF (T )f)x which a solution of the variational inequality:

find x̃ ∈ F (T ) such that 〈(I − f)x̃, J(x̃− v)〉 ≤ 0 for all v ∈ F (T ),

where PF (QF (T )f) is the sunny nonexpansive retraction form C onto F (QF (T )f).

6. Applications

In this section, we give two convergence theorems for finding common fixed points
of nonexpansive mappings and common zeros of accretive operators in Banach
spaces.

Proposition 6.1. Let C be a nonempty closed convex subset of a strictly con-
vex Banach space X and let λi > 0 (i = 1, 2, · · · , r) such that

∑r
i=1 λi = 1. Let

T1, T2, · · · , Tr : C → C be nonexpansive mappings with ∩r
i=1F (Ti) 6= ∅ and let

T =
∑r

i=1 λiTi. Then T is nonexpansive from C into itself and F (T ) = ∩r
i=1F (Ti).
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Proof. Since ∩r
i=1F (Ti) ⊆ F (T ) is trivial, we show that F (T ) ⊆ ∩r

i=1F (Ti). Let
z ∈ F (T ) and v ∈ ∩r

i=1F (Ti). Observe that

‖z − v‖ = ‖
r∑

i=1

λiTiz − v‖

≤ λ1‖T1z − v‖+ λ2‖T2z − v‖+ · · ·+ λr‖Trz − v‖
≤ λ1‖z − v‖+ λ2‖z − v‖+ · · ·+ λr‖z − v‖ = ‖z − v‖,

which implies that

‖T1z − v‖ = ‖T2z − v‖ = · · · = ‖Trz − v‖ = ‖z − v‖.

Since X is a strictly convex, it follows that T1z = T2z = · · · = Trz = z. �

Recall that the so-called problem of image recovery is essentially to find a
common element of finitely many nonexpansive retracts C1, C2, . . . , Cr of C with
∩r

i=1Ci 6= ∅. It is easy to see that every nonexpansive retraction Pi of C onto Ci

is a nonexpansive mapping of C into itself. There is no doubt that the problem
of image recovery is equivalent to finding a common fixed point of finitely many
nonexpansive mappings P1, . . . , Pr of C into itself.

Applying Proposition 6.1, we obtain the following result which improves a num-
ber of results connected to the problem of image recovery.

Theorem 6.2. Let X be a reflexive strictly convex Banach space whose norm is
uniformly Gâteaux differentiable and C a nonempty closed convex subset of X. Let
λi ≥ 0 (i = 1, 2, · · · , r) such that

∑r
i=1 λi = 1 and let T1, T2, · · · , Tr : C → C be

nonexpansive mappings with ∩r
i=1F (Ti) 6= ∅. Let {αn} be a sequence in [0,1] such

that

lim
n→∞

αn = 0,
∞∑

n=1

αn = ∞ and lim
n→∞

|αn − αn−1|
αn

= 0.

For given x, x1 ∈ C, let {xn} be a sequence in C generated by algorithm:

xn+1 = αnx+ (1− αn)
r∑

i=1

λiTixn for all n ∈ N.

Then {xn} converges strongly to Q∩r
i=1F (Ti)x, where Q∩r

i=1F (Ti) is the sunny non-
expansive retraction from C onto ∩r

i=1F (Ti).

Proof. Let T =
∑r

i=1 λiTi. Proposition 6.1 implies that T is nonexpansive from C
into itself and F (T ) = ∩r

i=1F (Ti). Hence the result follows from Corollary 5.9. �

The following result in an improvement of Theorem 3.3 of Zegeye and Shahzad
[26].

Theorem 6.3. Let X be a reflexive strictly convex Banach space with uniformly
Gâteaux differentiable norm, C a nonempty closed convex subset of X and f : C →
C a contraction mapping with Lipschitz constant k ∈ [0, 1). Let Ai ⊂ X × X,
i = 1, 2, · · · , r be a family of accretive operators with resolvent JAi

t for t > 0 such
that ∩r

i=1A
−1
i 0 6= ∅ and D(Ai) ⊂ C ⊂

⋂
t>0R(I + tAi). Let λi ≥ 0 (i = 1, 2, · · · , r)
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such that
∑r

i=1 λi = 1. For given x1 ∈ C, let {xn} be a sequence in C generated by
algorithm:

(6.1) xn+1 = αnfxn + (1− αn)
r∑

i=1

λiJ
Ai
t xn for all n ∈ N,

where {αn} is a sequence in [0,1] such that

lim
n→∞

αn = 0,
∞∑

n=1

αn = ∞ and lim
n→∞

|αn − αn−1|
αn

= 0.

