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Abstract
In this paper, let E be a reflexive and strictly convex Banach space which either is
uniformly smooth or has a weakly continuous duality map. We consider the hybrid
viscosity approximation method for finding a common fixed point of an infinite family
of nonexpansive mappings in E. We prove the strong convergence of this method to
a common fixed point of the infinite family of nonexpansive mappings, which solves
a variational inequality on their common fixed point set. We also give a weak
convergence theorem for the hybrid viscosity approximation method involving an
infinite family of nonexpansive mappings in a Hilbert space.
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1 Introduction
Let C be a nonempty closed convex subset of a (real) Banach space E, and let T : C → C
be a nonlinear mapping. Denote by F(T) the set of fixed points of T , i.e., F(T) = {x ∈ C :
Tx = x}. Recall that T is nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C.

A self-mapping f : C → C is said to be a contraction on C if there exists a constant α in
(, ) such that

∥∥f (x) – f (y)
∥∥ ≤ α‖x – y‖, ∀x, y ∈ C.

As in [], we use the notation �C to denote the collection of all contractions on C, i.e.,

�C = {f : C → C is a contraction}.

Note that each f in �C has a unique fixed point in C.
One classical way to study a nonexpansive mapping T : C → C is to use contractions to

approximateT [–].More precisely, for each t in (, ) we define a contractionTt : C → C
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by

Ttx = tu + ( – t)Tx, ∀x ∈ C,

where u in C is an arbitrary but fixed point. Banach’s contraction mapping principle guar-
antees that Tt has a unique fixed point xt in C. It is unclear, in general, how xt behaves as
t → +, even if T has a fixed point. However, in the case E =H a Hilbert space and T hav-
ing a fixed point, Browder [] proved that xt converges strongly to a fixed point of T . Reich
[] extends Browder’s result and proves that if E is a uniformly smooth Banach space, then
xt converges strongly to a fixed point of T and the limit defines the (unique) sunny non-
expansive retraction u �→ Q(u) from C onto F(T). Xu [] proved that Browder’s results
hold in reflexive Banach spaces with weakly continuous duality mappings. See Section 
for definitions and notations.
Recall that the original Mann’s iterative process was introduced in [] in . Let T :

C → C be a map of a closed and convex subset C of a Hilbert space. The original Mann’s
iterative process generates a sequence {xn} in the following manner:

⎧⎨
⎩
x ∈ C chosen arbitrarily,
xn+ = ( – αn)xn + αnTxn, ∀n≥ ,

(.)

where the sequence {αn} lies in the interval (, ). If T is a nonexpansive mapping with a
fixed point and the control sequence {αn} is chosen so that∑∞

n= αn(–αn) = +∞, then the
sequence {xn} generated by original Mann’s iterative process (.) converges weakly to a
fixed point of T (this is also valid in a uniformly convex Banach space with a Frechet differ-
entiable norm []). In an infinite-dimensional Hilbert space, the original Mann’s iterative
process guarantees only the weak convergence. Therefore, many authors try to modify
the original Mann’s iterative process to ensure the strong convergence for nonexpansive
mappings (see [, –] and the references therein).
Kim and Xu [] proposed the following simpler modification of the original Mann’s

iterative process: Let C be a nonempty closed convex subset of a Banach space E and
T : C → C a nonexpansive mapping such that F(T) 
= ∅. For an arbitrary x in C, define
{xn} in the following way:

⎧⎨
⎩
yn = αnxn + ( – αn)Txn,
xn+ = βnu + ( – βn)yn, ∀n≥ ,

(.)

where u in C is an arbitrary but fixed element in C, and {αn} and {βn} are two sequences in
(, ). The modified Mann’s Iteration scheme (.) is a convex combination of a particular
point u in C and the original Mann’s iterative process (.). There is no additional projec-
tion involved in iteration scheme (.). They proved a strong convergence theorem for the
iteration scheme (.) under some control conditions on the parameters αn ’s and βn ’s.
Recently, Yao, Chen and Yao [] combined the viscosity approximation method [] and

the modified Mann’s iteration scheme [] to develop the following hybrid viscosity ap-
proximation method. Let C be a nonempty closed convex subset of a Banach space E, let
T : C → C a nonexpansive mapping such that F(T) 
= ∅, and let f ∈ �C . For any arbitrary
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but fixed point x in C, define {xn} in the following way:

⎧⎨
⎩
yn = αnxn + ( – αn)Txn,
xn+ = βnf (xn) + ( – βn)yn, ∀n≥ ,

(.)

where {αn} and {βn} are two sequences in (, ). They proved under certain different con-
trol conditions on the sequences {αn} and {βn} that {xn} converges strongly to a fixed point
of T . Their result extends and improves the main results in Kim and Xu [].
Under the assumption that no parameter sequence converges to zero, Ceng and Yao []

proved the strong convergence of the sequence {xn} generated by (.) to a fixed point of
T , which solves a variational inequality on F(T).

