ITERATIVE COMMON SOLUTIONS FOR MONOTONE INCLUSION PROBLEMS, FIXED POINT PROBLEMS AND EQUILIBRIUM PROBLEMS

WATARU TAKAHASHI, NGAI-CHING WONG, AND JEN-CHIH YAO

Abstract

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let $\alpha>0$ and let A be an α-inverse strongly-monotone mapping of C into H. Let T be a generalized hybrid mapping of C into H. Let B and W be maximal monotone operators on H such that the domains of B and W are included in C. Let $0<k<1$ and let g be a k-contraction of H into itself. Let V be a $\bar{\gamma}$-strongly monotone and L-Lipschitzian continuous operator with $\bar{\gamma}>0$ and $L>0$. Take $\mu, \gamma \in \mathbb{R}$ as follows: $$
0<\mu<\frac{2 \bar{\gamma}}{L^{2}}, \quad 0<\gamma<\frac{\bar{\gamma}-\frac{L^{2} \mu}{2}}{k}
$$

Suppose that $F(T) \cap(A+B)^{-1} 0 \cap W^{-1} 0 \neq \emptyset$. In this paper, we prove a strong convergence theorem for finding a point z_{0} of $F(T) \cap(A+B)^{-1} 0 \cap W^{-1} 0$, where $z_{0} \in F(T) \cap(A+B)^{-1} 0 \cap W^{-1} 0$ is also a unique solution of the variational inequality $$
\left\langle(V-\gamma g) z_{0}, q-z_{0}\right\rangle \geq 0, \quad \forall q \in F(T) \cap(A+B)^{-1} 0 \cap W^{-1} 0
$$

Using this result, we obtain new and well-known strong convergence theorems in a Hilbert space. In particular, we solve a problem posed by Kurokawa and Takahashi [16].

1. Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let \mathbb{N} and \mathbb{R} be the sets of positive integers and real numbers, respectively. A mapping $T: C \rightarrow H$ is called generalized hybrid [13] if there exist $\alpha, \beta \in \mathbb{R}$ such that

$$
\alpha\|T x-T y\|^{2}+(1-\alpha)\|x-T y\|^{2} \leq \beta\|T x-y\|^{2}+(1-\beta)\|x-y\|^{2}
$$

for all $x, y \in C$. We call such a mapping an (α, β)-generalized hybrid mapping. Then Kocourek, Takahashi and Yao [13] proved a fixed point theorem for such mappings in a Hilbert space. Furthermore, they proved a nonlinear mean convergence theorem of Baillon's type [4] in a Hilbert space. Notice that the mapping above covers several well-known mappings. For example, an (α, β)-generalized hybrid mapping T is nonexpansive for $\alpha=1$ and $\beta=0$, i.e.,

$$
\|T x-T y\| \leq\|x-y\|, \quad \forall x, y \in C .
$$

2000 Mathematics Subject Classification. 47H05, 47H10, 58E35.
Key words and phrases. Maximal monotone operator, resolvent, inverse-strongly monotone mapping, generalized hybrid mapping, fixed point, iteration procedure, equilibrium problem.

It is also nonspreading $[14,15]$ for $\alpha=2$ and $\beta=1$, i.e.,

$$
2\|T x-T y\|^{2} \leq\|T x-y\|^{2}+\|T y-x\|^{2}, \quad \forall x, y \in C .
$$

Furthermore, it is hybrid [31] for $\alpha=\frac{3}{2}$ and $\beta=\frac{1}{2}$, i.e.,

$$
3\|T x-T y\|^{2} \leq\|x-y\|^{2}+\|T x-y\|^{2}+\|T y-x\|^{2}, \quad \forall x, y \in C .
$$

We can also show that if $x=T x$, then for any $y \in C$,

$$
\alpha\|x-T y\|^{2}+(1-\alpha)\|x-T y\|^{2} \leq \beta\|x-y\|^{2}+(1-\beta)\|x-y\|^{2}
$$

and hence $\|x-T y\| \leq\|x-y\|$. This means that an (α, β)-generalized hybrid mapping with a fixed point is quasi-nonexpansive. The following strong convergence theorem of Halpern's type [10] was proved by Wittmannn [35]; see also [29].

Theorem 1. Let C be a nonempty closed convex subset of H and let T be a nonexpansive mapping of C into itself with $F(T) \neq \emptyset$. For any $x_{1}=x \in C$, define a sequence $\left\{x_{n}\right\}$ in C by

$$
x_{n+1}=\alpha_{n} x+\left(1-\alpha_{n}\right) T x_{n}, \quad \forall n \in \mathbb{N},
$$

where $\left\{\alpha_{n}\right\} \subset(0,1)$ satisfies

$$
\lim _{n \rightarrow \infty} \alpha_{n}=0, \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty \quad \text { and } \quad \sum_{n=1}^{\infty}\left|\alpha_{n}-\alpha_{n+1}\right|<\infty
$$

Then $\left\{x_{n}\right\}$ converges strongy to a fixed point of T.
Kurokawa and Takahashi [16] also proved the following strong convergence theorem for nonspreading mappings in a Hilbert space; see also Hojo and Takahashi [11] for generalized hybrid mappings.

Theorem 2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T be a nonspreading mapping of C into itself. Let $u \in C$ and define two sequences $\left\{x_{n}\right\}$ and $\left\{z_{n}\right\}$ in C as follows: $x_{1}=x \in C$ and

$$
\left\{\begin{array}{l}
x_{n+1}=\alpha_{n} u+\left(1-\alpha_{n}\right) z_{n} \\
z_{n}=\frac{1}{n} \sum_{k=0}^{n-1} T^{k} x_{n}
\end{array}\right.
$$

for all $n=1,2, \ldots$, where $\left\{\alpha_{n}\right\} \subset(0,1), \lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=1}^{\infty} \alpha_{n}=\infty$. If $F(T)$ is nonempty, then $\left\{x_{n}\right\}$ and $\left\{z_{n}\right\}$ converge strongly to $P u$, where P is the metric projection of H onto $F(T)$.
Remark. We do not know whether Theorem 1 for nonspreading mappings holds or not; see [16] and [11].

Let $f: C \times C \rightarrow \mathbb{R}$ be a bifunction. The equilibrium problem (with respect to $C)$ is to find $\hat{x} \in C$ such that

$$
\begin{equation*}
f(\hat{x}, y) \geq 0, \quad \forall y \in C \tag{1.1}
\end{equation*}
$$

The set of such solutions \hat{x} is denoted by $E P(f)$, i.e.,

$$
E P(f)=\{\hat{x} \in C: f(\hat{x}, y) \geq 0, \forall y \in C\} .
$$

For solving the equilibrium problem, let us assume that the bifunction $f: C \times C \rightarrow$ \mathbb{R} satisfies the following conditions:
(A1) $f(x, x)=0$ for all $x \in C$;
(A2) f is monotone, i.e., $f(x, y)+f(y, x) \leq 0$ for all $x, y \in C$;
(A3) for all $x, y, z \in C$,

$$
\limsup _{t \downarrow 0} f(t z+(1-t) x, y) \leq f(x, y)
$$

(A4) for all $x \in C, f(x, \cdot)$ is convex and lower semicontinuous.
Defining a set-valued mapping $A_{f} \subset H \times H$ by

$$
A_{f} x=\left\{\begin{array}{l}
\{z \in H: f(x, y) \geq\langle y-x, z\rangle, \forall y \in C\}, \quad \forall x \in C, \\
\emptyset, \quad \forall x \notin C,
\end{array}\right.
$$

we have from [27] that A_{f} is a maximal monotone operator such that the domain is included in C.

In this paper, motivated by these results, we prove a strong convergence theorem for finding a point z_{0} of $F(T) \cap(A+B)^{-1} 0 \cap W^{-1} 0$, where T is a generalized hybrid mapping of C into H, B and W are maximal monotone operators on H such that the domains of B and W are included in C, g is a k-contraction of H into itself with $0<k<1, V$ is a $\bar{\gamma}$-strongly monotone and L-Lipschitzian continuous operator with $\bar{\gamma}>0$ and $L>0$. This point z_{0} is a unique fixed point of $P_{F(T) \cap(A+B)^{-1} 0 \cap W^{-1} 0}(I-V+\gamma g)$ and then this $z_{0} \in F(T) \cap(A+B)^{-1} 0 \cap W^{-1} 0$ is also a unique solution of the variational inequality

$$
\left\langle(V-\gamma g) z_{0}, q-z_{0}\right\rangle \geq 0, \quad \forall q \in F(T) \cap(A+B)^{-1} 0 \cap W^{-1} 0
$$

Using this result, we obtain new and well-known strong convergence theorems in a Hilbert space. In particular, we solve a problem posed by Kurokawa and Takahashi [16].

2. Preliminaries

Let H be a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$. When $\left\{x_{n}\right\}$ is a sequence in H, we denote the strong convergence of $\left\{x_{n}\right\}$ to $x \in H$ by $x_{n} \rightarrow x$ and the weak convergence by $x_{n} \rightharpoonup x$. We have from [30] that for any $x, y \in H$ and $\lambda \in \mathbb{R}$,

$$
\begin{equation*}
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, x+y\rangle \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\lambda x+(1-\lambda) y\|^{2}=\lambda\|x\|^{2}+(1-\lambda)\|y\|^{2}-\lambda(1-\lambda)\|x-y\|^{2} \tag{2.2}
\end{equation*}
$$

Furthermore we have that for $x, y, u, v \in H$,

$$
\begin{equation*}
2\langle x-y, u-v\rangle=\|x-v\|^{2}+\|y-u\|^{2}-\|x-u\|^{2}-\|y-v\|^{2} \tag{2.3}
\end{equation*}
$$

All Hilbert spaces satisfy Opial's condition, that is,

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left\|x_{n}-u\right\|<\liminf _{n \rightarrow \infty}\left\|x_{n}-v\right\| \tag{2.4}
\end{equation*}
$$

if $x_{n} \rightharpoonup u$ and $u \neq v$; see [24]. Let C be a nonempty closed convex subset of a Hilbert space H and let $T: C \rightarrow H$ be a mapping. We denote by $F(T)$ be the set of fixed points for T. A mapping $T: C \rightarrow H$ is called quasi-nonexpansive if $F(T) \neq \emptyset$ and $\|T x-y\| \leq\|x-y\|$ for all $x \in C$ and $y \in F(T)$. If $T: C \rightarrow H$ is quasi-nonexpansive, then $F(T)$ is closed and convex; see [12]. For a nonempty closed convex subset C of H, the nearest point projection of H onto C is denoted by P_{C}, that is, $\left\|x-P_{C} x\right\| \leq\|x-y\|$ for all $x \in H$ and $y \in C$. Such P_{C} is called the
metric projection of H onto C. We know that the metric projection P_{C} is firmly nonexpansive; $\left\|P_{C} x-P_{C} y\right\|^{2} \leq\left\langle P_{C} x-P_{C} y, x-y\right\rangle$ for all $x, y \in H$. Furthermore $\left\langle x-P_{C} x, y-P_{C} x\right\rangle \leq 0$ holds for all $x \in H$ and $y \in C$; see [28]. The following result is in [34].