Then {xn} converges strongly to the unique solution of the variational inequality:

find x̃ ∈ ∩r
i=1A

−1
i 0 such that 〈(I − f)x̃, J(x̃− v)〉 ≤ 0 for all v ∈ ∩r

i=1A
−1
i 0.

Proof. Note that each JAi
t is nonexpansive. Let T =

∑r
i=1 λiJ

Ai
t . Proposition 6.1

implies that T is nonexpansive from C into itself and F (T ) = ∩r
i=1A

−1
i 0. Hence

the result follows from Corollary 5.7. �
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[4] O. Gäuler, On the convergence of the proximal point algorithm for convex minimization,

SIAM J. Control Optim., 29 (1991), 403-419.
[5] K. Goebel and S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive map-

pings, Marcel Dekker, Inc., 1984.

[6] K.S. Ha and J.S. Jung, Strong convergence theorems for accretive operators in Banach space,
J. Math. Anal. Appl., 147 (2) (1990), 330-339.

[7] B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., 73 (1967) 957-961.

[8] S. Kamimura and W. Takahashi, Approximating solutions of maximal monotone operators
in Hilbert space, J. Approx. Theory, 106 (2000), 226-240.

[9] T.H.Kim and H.K.Xu, Strong convergence of modified Mann iterations, Nonlinear Anal., 61
(2005), 51 - 60.

[10] D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their

applications, Academic Press, New York, 1980.
[11] W. A. Kirk, A fixed point theorem for mappings which do not increase distances, The Amer.

Math. Monthly, 72 (1965), 1004-1006.

[12] J. L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math., 20 (1967),
493-517.

[13] P.E. Mainge, Viscosity methods for zeroes of accretive operators, J. Approx. Theory , 140

(2006), 127- 140.
[14] R.H. Martin, Differential equations on closed subsets of a Banach space, Trans. Amer. Math.

Soc., 179 (1973), 399-414.

[15] B. Martinet, Regularisation dinequations variationnelles par approximations successives, Rev.
FranMcaise Informat. Recherche Operationnelle, 4 (1970), 154-158.

[16] A. Moudafi, Viscosity approximation methods for fixed points problems, J. Math. Anal.
Appl., 241 (1) (2000), 46-55.

[17] K. Nakajo, Strong convergence to zeros of accretive operators in Banach spaces, J. Nonlinear

Convex Anal., 7 (2006), 71-81.
[18] S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces,

J. Math. Anal. Appl., 75 (1980), 287-292.



26 N. C. WONG, D. R. SAHU AND J. C. YAO

[19] B.E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal., 47 (2001) 2683-

2693.
[20] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control

Optim., 14 (1976), 877-898.

[21] M. V. Solodov and B. F. Svaiter, Forcing strong convergence of proximal point iterations in

a Hilbert space, Math. Programming Ser. A., 87 (2000), 189-202.
[22] W. Takahashi, Nonlinear Functional Analysis, Yokohama 2000.
[23] W. Takahashi and Y. Ueda, On Reich’s strong convergence theorems for resolvents of accretive

operators, J. Math. Anal. Appl., 104 (1984), 546-553.
[24] H.K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl.,

298 (1) (2004), 240-256.
[25] H.K. Xu, Strong convergence of an iterative method for nonexpansive and accretive operators,

J. Math. Anal. Appl., 314 (2006), 631-643.
[26] H. Zegeye, N. Shahzad, Strong convergence theorems for a common zero of a finite family of

m-accretive mappings, Nonlinear Anal., 66 (2007), 1161-1169.

Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung

804, Taiwan

E-mail address: wong@math.nsysu.edu.tw

Department of Applied Mathematics, Shri Shankaracharya College of Engineering

and Technology, Junwani, Bhilai - 490020 India
E-mail address: sahudr@yahoo.com

Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung
804, Taiwan

E-mail address: yaojc@math.nsysu.edu.tw


	1. Introduction
	2. Preliminaries
	3. Variational inequalities involving weakly contraction mappings
	4. Variational inequalities involving nonexpansive mappings
	5. Strong convergence of iterative algorithms
	6. Applications
	References