Theorem . (See [, Theorem .]) Let C be a nonempty closed convex subset of a uni-
formly smooth Banach space E. Let T : C → C be a nonexpansive mapping with F(T) 
= ∅,
and let f ∈ �C with a contractive constant α in (, ). Given sequences {αn} and {βn} in
[, ] such that the following control conditions are satisfied:
(C) ≤ βn ≤  – α, ∀n≥ n for some integer n ≥ , and

∑∞
n= βn = +∞;

(C)  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(C) limn→∞( βn+

–(–βn+)αn+ –
βn

–(–βn)αn ) = .
For an arbitrary x in C, let {xn} be defined by (.). Then,

xn converges strongly to some Q(f ) in F(T) ⇔ βn
(
f (xn) – xn

) → .

In this case, Q(f ) ∈ F(T) solves the variational inequality

〈
(I – f )Q(f ), J

(
Q(f ) – p

)〉 ≤ , f ∈ �C ,p ∈ F(T).

On the other hand, a similar problem concerning a family of nonexpansive mappings
has also been considered by many authors. The well-known convex feasibility problem
reduces to finding a common fixed point of a family of nonexpansive mappings; see, e.g.,
[, ]. The problem of finding an optimal point that minimizes a given cost function
over the common fixed point set of a family of nonexpansive mappings is of wide inter-
disciplinary interest and practical importance; see, e.g., [–]. In particular, a simple
algorithm solving the problem of minimizing a quadratic function over the common fixed
point set of a family of nonexpansive mappings is of extreme value in many applications
including set theoretic signal estimation; see, e.g., [, ].
Let T,T, . . . be nonexpansive mappings of a nonempty closed and convex subset C of

a Banach space E into itself. Let λ,λ, . . . be real numbers in [, ]. Qin, Cho, Kang and
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Kang [] considered the nonexpansive mappingWn defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Un,n+ = I,
Un,n = λnTnUn,n+ + ( – λn)I,
Un,n– = λn–Tn–Un,n + ( – λn–)I,
· · ·
Un,k = λkTkUn,k+ + ( – λk)I,
Un,k– = λk–Tk–Un,k + ( – λk–)I,
· · ·
Un, = λTUn, + ( – λ)I,
Wn =Un, = λTUn, + ( – λ)I, ∀n≥ .

(.)

Motivated by [, , , , , ], they proposed the following iterative algorithm:

⎧⎪⎪⎨
⎪⎪⎩
x = x ∈ C chosen arbitrarily,
yn = αnxn + ( – αn)Wnxn,
xn+ = βnu + ( – βn)yn, ∀n≥ ,

(.)

where u in C is a given point. They proved

Theorem . (See [, Theorem . and its proof]) Let C be a nonempty closed convex
subset of a reflexive and strictly convex Banach space E with a weakly continuous duality
map Jϕ with gauge ϕ. Let Ti be a nonexpansive mapping from C into itself for i = , , . . . .
Assume that F =

⋂∞
i= F(Ti) 
= ∅. Given u ∈ C and given sequences {αn}, {βn} and {λn} in

(, ) satisfying
(i) limn→∞ βn =  and

∑∞
n= βn = +∞;

(ii)  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(iii)  < λn ≤ b < , ∀n≥  for some b in (, ).

Then the sequence {xn} defined by (.) converges strongly to some point Q(u) in F. Here,
Q : C → F thus defined is the unique sunny nonexpansive retraction of Reich type from C
onto F, that is, Q(u) ∈ F solves the variational inequality

〈
Q(u) – u, Jϕ

(
Q(u) – p

)〉 ≤ , u ∈ C,p ∈ F .