Lemma 3. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let $T: C \rightarrow H$ be a generalized hybrid mapping. Suppose that there exists $\left\{x_{n}\right\} \subset C$ such that $x_{n} \rightharpoonup z$ and $x_{n}-T x_{n} \rightarrow 0$. Then, $z \in F(T)$.

Let B be a mapping of H into 2^{H}. The effective domain of B is denoted by $D(B)$, that is, $D(B)=\{x \in H: B x \neq \emptyset\}$. A multi-valued mapping B is said to be a monotone operator on H if $\langle x-y, u-v\rangle \geq 0$ for all $x, y \in D(B), u \in B x$, and $v \in B y$. A monotone operator B on H is said to be maximal if its graph is not properly contained in the graph of any other monotone operator on H. For a maximal monotone operator B on H and $r>0$, we may define a single-valued operator $J_{r}=(I+r B)^{-1}: H \rightarrow D(B)$, which is called the resolvent of B for r. We denote by $A_{r}=\frac{1}{r}\left(I-J_{r}\right)$ the Yosida approximation of B for $r>0$. We know from [29] that

$$
\begin{equation*}
A_{r} x \in B J_{r} x, \quad \forall x \in H, r>0 \tag{2.5}
\end{equation*}
$$

Let B be a maximal monotone operator on H and let $B^{-1} 0=\{x \in H: 0 \in$ $B x\}$. It is known that $B^{-1} 0=F\left(J_{r}\right)$ for all $r>0$ and the resolvent J_{r} is firmly nonexpansive, i.e.,

$$
\begin{equation*}
\left\|J_{r} x-J_{r} y\right\|^{2} \leq\left\langle x-y, J_{r} x-J_{r} y\right\rangle, \quad \forall x, y \in H \tag{2.6}
\end{equation*}
$$

We also know the following lemma from [27].
Lemma 4. Let H be a real Hilbert space and let B be a maximal monotone operator on H. For $r>0$ and $x \in H$, define the resolvent $J_{r} x$. Then the following holds:

$$
\frac{s-t}{s}\left\langle J_{s} x-J_{t} x, J_{s} x-x\right\rangle \geq\left\|J_{s} x-J_{t} x\right\|^{2}
$$

for all $s, t>0$ and $x \in H$.
From Lemma 4, we have that

$$
\left\|J_{\lambda} x-J_{\mu} x\right\| \leq(|\lambda-\mu| / \lambda)\left\|x-J_{\lambda} x\right\|
$$

for all $\lambda, \mu>0$ and $x \in H$; see also [28, 9]. To prove our main result, we need the following lemmas.

Lemma 5 ([2]; see also [36]). Let $\left\{s_{n}\right\}$ be a sequence of nonnegative real numbers, let $\left\{\alpha_{n}\right\}$ be a sequence of $[0,1]$ with $\sum_{n=1}^{\infty} \alpha_{n}=\infty$, let $\left\{\beta_{n}\right\}$ be a sequence of nonnegative real numbers with $\sum_{n=1}^{\infty} \beta_{n}<\infty$, and let $\left\{\gamma_{n}\right\}$ be a sequence of real numbers with $\lim \sup _{n \rightarrow \infty} \gamma_{n} \leq 0$. Suppose that

$$
s_{n+1} \leq\left(1-\alpha_{n}\right) s_{n}+\alpha_{n} \gamma_{n}+\beta_{n}
$$

for all $n=1,2, \ldots$. Then $\lim _{n \rightarrow \infty} s_{n}=0$.
Lemma 6 ([19]). Let $\left\{\Gamma_{n}\right\}$ be a sequence of real numbers that does not decrease at infinity in the sense that there exists a subsequence $\left\{\Gamma_{n_{i}}\right\}$ of $\left\{\Gamma_{n}\right\}$ which satisfies $\Gamma_{n_{i}}<\Gamma_{n_{i}+1}$ for all $i \in \mathbb{N}$. Define the sequence $\{\tau(n)\}_{n \geq n_{0}}$ of integers as follows:

$$
\tau(n)=\max \left\{k \leq n: \Gamma_{k}<\Gamma_{k+1}\right\}
$$

where $n_{0} \in \mathbb{N}$ such that $\left\{k \leq n_{0}: \Gamma_{k}<\Gamma_{k+1}\right\} \neq \emptyset$. Then, the following hold:
(i) $\tau(1) \leq \tau(2) \leq \ldots$ and $\tau(n) \rightarrow \infty$;
(ii) $\Gamma_{\tau(n)} \leq \Gamma_{\tau(n)+1}$ and $\Gamma_{n} \leq \Gamma_{\tau(n)+1}, \forall n \in \mathbb{N}$.

3. Strong Convergence Theorems

Let H be a real Hilbert space. A mapping $g: H \rightarrow H$ is a contraction if there exists $k \in(0,1)$ such that $\|g(x)-g(y)\| \leq k\|x-y\|$ for all $x, y \in H$. We call such a mapping g a k-contraction. A nonlinear operator $V: H \rightarrow H$ is called strongly monotone if there exists $\bar{\gamma}>0$ such that $\langle x-y, V x-V y\rangle \geq \bar{\gamma}\|x-y\|^{2}$ for all $x, y \in H$. Such V is also called $\bar{\gamma}$-strongly monotone. A nonlinear operator $V: H \rightarrow H$ is called Lipschitzian continuous if there exists $L>0$ such that $\|V x-V y\| \leq L\|x-y\|$ for all $x, y \in H$. Such V is also called L-Lipschitzian continuous. We know the following three lemmas in a Hilbert space; see Lin and Takahashi [17].

Lemma 7 ([17]). Let H be a Hilbert space and let V be a $\bar{\gamma}$-strongly monotone and L-Lipschitzian continuous operator on H with $\bar{\gamma}>0$ and $L>0$. Let $t>0$ satisfy $2 \bar{\gamma}>t L^{2}$ and $1>2 t \bar{\gamma}$. Then $0<1-t\left(2 \bar{\gamma}-t L^{2}\right)<1$ and $I-t V: H \rightarrow H$ is a contraction, where I is the identity operator on H.

Lemma 8 ([17]). Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let P_{C} be the metric projection of H onto C and let V be a $\bar{\gamma}$-strongly monotone and L-Lipschitzian continuous operator on H with $\bar{\gamma}>0$ and $L>0$. Let $t>0$ satisfy $2 \bar{\gamma}>t L^{2}$ and $1>2 t \bar{\gamma}$ and let $z \in C$. Then the following are equivalent:
(1) $z=P_{C}(I-t V) z$;
(2) $\langle V z, y-z\rangle \geq 0, \quad \forall y \in C$;
(3) $z=P_{C}(I-V) z$.

Such $z \in C$ exists always and is unique.
Lemma 9 ([17]). Let H be a Hilbert space and let $g: H \rightarrow H$ be a k-contraction with $0<k<1$. Let V be a $\bar{\gamma}$-strongly monotone and L-Lipschitzian continuous operator on H with $\bar{\gamma}>0$ and $L>0$. Let a real number γ satisfy $0<\gamma<\frac{\bar{\gamma}}{k}$. Then $V-\gamma g: H \rightarrow H$ is a $(\bar{\gamma}-\gamma k)$-strongly monotone and $(L+\gamma k)$-Lipschitzian continuous mapping. Furthermore, let C be a nonempty closed convex subset of H. Then $P_{C}(I-V+\gamma g)$ has a unique fixed point z_{0} in C. This point $z_{0} \in C$ is also a unique solution of the variational inequality

$$
\left\langle(V-\gamma g) z_{0}, q-z_{0}\right\rangle \geq 0, \quad \forall q \in C .
$$

Now we prove the following strong convergence theorem of Halpern's type [10] for finding a common solution of a monotone inclusion problem for the sum of two monotone mappings, of a fixed point problem for generalized hybrid mappings and of an equilibrium problem for bifunctions in a Hilbert space.

Theorem 10. Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let $\alpha>0$ and let A be an α-inverse strongly-monotone mapping of C into H. Let B and W be maximal monotone operators on H such that the domains of B and W are included in C. Let $J_{\lambda}=(I+\lambda B)^{-1}$ and $T_{r}=(I+r W)^{-1}$ be resolvents of B and W for $\lambda>0$ and $r>0$, respectively. Let S be a generalized hybrid mapping of C into H. Let $0<k<1$ and let g be a k-contraction of H into itself. Let V be a $\bar{\gamma}$-strongly monotone and L-Lipschitzian continuous operator with
$\bar{\gamma}>0$ and $L>0$. Take $\mu, \gamma \in \mathbb{R}$ as follows:

$$
0<\mu<\frac{2 \bar{\gamma}}{L^{2}}, \quad 0<\gamma<\frac{\bar{\gamma}-\frac{L^{2} \mu}{2}}{k}
$$

Suppose $F(S) \cap(A+B)^{-1} 0 \cap W^{-1} 0 \neq \emptyset$. Let $x_{1}=x \in H$ and let $\left\{x_{n}\right\} \subset H$ be a sequence generated by

$$
x_{n+1}=\beta_{n} x_{n}+\left(1-\beta_{n}\right)\left\{\alpha_{n} \gamma g\left(x_{n}\right)+\left(I-\alpha_{n} V\right) S J_{\lambda_{n}}\left(I-\lambda_{n} A\right) T_{r_{n}} x_{n}\right\}
$$

for all $n \in \mathbb{N}$, where $\left\{\alpha_{n}\right\} \subset(0,1),\left\{\beta_{n}\right\} \subset(0,1),\left\{\lambda_{n}\right\} \subset(0, \infty)$ and $\left\{r_{n}\right\} \subset(0, \infty)$ satisfy

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \alpha_{n}=0, \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty, \quad 0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \limsup _{n \rightarrow \infty} \beta_{n}<1, \\
\\
\liminf _{n \rightarrow \infty} r_{n}>0 \quad \text { and } \quad 0<a \leq \lambda_{n} \leq b<2 \alpha .
\end{gathered}
$$

Then $\left\{x_{n}\right\}$ converges strongly to $z_{0} \in F(S) \cap(A+B)^{-1} 0 \cap W^{-1} 0$, where z_{0} is a unique fixed point in $F(S) \cap(A+B)^{-1} 0 \cap W^{-1} 0$ of $P_{F(S) \cap(A+B)^{-1} 0 \cap W^{-1} 0}(I-V+\gamma g)$.
Proof. Let $z \in F(S) \cap(A+B)^{-1} 0 \cap W^{-1} 0$. We have that $z=S z, z=J_{\lambda_{n}}\left(I-\lambda_{n} A\right) z$ and $z=T_{r_{n}} z$. Putting $w_{n}=J_{\lambda_{n}}\left(I-\lambda_{n} A\right) T_{r_{n}} x_{n}$ and $u_{n}=T_{r_{n}} x_{n}$, we obtain that

$$
\begin{align*}
\left\|S w_{n}-z\right\|^{2} & \leq\left\|w_{n}-z\right\|^{2} \\
& =\left\|J_{\lambda_{n}}\left(u_{n}-\lambda_{n} A u_{n}\right)-J_{\lambda_{n}}\left(z-\lambda_{n} A z\right)\right\|^{2} \\
& \leq\left\|u_{n}-\lambda_{n} A u_{n}-\left(z-\lambda_{n} A z\right)\right\|^{2} \\
& =\left\|u_{n}-z-\lambda_{n}\left(A u_{n}-A z\right)\right\|^{2} \tag{3.1}\\
& =\left\|u_{n}-z\right\|^{2}-2 \lambda_{n}\left\langle u_{n}-z, A u_{n}-A z\right\rangle+\lambda_{n}^{2}\left\|A u_{n}-A z\right\|^{2} \\
& \leq\left\|u_{n}-z\right\|^{2}-2 \lambda_{n} \alpha\left\|A u_{n}-A z\right\|^{2}+\lambda_{n}^{2}\left\|A u_{n}-A z\right\|^{2} \\
& \leq\left\|x_{n}-z\right\|^{2}+\lambda_{n}\left(\lambda_{n}-2 \alpha\right)\left\|A u_{n}-A z\right\|^{2} \\
& \leq\left\|x_{n}-z\right\|^{2} .
\end{align*}
$$

Put $\tau=\bar{\gamma}-\frac{L^{2} \mu}{2}$. Using $\lim _{n \rightarrow \infty} \alpha_{n}=0$, we have that for any $x, y \in H$,

$$
\begin{align*}
& \left\|\left(I-\alpha_{n} V\right) x-\left(I-\alpha_{n} V\right) y\right\|^{2}=\left\|x-y-\alpha_{n}(V x-V y)\right\|^{2} \\
& \quad=\|x-y\|^{2}-2 \alpha_{n}\langle x-y, V x-V y\rangle+\alpha_{n}^{2}\|V x-V y\|^{2} \\
& \quad \leq\|x-y\|^{2}-2 \alpha_{n} \bar{\gamma}\|x-y\|^{2}+\alpha_{n}^{2} L^{2}\|x-y\|^{2} \\
& \quad=\left(1-2 \alpha_{n} \bar{\gamma}+\alpha_{n}^{2} L^{2}\right)\|x-y\|^{2} \tag{3.2}\\
& \quad=\left(1-2 \alpha_{n} \tau-\alpha_{n} L^{2} \mu+\alpha_{n}^{2} L^{2}\right)\|x-y\|^{2} \\
& \quad \leq\left(1-2 \alpha_{n} \tau-\alpha_{n}\left(L^{2} \mu-\alpha_{n} L^{2}\right)+\alpha_{n}^{2} \tau^{2}\right)\|x-y\|^{2} \\
& \quad \leq\left(1-2 \alpha_{n} \tau+\alpha_{n}^{2} \tau^{2}\right)\|x-y\|^{2} \\
& \quad=\left(1-\alpha_{n} \tau\right)^{2}\|x-y\|^{2} .
\end{align*}
$$

Since $1-\alpha_{n} \tau>0$, we obtain that for any $x, y \in H$,

$$
\begin{equation*}
\left\|\left(I-\alpha_{n} V\right) x-\left(I-\alpha_{n} V\right) y\right\| \leq\left(1-\alpha_{n} \tau\right)\|x-y\| . \tag{3.3}
\end{equation*}
$$

Putting $y_{n}=\alpha_{n} \gamma g\left(x_{n}\right)+\left(I-\alpha_{n} V\right) S J_{\lambda_{n}}\left(I-\lambda_{n} A\right) T_{r_{n}} x_{n}$, from $z=\alpha_{n} V z+z-\alpha_{n} V z$, (3.1) and (3.3) we have that

$$
\begin{aligned}
\left\|y_{n}-z\right\| & =\left\|\alpha_{n}\left(\gamma g\left(x_{n}\right)-V z\right)+\left(I-\alpha_{n} V\right) S w_{n}-\left(I-\alpha_{n} V\right) z\right\| \\
& \leq \alpha_{n} \gamma k\left\|x_{n}-z\right\|+\alpha_{n}\|\gamma g(z)-V z\|+\left(1-\alpha_{n} \tau\right)\left\|S w_{n}-z\right\| \\
& \leq\left\{1-\alpha_{n}(\tau-\gamma k)\right\}\left\|x_{n}-z\right\|+\alpha_{n}\|\gamma g(z)-V z\|
\end{aligned}
$$

Using this, we get

$$
\begin{aligned}
\left\|x_{n+1}-z\right\|= & \left\|\beta_{n}\left(x_{n}-z\right)+\left(1-\beta_{n}\right)\left(y_{n}-z\right)\right\| \\
\leq & \beta_{n}\left\|x_{n}-z\right\|+\left(1-\beta_{n}\right)\left\|y_{n}-z\right\| \\
\leq & \beta_{n}\left\|x_{n}-z\right\| \\
& \quad\left(1-\beta_{n}\right)\left(\left\{1-\alpha_{n}(\tau-\gamma k)\right\}\left\|x_{n}-z\right\|+\alpha_{n}\|\gamma g(z)-V z\|\right) \\
= & \left\{1-\left(1-\beta_{n}\right) \alpha_{n}(\tau-\gamma k)\right\}\left\|x_{n}-z\right\| \\
& \quad\left(1-\beta_{n}\right) \alpha_{n}(\tau-\gamma k) \frac{\|\gamma g(z)-V z\|}{\tau-\gamma k} .
\end{aligned}
$$

Putting $K=\max \left\{\left\|x_{1}-z\right\|, \frac{\|\gamma g(z)-V z\|}{\tau-\gamma k}\right\}$, we have that $\left\|x_{n}-z\right\| \leq K$ for all $n \in \mathbb{N}$. Then $\left\{x_{n}\right\}$ is bounded. Furthermore, $\left\{u_{n}\right\},\left\{w_{n}\right\}$ and $\left\{y_{n}\right\}$ are bounded. Using Lemma 9 , we can take a unique $z_{0} \in F(S) \cap(A+B)^{-1} 0 \cap W^{-1} 0$ such that

$$
z_{0}=P_{F(S) \cap(A+B)^{-1} 0 \cap W^{-1} 0}(I-V+\gamma g) z_{0}
$$

From the definition of $\left\{x_{n}\right\}$, we have that

$$
x_{n+1}-x_{n}=\beta_{n} x_{n}+\left(1-\beta_{n}\right)\left\{\alpha_{n} \gamma g\left(x_{n}\right)+\left(I-\alpha_{n} V\right) S w_{n}\right\}-x_{n}
$$

and hence

$$
\begin{aligned}
x_{n+1}-x_{n}- & \left(1-\beta_{n}\right) \alpha_{n} \gamma g\left(x_{n}\right)=\beta_{n} x_{n}+\left(1-\beta_{n}\right)\left(I-\alpha_{n} V\right) S w_{n}-x_{n} \\
& =\left(1-\beta_{n}\right)\left\{\left(I-\alpha_{n} V\right) S w_{n}-x_{n}\right\} \\
& =\left(1-\beta_{n}\right)\left(S w_{n}-x_{n}-\alpha_{n} V S w_{n}\right) .
\end{aligned}
$$

Thus we have that

$$
\begin{align*}
\left\langle x_{n+1}-\right. & x_{n} \\
& \left.=\left(1-\beta_{n}\right) \alpha_{n} \gamma g\left(x_{n}\right), x_{n}-z_{0}\right\rangle \tag{3.4}\\
& =\left\langle\left(1-\beta_{n}\right)\left(S w_{n}-x_{n}-\alpha_{n} V S w_{n}\right), x_{n}-z_{0}\right\rangle \\
& =-\left(1-\beta_{n}\right)\left\langle x_{n}-S w_{n}, x_{n}-z_{0}\right\rangle-\left(1-\beta_{n}\right) \alpha_{n}\left\langle V S w_{n}, x_{n}-z_{0}\right\rangle .
\end{align*}
$$

From (2.3) and (3.1), we have that

$$
\begin{gather*}
2\left\langle x_{n}-S w_{n}, x_{n}-z_{0}\right\rangle=\left\|x_{n}-z_{0}\right\|^{2}+\left\|S w_{n}-x_{n}\right\|^{2}-\left\|S w_{n}-z_{0}\right\|^{2} \\
\geq\left\|x_{n}-z_{0}\right\|^{2}+\left\|S w_{n}-x_{n}\right\|^{2}-\left\|x_{n}-z_{0}\right\|^{2} \tag{3.5}\\
=\left\|S w_{n}-x_{n}\right\|^{2} .
\end{gather*}
$$

From (3.4) and (3.5), we also have that

$$
\begin{align*}
-2\left\langle x_{n}\right. & \left.-x_{n+1}, x_{n}-z_{0}\right\rangle=2\left(1-\beta_{n}\right) \alpha_{n}\left\langle\gamma g\left(x_{n}\right), x_{n}-z_{0}\right\rangle \\
& -2\left(1-\beta_{n}\right)\left\langle x_{n}-S w_{n}, x_{n}-z_{0}\right\rangle-2\left(1-\beta_{n}\right) \alpha_{n}\left\langle V S w_{n}, x_{n}-z_{0}\right\rangle \tag{3.6}\\
\leq & 2\left(1-\beta_{n}\right) \alpha_{n}\left\langle\gamma g\left(x_{n}\right), x_{n}-z_{0}\right\rangle \\
& -\left(1-\beta_{n}\right)\left\|S w_{n}-x_{n}\right\|^{2}-2\left(1-\beta_{n}\right) \alpha_{n}\left\langle V S w_{n}, x_{n}-z_{0}\right\rangle
\end{align*}
$$

Furthermore using (2.3) and (3.6), we have that

$$
\begin{aligned}
&\left\|x_{n+1}-z_{0}\right\|^{2}- \| \\
& x_{n}-x_{n+1}\left\|^{2}-\right\| x_{n}-z_{0} \|^{2} \\
& \leq 2\left(1-\beta_{n}\right) \alpha_{n}\left\langle\gamma g\left(x_{n}\right), x_{n}-z_{0}\right\rangle \\
& \quad\left(1-\beta_{n}\right)\left\|S w_{n}-x_{n}\right\|^{2}-2\left(1-\beta_{n}\right) \alpha_{n}\left\langle V S w_{n}, x_{n}-z_{0}\right\rangle .
\end{aligned}
$$

Setting $\Gamma_{n}=\left\|x_{n}-z_{0}\right\|^{2}$, we have that

$$
\begin{align*}
\Gamma_{n+1}-\Gamma_{n}- & \left\|x_{n}-x_{n+1}\right\|^{2} \\
\leq & 2\left(1-\beta_{n}\right) \alpha_{n}\left\langle\gamma g\left(x_{n}\right), x_{n}-z_{0}\right\rangle \tag{3.7}\\
& \quad\left(1-\beta_{n}\right)\left\|S w_{n}-x_{n}\right\|^{2}-2\left(1-\beta_{n}\right) \alpha_{n}\left\langle V S w_{n}, x_{n}-z_{0}\right\rangle .
\end{align*}
$$

Noting that

$$
\begin{align*}
\left\|x_{n+1}-x_{n}\right\| & =\left\|\left(1-\beta_{n}\right) \alpha_{n}\left(\gamma g\left(x_{n}\right)-V S w_{n}\right)+\left(1-\beta_{n}\right)\left(S w_{n}-x_{n}\right)\right\| \\
& \leq\left(1-\beta_{n}\right)\left(\left\|S w_{n}-x_{n}\right\|+\alpha_{n}\left\|\gamma g\left(x_{n}\right)-V S w_{n}\right\|\right), \tag{3.8}
\end{align*}
$$

we have that

$$
\begin{align*}
\| x_{n+1}- & x_{n} \|^{2} \leq\left(1-\beta_{n}\right)^{2}\left(\left\|S w_{n}-x_{n}\right\|+\alpha_{n}\left\|\gamma g\left(x_{n}\right)-V S w_{n}\right\|\right)^{2} \\
= & \left(1-\beta_{n}\right)^{2}\left\|S w_{n}-x_{n}\right\|^{2}+\left(1-\beta_{n}\right)^{2} 2 \alpha_{n}\left\|S w_{n}-x_{n}\right\|\left\|\gamma g\left(x_{n}\right)-V S w_{n}\right\| \tag{3.9}\\
& +\left(1-\beta_{n}\right)^{2} \alpha_{n}^{2}\left\|\gamma g\left(x_{n}\right)-V S w_{n}\right\|^{2} .
\end{align*}
$$

Thus we have from (3.7) and (3.9) that

$$
\begin{aligned}
\Gamma_{n+1}-\Gamma_{n} \leq & \left\|x_{n}-x_{n+1}\right\|^{2}+2\left(1-\beta_{n}\right) \alpha_{n}\left\langle\gamma g\left(x_{n}\right), x_{n}-z_{0}\right\rangle \\
& -\left(1-\beta_{n}\right)\left\|S w_{n}-x_{n}\right\|^{2}-2\left(1-\beta_{n}\right) \alpha_{n}\left\langle V S w_{n}, x_{n}-z_{0}\right\rangle \\
\leq & \left(1-\beta_{n}\right)^{2}\left\|S w_{n}-x_{n}\right\|^{2}+\left(1-\beta_{n}\right)^{2} 2 \alpha_{n}\left\|S w_{n}-x_{n}\right\|\left\|\gamma g\left(x_{n}\right)-V S w_{n}\right\| \\
& +\left(1-\beta_{n}\right)^{2} \alpha_{n}^{2}\left\|\gamma g\left(x_{n}\right)-V S w_{n}\right\|^{2}+2\left(1-\beta_{n}\right) \alpha_{n}\left\langle\gamma g\left(x_{n}\right), x_{n}-z_{0}\right\rangle \\
& -\left(1-\beta_{n}\right)\left\|S w_{n}-x_{n}\right\|^{2}-2\left(1-\beta_{n}\right) \alpha_{n}\left\langle V S w_{n}, x_{n}-z_{0}\right\rangle
\end{aligned}
$$

and hence
$\Gamma_{n+1}-\Gamma_{n}+\beta_{n}\left(1-\beta_{n}\right)\left\|S w_{n}-x_{n}\right\|^{2} \leq\left(1-\beta_{n}\right)^{2} 2 \alpha_{n}\left\|S w_{n}-x_{n}\right\|\left\|\gamma g\left(x_{n}\right)-V S w_{n}\right\|$

$$
\begin{align*}
& +\left(1-\beta_{n}\right)^{2} \alpha_{n}^{2}\left\|\gamma g\left(x_{n}\right)-V S w_{n}\right\|^{2}+2\left(1-\beta_{n}\right) \alpha_{n}\left\langle\gamma g\left(x_{n}\right), x_{n}-z_{0}\right\rangle \tag{3.10}\\
& -2\left(1-\beta_{n}\right) \alpha_{n}\left\langle V S w_{n}, x_{n}-z_{0}\right\rangle
\end{align*}
$$

We will divide the proof into two cases.
Case 1: Suppose that $\Gamma_{n+1} \leq \Gamma_{n}$ for all $n \in \mathbb{N}$. In this case, $\lim _{n \rightarrow \infty} \Gamma_{n}$ exists and then $\lim _{n \rightarrow \infty}\left(\Gamma_{n+1}-\Gamma_{n}\right)=0$. Using $0<\lim \inf _{n \rightarrow \infty} \beta_{n} \leq \lim \sup _{n \rightarrow \infty} \beta_{n}<1$ and $\lim _{n \rightarrow \infty} \alpha_{n}=0$, we have from (3.10) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|S w_{n}-x_{n}\right\|=0 \tag{3.11}
\end{equation*}
$$

Using (3.8), we also have that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0 \tag{3.12}
\end{equation*}
$$

Since $x_{n+1}-x_{n}=\left(1-\beta_{n}\right)\left(y_{n}-x_{n}\right)$, we have from (3.12) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0 \tag{3.13}
\end{equation*}
$$

We also have from (2.6) that

$$
\begin{aligned}
2\left\|u_{n}-z_{0}\right\|^{2} & =2\left\|T_{r_{n}} x_{n}-T_{r_{n}} z_{0}\right\|^{2} \\
& \leq 2\left\langle x_{n}-z_{0}, u_{n}-z_{0}\right\rangle \\
& =\left\|x_{n}-z_{0}\right\|^{2}+\left\|u_{n}-z_{0}\right\|^{2}-\left\|u_{n}-x_{n}\right\|^{2}
\end{aligned}
$$

and hence

$$
\begin{equation*}
\left\|u_{n}-z_{0}\right\|^{2} \leq\left\|x_{n}-z_{0}\right\|^{2}-\left\|u_{n}-x_{n}\right\|^{2} \tag{3.14}
\end{equation*}
$$

From (3.1) we have that

$$
\left\|S w_{n}-z_{0}\right\|^{2} \leq\left\|u_{n}-z_{0}\right\|^{2} \leq\left\|x_{n}-z_{0}\right\|^{2}-\left\|u_{n}-x_{n}\right\|^{2}
$$

and hence

$$
\left\|u_{n}-x_{n}\right\|^{2} \leq\left\|x_{n}-z_{0}\right\|^{2}-\left\|S w_{n}-z_{0}\right\|^{2} \leq M\left\|S w_{n}-x_{n}\right\|^{2}
$$

where $M=\sup \left\{\left\|x_{n}-z_{0}\right\|+\left\|S w_{n}-z_{0}\right\|: n \in \mathbb{N}\right\}$. Thus from (3.11) we have that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n}-x_{n}\right\|=0 \tag{3.15}
\end{equation*}
$$

We will show $\lim _{n \rightarrow \infty}\left\|S w_{n}-w_{n}\right\|=0$. Since $\|\cdot\|^{2}$ is a convex function, we have that

$$
\begin{equation*}
\left\|x_{n+1}-z_{0}\right\|^{2} \leq \beta_{n}\left\|x_{n}-z_{0}\right\|^{2}+\left(1-\beta_{n}\right)\left\|y_{n}-z_{0}\right\|^{2} \tag{3.16}
\end{equation*}
$$

From $z_{0}=\alpha_{n} V z_{0}+z_{0}-\alpha_{n} V z_{0}$ and (2.1) we also have that

$$
\begin{align*}
\left\|y_{n}-z_{0}\right\|^{2}= & \left\|\alpha_{n}\left(\gamma g\left(x_{n}\right)-V z_{0}\right)+\left(I-\alpha_{n} V\right) S w_{n}-\left(I-\alpha_{n} V\right) z_{0}\right\|^{2} \\
\leq & \left(1-\alpha_{n} \tau\right)^{2}\left\|S w_{n}-z_{0}\right\|^{2}+2 \alpha_{n}\left\langle\gamma g\left(x_{n}\right)-V z_{0}, y_{n}-z_{0}\right\rangle \\
\leq & \left(1-\alpha_{n} \tau\right)^{2}\left\|w_{n}-z_{0}\right\|^{2}+2 \alpha_{n}\left\langle\gamma g\left(x_{n}\right)-V z_{0}, y_{n}-z_{0}\right\rangle \tag{3.17}\\
\leq & \left\|w_{n}-z_{0}\right\|^{2}+2 \alpha_{n}\left\langle\gamma g\left(x_{n}\right)-V z_{0}, y_{n}-z_{0}\right\rangle \\
\leq & \left\|x_{n}-z\right\|^{2}+\lambda_{n}\left(\lambda_{n}-2 \alpha\right)\left\|A u_{n}-A z\right\|^{2} \\
& \quad+2 \alpha_{n}\left\langle\gamma g\left(x_{n}\right)-V z_{0}, y_{n}-z_{0}\right\rangle .
\end{align*}
$$

Using (3.16) and (3.17), we have that

$$
\begin{align*}
\| x_{n+1}- & z_{0}\left\|^{2} \leq \beta_{n}\right\| x_{n}-z_{0}\left\|^{2}+\left(1-\beta_{n}\right)\right\| x_{n}-z_{0} \|^{2} \\
& +\left(1-\beta_{n}\right)\left(\lambda_{n}\left(\lambda_{n}-2 \alpha\right)\left\|A u_{n}-A z_{0}\right\|^{2}+2 \alpha_{n}\left\langle\gamma g\left(x_{n}\right)-V z_{0}, y_{n}-z_{0}\right\rangle\right) \\
= & \left\|x_{n}-z_{0}\right\|^{2}+\left(1-\beta_{n}\right)\left(\lambda_{n}\left(\lambda_{n}-2 \alpha\right)\left\|A u_{n}-A z_{0}\right\|^{2}\right. \tag{3.18}\\
& \left.+2 \alpha_{n}\left\langle\gamma g\left(x_{n}\right)-V z_{0}, y_{n}-z_{0}\right\rangle\right) .
\end{align*}
$$

Thus we have that

$$
\left(1-\beta_{n}\right) \lambda_{n}\left(2 \alpha-\lambda_{n}\right)\left\|A u_{n}-A z\right\|^{2}
$$

$$
\begin{equation*}
\leq\left\|x_{n}-z\right\|^{2}-\left\|x_{n+1}-z\right\|^{2}+\left(1-\beta_{n}\right) 2 \alpha_{n}\left\langle\gamma g\left(x_{n}\right)-V z_{0}, y_{n}-z_{0}\right\rangle \tag{3.19}
\end{equation*}
$$

Then we have that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|A u_{n}-A z_{0}\right\|=0 \tag{3.20}
\end{equation*}
$$

Since $J_{\lambda_{n}}$ is firmly nonexpansive, we have that

$$
\begin{aligned}
& 2\left\|w_{n}-z_{0}\right\|^{2}=2\left\|J_{\lambda_{n}}\left(u_{n}-\lambda_{n} A u_{n}\right)-J_{\lambda_{n}}\left(z_{0}-\lambda_{n} A z_{0}\right)\right\|^{2} \\
& \leq 2\left\langle u_{n}-\lambda_{n} A u_{n}-\left(z_{0}-\lambda_{n} A z_{0}\right), w_{n}-z_{0}\right\rangle \\
&=\left\|u_{n}-\lambda_{n} A u_{n}-\left(z_{0}-\lambda_{n} A z_{0}\right)\right\|^{2}+\left\|w_{n}-z_{0}\right\|^{2} \\
& \quad-\left\|u_{n}-\lambda_{n} A u_{n}-\left(z_{0}-\lambda_{n} A z_{0}\right)-\left(w_{n}-z_{0}\right)\right\|^{2} \\
& \leq \|\left\|u_{n}-z_{0}\right\|^{2}+\left\|w_{n}-z_{0}\right\|^{2} \\
& \quad \quad-\left\|u_{n}-w_{n}-\lambda_{n}\left(A u_{n}-A z_{0}\right)\right\|^{2} \\
& \leq \| x_{n}-z_{0}\left\|^{2}+\right\| w_{n}-z_{0}\left\|^{2}-\right\| u_{n}-w_{n} \|^{2} \\
& \quad+2 \lambda_{n}\left\langle u_{n}-w_{n}, A u_{n}-A z_{0}\right\rangle-\lambda_{n}^{2}\left\|A u_{n}-A z_{0}\right\|^{2} .
\end{aligned}
$$

Thus we get

$$
\begin{align*}
\| w_{n}- & z_{0}\left\|^{2} \leq\right\| x_{n}-z_{0}\left\|^{2}-\right\| u_{n}-w_{n} \|^{2} \tag{3.21}\\
& +2 \lambda_{n}\left\langle u_{n}-w_{n}, A u_{n}-A z_{0}\right\rangle-\lambda_{n}^{2}\left\|A u_{n}-A z_{0}\right\|^{2}
\end{align*}
$$

Using (3.17), we obtain

$$
\begin{aligned}
\| x_{n+1}- & z_{0}\left\|^{2} \leq \beta_{n}\right\| x_{n}-z_{0}\left\|^{2}+\left(1-\beta_{n}\right)\right\| y_{n}-z_{0} \|^{2} \\
\leq & \beta_{n}\left\|x_{n}-z_{0}\right\|^{2}+\left(1-\beta_{n}\right)\left(\left\|w_{n}-z_{0}\right\|^{2}+2 \alpha_{n}\left\langle\gamma g\left(x_{n}\right)-V z_{0}, y_{n}-z_{0}\right\rangle\right) \\
\leq & \beta_{n}\left\|x_{n}-z_{0}\right\|^{2}+\left(1-\beta_{n}\right)\left\|x_{n}-z_{0}\right\|^{2} \\
& -\left(1-\beta_{n}\right)\left\|u_{n}-w_{n}\right\|^{2}+\left(1-\beta_{n}\right) 2 \lambda_{n}\left\langle u_{n}-w_{n}, A u_{n}-A z_{0}\right\rangle \\
& -\left(1-\beta_{n}\right) \lambda_{n}^{2}\left\|A u_{n}-A z_{0}\right\|^{2}+\left(1-\beta_{n}\right) 2 \alpha_{n}\left\langle\gamma g\left(x_{n}\right)-V z_{0}, y_{n}-z_{0}\right\rangle \\
= & \left\|x_{n}-z_{0}\right\|^{2}-\left(1-\beta_{n}\right)\left\|u_{n}-w_{n}\right\|^{2} \\
& +\left(1-\beta_{n}\right) 2 \lambda_{n}\left\langle u_{n}-w_{n}, A u_{n}-A z_{0}\right\rangle-\left(1-\beta_{n}\right) \lambda_{n}^{2}\left\|A u_{n}-A z_{0}\right\|^{2} \\
& +\left(1-\beta_{n}\right) 2 \alpha_{n}\left\langle\gamma g\left(x_{n}\right)-V z_{0}, y_{n}-z_{0}\right\rangle .
\end{aligned}
$$

So we have that

$$
\begin{aligned}
& \left(1-\beta_{n}\right)\left\|x_{n}-w_{n}\right\|^{2} \leq\left\|x_{n}-z_{0}\right\|^{2} \\
& \quad-\left\|x_{n+1}-z_{0}\right\|^{2}+2 \lambda_{n}\left\langle u_{n}-w_{n}, A u_{n}-A z_{0}\right\rangle \\
& \left.\quad-\lambda_{n}^{2}\left\|A u_{n}-A z_{0}\right\|^{2}+2 \alpha_{n}\left\langle\gamma g\left(x_{n}\right)-V z_{0}, y_{n}-z_{0}\right\rangle\right)
\end{aligned}
$$

Then we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n}-w_{n}\right\|=0 \tag{3.22}
\end{equation*}
$$

From (3.22) and (3.15) we have that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-w_{n}\right\|=0 \tag{3.23}
\end{equation*}
$$

Since $\left\|S w_{n}-w_{n}\right\| \leq\left\|S w_{n}-x_{n}\right\|+\left\|x_{n}-w_{n}\right\|$, we have that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|S w_{n}-w_{n}\right\|=0 \tag{3.24}
\end{equation*}
$$

Take $\lambda_{0} \in \mathbb{R}$ with $0<a \leq \lambda_{0} \leq b<2 \alpha$ arbitrarily. Put $s_{n}=\left(I-\lambda_{n} A\right) u_{n}$. Using $u_{n}=T_{r_{n}} x_{n}$ and $w_{n}=J_{\lambda_{n}}\left(I-\lambda_{n} A\right) u_{n}$, we have from Lemma 4 that

$$
\begin{aligned}
& \left\|J_{\lambda_{0}}\left(I-\lambda_{0} A\right) u_{n}-w_{n}\right\|=\left\|J_{\lambda_{0}}\left(I-\lambda_{0} A\right) u_{n}-J_{\lambda_{n}}\left(I-\lambda_{n} A\right) u_{n}\right\| \\
& \quad=\| J_{\lambda_{0}}\left(I-\lambda_{0} A\right) u_{n}-J_{\lambda_{0}}\left(I-\lambda_{n} A\right) u_{n} \\
& \quad \quad+J_{\lambda_{0}}\left(I-\lambda_{n} A\right) u_{n}-J_{\lambda_{n}}\left(I-\lambda_{n} A\right) u_{n} \| \\
& \quad \leq\left\|\left(I-\lambda_{0} A\right) u_{n}-\left(I-\lambda_{n} A\right) u_{n}\right\|+\left\|J_{\lambda_{0}} s_{n}-J_{\lambda_{n}} s_{n}\right\| \\
& \quad \leq\left|\lambda_{0}-\lambda_{n}\right|\left\|A u_{n}\right\|+\frac{\left|\lambda_{0}-\lambda_{n}\right|}{\lambda_{0}}\left\|J_{\lambda_{0}} s_{n}-s_{n}\right\| .
\end{aligned}
$$

We also have from (3.25) that

$$
\begin{equation*}
\left\|u_{n}-J_{\lambda_{0}}\left(I-\lambda_{0} A\right) u_{n}\right\| \leq\left\|u_{n}-w_{n}\right\|+\left\|w_{n}-J_{\lambda_{0}}\left(I-\lambda_{0} A\right) u_{n}\right\| . \tag{3.26}
\end{equation*}
$$

We will use (3.25) and (3.26) later.
Let us show that $\lim \sup _{n \rightarrow \infty}\left\langle(V-\gamma g) z_{0}, x_{n}-z_{0}\right\rangle \geq 0$. Put

$$
A=\limsup _{n \rightarrow \infty}\left\langle(V-\gamma g) z_{0}, x_{n}-z_{0}\right\rangle .
$$

Without loss of generality, there exists a subsequence $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ such that $A=\lim _{i \rightarrow \infty}\left\langle(V-\gamma g) z_{0}, x_{n_{i}}-z_{0}\right\rangle$ and $\left\{x_{n_{i}}\right\}$ converges weakly some point $w \in H$. From $\left\|x_{n}-w_{n}\right\| \rightarrow 0$ and $\left\|x_{n}-u_{n}\right\| \rightarrow 0$, we also have that $\left\{w_{n_{i}}\right\}$ and $\left\{u_{n_{i}}\right\}$ converge weakly to $w \in C$. On the other hand, from $\left\{\lambda_{n_{i}}\right\} \subset[a, b]$ there exists a subsequence $\left\{\lambda_{n_{i_{j}}}\right\}$ of $\left\{\lambda_{n_{i}}\right\}$ such that $\lambda_{n_{i_{j}}} \rightarrow \lambda_{0}$ for some $\lambda_{0} \in[a, b]$. Without loss of generality, we assume that $w_{n_{i}} \rightarrow w, u_{n_{i}} \rightarrow w$ and $\lambda_{n_{i}} \rightarrow \lambda_{0}$. From (3.24) we know $\lim _{n \rightarrow \infty}\left\|S w_{n}-w_{n}\right\|=0$. Thus we have from Lemma 3 that $w=S w$. Since W is a monotone operator and $\frac{x_{n_{i}}-u_{n_{i}}}{r_{n_{i}}} \in W u_{n_{i}}$, we have that for any $(u, v) \in W$,

$$
\left\langle u-u_{n_{i}}, v-\frac{x_{n_{i}}-u_{n_{i}}}{r_{n_{i}}}\right\rangle \geq 0
$$

Since $\liminf _{n \rightarrow \infty} r_{n}>0, u_{n_{i}} \rightharpoonup w$ and $x_{n_{i}}-u_{n_{i}} \rightarrow 0$, we have

$$
\langle u-w, v\rangle \geq 0
$$

Since W is a maximal monotone operator, we have $0 \in W w$ and hence $w \in W^{-1} 0$. Since $\lambda_{n_{i}} \rightarrow \lambda_{0}$, we have from (3.25) that

$$
\left\|J_{\lambda_{0}}\left(I-\lambda_{0} A\right) u_{n_{i}}-w_{n_{i}}\right\| \rightarrow 0
$$

Furthermore, we have from (3.26) that

$$
\left\|u_{n_{i}}-J_{\lambda_{0}}\left(I-\lambda_{0} A\right) u_{n_{i}}\right\| \rightarrow 0
$$

Since $J_{\lambda_{0}}\left(I-\lambda_{0} A\right)$ is nonexpansive, we have that $w=J_{\lambda_{0}}\left(I-\lambda_{0} A\right) w$. This means that $0 \in A w+B w$. Thus we have

$$
w \in F(T) \cap(A+B)^{-1} 0 \cap W^{-1} 0
$$

Then we have

$$
\begin{equation*}
A=\lim _{i \rightarrow \infty}\left\langle(V-\gamma g) z_{0}, x_{n_{i}}-z_{0}\right\rangle=\left\langle(V-\gamma g) z_{0}, w-z_{0}\right\rangle \geq 0 \tag{3.27}
\end{equation*}
$$

Since $y_{n}-z_{0}=\alpha_{n}\left(\gamma g\left(x_{n}\right)-V z_{0}\right)+\left(I-\alpha_{n} V\right) S w_{n}-\left(I-\alpha_{n} V\right) z_{0}$, we have

$$
\left\|y_{n}-z_{0}\right\|^{2} \leq\left(1-\alpha_{n} \tau\right)^{2}\left\|S w_{n}-z_{0}\right\|^{2}+2 \alpha_{n}\left\langle\gamma g\left(x_{n}\right)-V z_{0}, y_{n}-z_{0}\right\rangle
$$

Thus we have

$$
\left\|y_{n}-z_{0}\right\|^{2} \leq\left(1-\alpha_{n} \tau\right)^{2}\left\|x_{n}-z_{0}\right\|^{2}+2 \alpha_{n}\left\langle\gamma g\left(x_{n}\right)-V z_{0}, y_{n}-z_{0}\right\rangle
$$

Then we have that

$$
\begin{aligned}
\| x_{n+1}- & z_{0}\left\|^{2} \leq \beta_{n}\right\| x_{n}-z_{0}\left\|^{2}+\left(1-\beta_{n}\right)\right\| y_{n}-z_{0} \|^{2} \\
\leq & \beta_{n}\left\|x_{n}-z_{0}\right\|^{2} \\
& +\left(1-\beta_{n}\right)\left(\left(1-\alpha_{n} \tau\right)^{2}\left\|x_{n}-z_{0}\right\|^{2}+2 \alpha_{n}\left\langle\gamma g\left(x_{n}\right)-V z_{0}, y_{n}-z_{0}\right\rangle\right) \\
= & \left(\beta_{n}+\left(1-\beta_{n}\right)\left(1-\alpha_{n} \tau\right)^{2}\right)\left\|x_{n}-z_{0}\right\|^{2} \\
& +2\left(1-\beta_{n}\right) \alpha_{n}\left\langle\gamma g\left(x_{n}\right)-V z_{0}, y_{n}-z_{0}\right\rangle \\
\leq & \left(1-\left(1-\beta_{n}\right)\left(2 \alpha_{n} \tau-\left(\alpha_{n} \tau\right)^{2}\right)\right)\left\|x_{n}-z_{0}\right\|^{2} \\
& +2\left(1-\beta_{n}\right) \alpha_{n} \gamma k\left\|x_{n}-z_{0}\right\|^{2}+2\left(1-\beta_{n}\right) \alpha_{n}\left\langle\gamma g\left(z_{0}\right)-V z_{0}, y_{n}-z_{0}\right\rangle \\
= & \left(1-2\left(1-\beta_{n}\right) \alpha_{n}(\tau-\gamma k)\right)\left\|x_{n}-z_{0}\right\|^{2} \\
& +\left(1-\beta_{n}\right)\left(\alpha_{n} \tau\right)^{2}\left\|x_{n}-z_{0}\right\|^{2}+2\left(1-\beta_{n}\right) \alpha_{n}\left\langle\gamma g\left(z_{0}\right)-V z_{0}, y_{n}-z_{0}\right\rangle \\
= & \left(1-2\left(1-\beta_{n}\right) \alpha_{n}(\tau-\gamma k)\right)\left\|x_{n}-z_{0}\right\|^{2} \\
& +2\left(1-\beta_{n}\right) \alpha_{n}(\tau-\gamma k)\left(\frac{\alpha_{n} \tau^{2}\left\|x_{n}-z_{0}\right\|^{2}}{2(\tau-\gamma k)}+\frac{\left\langle\gamma g\left(z_{0}\right)-V z_{0}, y_{n}-z_{0}\right\rangle}{\tau-\gamma k}\right) .
\end{aligned}
$$

By (3.27) and Lemma 5 , we obtain that $x_{n} \rightarrow z_{0}$, where

$$
z_{0}=P_{F(S) \cap(A+B)^{-1} 0 \cap W^{-1} 0}(I-V+\gamma g) z_{0}
$$

Case 2: Suppose that there exists a subsequence $\left\{\Gamma_{n_{i}}\right\} \subset\left\{\Gamma_{n}\right\}$ such that $\Gamma_{n_{i}}<$ $\Gamma_{n_{i}+1}$ for all $i \in \mathbb{N}$. In this case, we define $\tau: \mathbb{N} \rightarrow \mathbb{N}$ by

$$
\tau(n)=\max \left\{k \leq n: \Gamma_{k}<\Gamma_{k+1}\right\} .
$$

Then we have from Lemma 6 that $\Gamma_{\tau(n)}<\Gamma_{\tau(n)+1}$. Thus we have from (3.10) that for all $n \in \mathbb{N}$,

$$
\begin{align*}
& \beta_{\tau(n)}\left(1-\beta_{\tau(n)}\right)\left\|S w_{\tau(n)}-x_{\tau(n)}\right\|^{2} \\
& \quad \leq\left(1-\beta_{\tau(n)}\right)^{2} 2 \alpha_{\tau(n)}\left\|S w_{\tau(n)}-x_{\tau(n)}\right\|\left\|\gamma g\left(x_{\tau(n)}\right)-V S w_{\tau(n)}\right\| \\
& \quad+\left(1-\beta_{\tau(n)}\right)^{2} \alpha_{\tau(n)}^{2}\left\|\gamma g\left(x_{\tau(n)}\right)-V S w_{\tau(n)}\right\|^{2} \tag{3.28}\\
& \quad+2\left(1-\beta_{\tau(n)}\right) \alpha_{\tau(n)}\left\langle\gamma g\left(x_{\tau(n)}\right), x_{\tau(n)}-z_{0}\right\rangle \\
& \quad-2\left(1-\beta_{\tau(n)}\right) \alpha_{\tau(n)}\left\langle V S w_{\tau(n)}, x_{\tau(n)}-z_{0}\right\rangle
\end{align*}
$$

Using $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \lim \sup _{n \rightarrow \infty} \beta_{n}<1$, we have from (3.28) and Lemma 6 that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|S w_{\tau}(n)-x_{\tau}(n)\right\|=0 \tag{3.29}
\end{equation*}
$$

As in the proof of Case 1 we also have that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{\tau(n)+1}-x_{\tau(n)}\right\|=0 \tag{3.30}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{\tau(n)}-x_{\tau(n)}\right\|=0 \tag{3.31}
\end{equation*}
$$

Furthermore, we have that $\lim _{n \rightarrow \infty}\left\|u_{\tau(n)}-x_{\tau(n)}\right\|=0, \lim _{n \rightarrow \infty}\left\|A u_{\tau(n)}-A z_{0}\right\|=0$, $\lim _{n \rightarrow \infty}\left\|u_{\tau(n)}-w_{\tau(n)}\right\|=0$ and $\lim _{n \rightarrow \infty}\left\|x_{\tau(n)}-w_{\tau(n)}\right\|=0$. From these we have that $\lim _{n \rightarrow \infty}\left\|S w_{\tau(n)}-w_{\tau(n)}\right\|=0$. As in the proof of Case 1, we can show that

$$
\limsup _{n \rightarrow \infty}\left\langle(V-\gamma g) z_{0}, x_{\tau(n)}-z_{0}\right\rangle \geq 0
$$

We also have that
$\left\|y_{\tau(n)}-z_{0}\right\|^{2} \leq\left(1-\alpha_{\tau(n)} \tau\right)^{2}\left\|x_{\tau(n)}-z_{0}\right\|^{2}+2 \alpha_{\tau(n)}\left\langle\gamma g\left(x_{\tau(n)}\right)-V z_{0}, y_{\tau(n)}-z_{0}\right\rangle$
and then

$$
\begin{aligned}
& \left\|x_{\tau(n)+1}-z_{0}\right\|^{2} \leq\left(1-2\left(1-\beta_{\tau(n)}\right) \alpha_{\tau(n)}(\tau-\gamma k)\right)\left\|x_{\tau(n)}-z_{0}\right\|^{2} \\
& \quad+\left(1-\beta_{\tau(n)}\right)\left(\alpha_{\tau(n)} \tau\right)^{2}\left\|x_{\tau(n)}-z_{0}\right\|^{2}+2\left(1-\beta_{\tau(n)}\right) \alpha_{\tau(n)}\left\langle\gamma g\left(z_{0}\right)-V z_{0}, y_{\tau(n)}-z_{0}\right\rangle
\end{aligned}
$$

From $\Gamma_{\tau(n)}<\Gamma_{\tau(n)+1}$, we have that

$$
\begin{aligned}
& \left.2\left(1-\beta_{\tau(n)}\right) \alpha_{\tau(n)}(\tau-\gamma k)\right)\left\|x_{\tau(n)}-z_{0}\right\|^{2} \\
& \quad \leq\left(1-\beta_{\tau(n)}\right)\left(\alpha_{\tau(n)} \tau\right)^{2}\left\|x_{\tau(n)}-z_{0}\right\|^{2}+2\left(1-\beta_{\tau(n)}\right) \alpha_{\tau(n)}\left\langle\gamma g\left(z_{0}\right)-V z_{0}, y_{\tau(n)}-z_{0}\right\rangle
\end{aligned}
$$

Since $\left(1-\beta_{\tau(n)}\right) \alpha_{\tau(n)}>0$, we have that

$$
\begin{aligned}
2(\tau-\gamma k) & \left\|x_{\tau(n)}-z_{0}\right\|^{2} \\
& \leq \alpha_{\tau(n)} \tau^{2}\left\|x_{\tau(n)}-z_{0}\right\|^{2}+2\left\langle\gamma g\left(z_{0}\right)-V z_{0}, y_{\tau(n)}-z_{0}\right\rangle
\end{aligned}
$$

Thus we have that

$$
\limsup _{n \rightarrow \infty} 2(\tau-\gamma k)\left\|x_{\tau(n)}-z_{0}\right\|^{2} \leq 0
$$

and hence $\left\|x_{\tau(n)}-z_{0}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Since $x_{\tau(n)}-x_{\tau(n)+1} \rightarrow 0$, we have $\left\|x_{\tau(n)+1}-z_{0}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Using Lemma 6 again, we obtain that

$$
\left\|x_{n}-z_{0}\right\| \leq\left\|x_{\tau(n)+1}-z_{0}\right\| \rightarrow 0
$$

as $n \rightarrow \infty$. This completes the proof.

4. Applications

In this section, using Theorem 10, we can obtain well-known and new strong convergence theorems for in a Hilbert space. Let H be a Hilbert space and let f be a proper lower semicontinuous convex function of H into $(-\infty, \infty]$. Then, the subdifferential ∂f of f is defined as follows:

$$
\partial f(x)=\{z \in H: f(x)+\langle z, y-x\rangle \leq f(y), \forall y \in H\}
$$

for all $x \in H$. From Rockafellar [25], we know that ∂f is a maximal monotone operator. Let C be a nonempty closed convex subset of H and let i_{C} be the indicator function of C, i.e.,

$$
i_{C}(x)= \begin{cases}0, & x \in C, \\ \infty, & x \notin C\end{cases}
$$

Then, i_{C} is a proper lower semicontinuous convex function on H and then the subdifferential ∂i_{C} of i_{C} is a maximal monotone operator. So, we can define the resolvent J_{λ} of ∂i_{C} for $\lambda>0$, i.e.,

$$
J_{\lambda} x=\left(I+\lambda \partial i_{C}\right)^{-1} x
$$

for all $x \in H$. We know that $J_{\lambda} x=P_{C} x$ for all $x \in H$ and $\lambda>0$; see [30].
Theorem 11. Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let S be a generalized hybrid mapping of C into C. Suppose $F(S) \neq \emptyset$. Let $u, x_{1} \in C$ and let $\left\{x_{n}\right\} \subset C$ be a sequence generated by

$$
x_{n+1}=\beta_{n} x_{n}+\left(1-\beta_{n}\right)\left\{\alpha_{n} u+\left(1-\alpha_{n}\right) S x_{n}\right\}
$$

for all $n \in \mathbb{N}$, where $\left\{\beta_{n}\right\} \subset(0,1)$ and $\left\{\alpha_{n}\right\} \subset(0,1)$ satisfy

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \alpha_{n}=0, \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty \\
\text { and } \quad 0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \limsup _{n \rightarrow \infty} \beta_{n}<1 .
\end{gathered}
$$

Then the sequence $\left\{x_{n}\right\}$ converges strongly to $z_{0} \in F(S)$, where $z_{0}=P_{F(S)} u$.
Proof. Put $A=0, B=W=\partial i_{C}$ and $\lambda_{n}=r_{n}=1$ for all $n \in \mathbb{N}$ in Theorem 10. Then we have $J_{\lambda_{n}}=T_{r_{n}}=P_{C}$ for all $n \in \mathbb{N}$. Furthermore, put $g(x)=u$ and $V(x)=x$ for all $x \in H$. Then, we can take $\bar{\gamma}=L=1$. Thus we can take $\mu=1$. On the other hand, since $\|g(x)-g(y)\|=0 \leq \frac{1}{3}\|x-y\|$ for all $x, y \in H$, we can take $k=\frac{1}{3}$. So, we can take $\gamma=1$. Then for $u, x_{1} \in C$, we get that

$$
x_{n+1}=\beta_{n} x_{n}+\left(1-\beta_{n}\right)\left\{\alpha_{n} u+\left(I-\alpha_{n}\right) S x_{n}\right\}
$$

for all $n \in \mathbb{N}$. So, we have $\left\{x_{n}\right\} \subset C$. We also have

$$
z_{0}=P_{F(S) \cap C}(I-V+\gamma g) z_{0}=P_{F(S)}\left(z_{0}-z_{0}+1 \cdot u\right)=P_{F(S)} u
$$

Thus we obtain the desired result by Theorem 10.
Theorem 11 solves a problem posed by Kurokawa and Takahashi [16]. The following result is a strong convergence theorem of Halpern's type [10] for finding a common solution of a monotone inclusion problem for the sum of two monotone mappings, of a fixed point problem for nonexpansive mappings and of an equilibrium problem for bifunctions in a Hilbert space.

Theorem 12. Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let $\alpha>0$ and let A be an α-inverse strongly-monotone mapping of C into H. Let B and W be maximal monotone operators on H such that the domains of B and W are included in C. Let $J_{\lambda}=(I+\lambda B)^{-1}$ and $T_{r}=(I+r W)^{-1}$ be resolvents of B and W for $\lambda>0$ and $r>0$, respectively. Let S be a nonexpansive mapping of C into H. Let $0<k<1$ and let g be a k-contraction of H into itself. Let V be a $\bar{\gamma}$-strongly monotone and L-Lipschitzian continuous operator with $\bar{\gamma}>0$ and $L>0$. Take $\mu, \gamma \in \mathbb{R}$ as follows:

$$
0<\mu<\frac{2 \bar{\gamma}}{L^{2}}, \quad 0<\gamma<\frac{\bar{\gamma}-\frac{L^{2} \mu}{2}}{k}
$$

Suppose $F(S) \cap(A+B)^{-1} 0 \cap W^{-1} 0 \neq \emptyset$. Let $x_{1}=x \in H$ and let $\left\{x_{n}\right\} \subset H$ be a sequence generated by

$$
x_{n+1}=\beta_{n} x_{n}+\left(1-\beta_{n}\right)\left\{\alpha_{n} \gamma g\left(x_{n}\right)+\left(I-\alpha_{n} V\right) S J_{\lambda_{n}}\left(I-\lambda_{n} A\right) T_{r_{n}} x_{n}\right\}
$$

for all $n \in \mathbb{N}$, where $\left\{\alpha_{n}\right\} \subset(0,1),\left\{\beta_{n}\right\} \subset(0,1),\left\{\lambda_{n}\right\} \subset(0, \infty)$ and $\left\{r_{n}\right\} \subset(0, \infty)$ satisfy

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \alpha_{n}=0, \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty, \quad 0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \limsup _{n \rightarrow \infty} \beta_{n}<1, \\
\liminf _{n \rightarrow \infty} r_{n}>0 \quad \text { and } \quad 0<a \leq \lambda_{n} \leq b<2 \alpha
\end{gathered}
$$

Then the sequence $\left\{x_{n}\right\}$ converges strongly to $z_{0} \in F(S) \cap(A+B)^{-1} 0 \cap W^{-1} 0$, where $z_{0}=P_{F(S) \cap(A+B)^{-1} 0 \cap W^{-1} 0}(I-V+\gamma g) z_{0}$.

Proof. We know that a nonexpansive mapping T of C into H is a (1,0)-generalized hybrid mapping. So, we obtain the desired result by Theorem 10.

The following lemmas were given in Combettes and Hirstoaga [8] and Takahashi, Takahashi and Toyoda [27]; see also [1].

Lemma 13 ([8]). Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Assume that $f: C \times C \rightarrow \mathbb{R}$ satisfies $(A 1)-(A 4)$. For $r>0$ and $x \in H$, define a mapping $T_{r}: H \rightarrow C$ as follows:

$$
T_{r} x=\left\{z \in C: f(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0, \forall y \in C\right\}
$$

for all $x \in H$. Then, the following hold:
(1) T_{r} is single-valued;
(2) T_{r} is a firmly nonexpansive mapping, i.e., for all $x, y \in H$,

$$
\left\|T_{r} x-T_{r} y\right\|^{2} \leq\left\langle T_{r} x-T_{r} y, x-y\right\rangle
$$

(3) $F\left(T_{r}\right)=E P(f)$;
(4) $E P(f)$ is closed and convex.

We call such T_{r} the resolvent of f for $r>0$.
Lemma 14 ([27]). Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let $f: C \times C \rightarrow \mathbb{R}$ satisfy $(A 1)-(A 4)$. Let A_{f} be a set-valued mapping of H into itself defined by

$$
A_{f} x=\left\{\begin{array}{l}
\{z \in H: f(x, y) \geq\langle y-x, z\rangle, \quad \forall y \in C\}, \quad \forall x \in C, \\
\emptyset, \quad \forall x \notin C
\end{array}\right.
$$

Then, $E P(f)=A_{f}^{-1} 0$ and A_{f} is a maximal monotone operator with $D\left(A_{f}\right) \subset C$. Furthermore, for any $x \in H$ and $r>0$, the resolvent T_{r} of f coincides with the resolvent of A_{f}, i.e.,

$$
T_{r} x=\left(I+r A_{f}\right)^{-1} x
$$

Using Lemmas 13, 14 and Theorem 10, we also obtain the following result for generalized hybrid mappings of C into H with equilibrium problem in a Hilbert space.

Theorem 15. Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let S be a generalised hybrid mapping of C into H. Let f be a bifunction of $C \times C$ into \mathbb{R} satisfying $(A 1)-(A 4)$. Let $0<k<1$ and let g be a k-contraction of H into itself. Let V be $a \bar{\gamma}$-strongly monotone and L-Lipschitzian continuous operator of H into itself with $\bar{\gamma}>0$ and $L>0$. Take $\mu, \gamma \in \mathbb{R}$ as follows:

$$
0<\mu<\frac{2 \bar{\gamma}}{L^{2}}, \quad 0<\gamma<\frac{\bar{\gamma}-\frac{L^{2} \mu}{2}}{k}
$$

Suppose that $F(S) \cap E P(f) \neq \emptyset$. Let $x_{1}=x \in H$ and let $\left\{x_{n}\right\} \subset H$ be a sequence generated by

$$
\begin{gathered}
f\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \quad \forall y \in C, \\
x_{n+1}=\beta_{n} x_{n}+\left(1-\beta_{n}\right)\left\{\alpha_{n} \gamma g\left(x_{n}\right)+\left(I-\alpha_{n} V\right) S u_{n}\right\}
\end{gathered}
$$

for all $n \in \mathbb{N}$, where $\left\{\beta_{n}\right\} \subset(0,1),\left\{\alpha_{n}\right\} \subset(0,1)$ and $\left\{r_{n}\right\} \subset(0, \infty)$ satisfy

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \alpha_{n}=0, \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty, \quad \liminf _{n \rightarrow \infty} r_{n}>0 \\
\text { and } \quad 0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \limsup _{n \rightarrow \infty} \beta_{n}<1
\end{gathered}
$$

Then the sequence $\left\{x_{n}\right\}$ converges strongly to $z_{0} \in F(S) \cap E P(f)$, where $z_{0}=$ $P_{F(S) \cap E P(f)}(I-V+\gamma g) z_{0}$.

Proof. Put $A=0$ and $B=\partial i_{C}$ in Theorem 10. Futhermore, for the bifunction $f: C \times C \rightarrow \mathbb{R}$, define A_{f} as in Lemma 14. Put $W=A_{f}$ in Theorem 10 and let $T_{r_{n}}$ be the resolvent of A_{f} for $r_{n}>0$. Then we obtain that the domain of A_{f} is included in C and $T_{r_{n}} x_{n}=u_{n}$ for all $n \in \mathbb{N}$. Thus we obtain the desired result by Theorem 10.

Acknowledgements. The first author was partially supported by Grant-in-Aid for Scientific Research No. 23540188 from Japan Society for the Promotion of Science. The second and the third authors were partially supported by the grant NSC 99-$2115-\mathrm{M}-110-007-\mathrm{MY} 3$ and the grant NSC $99-2115-\mathrm{M}-037-002-\mathrm{MY} 3$, respectively.

References

[1] K. Aoyama, Y. Kimura, Yasunori and W. Takahashi, Maximal monotone operators and maximal monotone functions for equilibrium problems, J. Convex Anal. 15 (2008), 395-409.
[2] K. Aoyama, Y. Kimura, Yasunori, W. Takahashi and Toyoda, Masashi, Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space, Nonlinear Anal. 67 (2007), 2350-2360.
[3] K. Aoyama, Y. Kimura, W. Takahashi, and M. Toyoda, On a strongly nonexpansive sequence in Hilbert spaces, J. Nonlinear Convex Anal. 8 (2007), 471-489.
[4] J.-B. Baillon, Un theoreme de type ergodique pour les contractions non lineaires dans un espace de Hilbert, C. R. Acad. Sci. Paris Ser. A-B 280 (1975), 1511-1514.
[5] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), 123-145.
[6] F. E. Browder, Convergence theorems for sequences of nonlinear operators in Banach spaces, Math. Z. 100 (1967), 201-225.
[7] F. E. Browder and W. V.Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl. 20 (1967), 197-228.
[8] P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6, (2005), 117-136.
[9] K. Eshita and W. Takahashi, Approximating zero points of accretive operators in general Banach spaces, JP J. Fixed Point Theory Appl. 2 (2007), 105-116.
[10] B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967), 957-961.
[11] M. Hojo and W. Takahashi, Weak and strong convergence theorems for generalized hybrid mappings in Hilbert spaces, Sci. Math. Jpn. 73 (2011), 31-40.
[12] S. Itoh and W. Takahashi, The common fixed point theory of single-valued mappings and multi-valued mappings, Pacific J. Math. 79 (1978), 493-508.
[13] P. Kocourek, W. Takahashi and J.-C. Yao, Fixed point theorems and weak convergence theorems for genelalized hybrid mappings in Hilbert spaces, Taiwanese J. Math. 14 (2010), 2497-2511.
[14] F. Kohsaka and W. Takahashi, Existence and approximation of fixed points of firmly nonexpansive-type mappings in Banach spaces, SIAM J. Optim. 19 (2008), 824-835.
[15] F. Kohsaka and W. Takahashi, Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces, Arch. Math. 91 (2008), 166-177.
[16] Y. Kurokawa and W. Takahashi, Weak and strong convergence theorems for nonlspreading mappings in Hilbert spaces, Nonlinear Anal. 73 (2010), 1562-1568.
[17] L.-J. Lin and W. Takahashi, A general itarative method for hierarchical variational inequality problems in Hilbert spaces and applications, Positivity, to appear.
[18] Y. Liu, A general iterative method for equilibrium problems and strict pseudo-contractions in Hilbert spaces, Nonlinear Appl. 71 (2009), 4852-4861.
[19] P. E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valed Appl. 16 (2008), 899-912.
[20] G. Marino H.-K. Xu, A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 318 (2006), 43-52.
[21] G. Marino H.-K. Xu, Weak and strong convergence theorems for strich pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl. 329 (2007), 336-346.
[22] A. Moudafi, Weak convergence theorems for nonexpansive mappings and equilibrium problems, J. Nonlinear Convex Anal. 9 (2008), 37-43.
[23] N. Nadezhkina and W. Takahashi, Strong convergence theorem by hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings, SIAM J. Optim. 16 (2006), 1230-1241.
[24] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.
[25] R. T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pacific J. Math. 33 (1970), 209-216.
[26] S. Takahashi and W. Takahashi, Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space, Nonlinear Anal. 69 (2008), 10251033.
[27] S. Takahashi, W. Takahashi, and M. Toyoda, Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces, J. Optim. Theory Appl. 147 (2010), 27-41.
[28] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
[29] W. Takahashi, Convex Analysis and Approximation of Fixed Points, Yokohama Publishers, Yokohama, 2000 (Japanese).
[30] W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohama Publishers, Yokohama, 2009.
[31] W. Takahashi, Fixed point theorems for new nonlinear mappings in a Hilbert space, J. Nonlinear Convex Anal. 11 (2010), 79-88.
[32] W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 118 (2003), 417-428.
[33] W. Takahashi, N.-C. Wong and J.-C. Yao, Two generalized strong convergence theorems of Halpern's type in Hilbert spaces and applications, Taiwanese J. Math., to appear.
[34] W. Takahashi, J.-C. Yao, and K. Kocourek, Weak and strong convergence theorems for generalized hybrid nonself-mappings in Hilbert spaces, J. Nonlinear Convex Anal. 11 (2010), 567-586.
[35] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. 58 (1992), 486-491.
[36] H. K. Xu, Another control condition in an iterative method for nonexpansive mappings, Bull. Austral. Math. Soc. 65 (2002), 109-113.
[37] H. Zhou, Convergence theorems of fixed points fot k-strict pseudo-contractions in Hilbert spaces, Nonlinear Anal. 69 (2008), 456-462.
(Wataru Takahashi) Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Tokyo 152-8552, Japan

E-mail address: wataru@is.titech.ac.jp
(Ngai-Ching Wong) Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan

E-mail address: wong@math.nsysu.edu.tw
(Jen-Chih Yao) Center for General Education, Kaohsiung Medical University, KaohSIUNG 80702, Taiwan

E-mail address: yaojc@kmu.edu.tw