In this paper, let E be a reflexive and strictly convex Banach space which either is uni-
formly smooth or has a weakly continuous duality map Jϕ with gauge ϕ. Combining two
iterative methods (.) and (.), we give the following hybrid viscosity approximation
scheme. Let C be a nonempty closed convex subset of E, let Ti : C → C be a nonexpansive
mapping for each i = , , . . . , such that F =

⋂∞
n= F(Tn) 
= ∅, and let f ∈ �C . Define {xn} in

the following way:

⎧⎪⎪⎨
⎪⎪⎩
x = x ∈ C chosen arbitrarily,
yn = αnxn + ( – αn)Wnxn,
xn+ = βnf (xn) + ( – βn)yn, ∀n≥ ,

(.)
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where Wn is defined by (.), {λn} is a sequence in (, ), and {αn} and {βn} are two se-
quences in [, ]. It is proved under some appropriate control conditions on the sequences
{λn}, {αn} and {βn} that {xn} converges strongly to a common fixed point Q(f ) of the infi-
nite family of nonexpansive mappings T,T, . . . , which solves a variational inequality on
F =

⋂∞
n= F(Tn). Such a result includes Theorem . as a special case. Furthermore, we also

give a weak convergence theorem for the hybrid viscosity approximation method (.) in-
volving an infinite family of nonexpansive mappings T,T, . . . in a Hilbert space H . The
results presented in this paper can be viewed as supplements, improvements and exten-
sions of some known results in the literature, e.g., [, , , –, –].

2 Preliminaries
Let E be a (real) Banach space with the Banach dual space E* in pairing 〈·, ·〉. We write
xn ⇀ x to indicate that the sequence {xn} converges weakly to x, and xn → x to indicate
that {xn} converges strongly to x. The unit sphere of E is denoted by U = {x ∈ E : ‖x‖ = }.
The norm of E is said to be Gateaux differentiable (and E is said to be smooth) if

lim
t→+

‖x + ty‖ – ‖x‖
t

(.)

exists for every x, y in U . Recall that if E is reflexive, then E is smooth if and only if E* is
strictly convex, i.e., for every distinct x*, y* in E* of norm one, there holds ‖x* + y*‖/ < .
The norm of E is said to be uniformly Frechet differentiable (and E is said to be uniformly
smooth) if the limit in (.) is attained uniformly for (x, y) inU×U . Every uniformly smooth
Banach space E is reflexive and smooth.
Thenormalized dualitymapping J fromE into the family of nonempty (byHahn-Banach

theorem) weak* compact subsets of E* is defined by

J(x) =
{
x* ∈ E* :

〈
x,x*

〉
= ‖x‖ = ∥∥x*∥∥}, ∀x ∈ E.

If E is smooth then J is single-valued and norm-to-weak* continuous. It is also well known
that if E is uniformly smooth, then J is uniformly norm-to-norm continuous on bounded
subsets of E.
In order to establish new strong and weak convergence theorems for hybrid viscosity

approximation method (.), we need the following lemmas. The first lemma is a very
well-known (subdifferential) inequality; see, e.g., [].

Lemma . ([]) Let E be a real Banach space and J the normalized duality map on E.
Then, for any given x, y in E, the following inequality holds:

‖x + y‖ ≤ ‖x‖ + 〈y, j(x + y)
〉
, ∀j(x + y) ∈ J(x + y).

Lemma . ([, Lemma ]) Let {xn} and {yn} be bounded sequences in a Banach space
E, and let {βn} be a sequence in [, ] such that  < lim infn→∞ βn ≤ lim supn→∞ βn < .
Suppose xn+ = ( –βn)yn +βnxn for all integers n ≥  and lim supn→∞(‖yn+ – yn‖– ‖xn+ –
xn‖)≤ . Then, limn→∞ ‖yn – xn‖ = .

http://www.fixedpointtheoryandapplications.com/content/2012/1/117
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Lemma . ([]) Let {sn} be a sequence of nonnegative real numbers satisfying the con-
dition

sn+ ≤ ( –μn)sn +μnνn, ∀n≥ ,

where {μn}, {νn} are sequences of real numbers such that
(i) {μn} ⊂ [, ] and

∑∞
n= μn = +∞, or equivalently,

∞∏
n=

( –μn) := lim
n→∞

n∏
k=

( –μk) = ;

(ii) lim supn→∞ νn ≤ , or
∑∞

n= μnνn is convergent.
Then, limn→∞ sn = .

Recall that, ifD⊆ C are nonempty subsets of a Banach space E such that C is nonempty,
closed and convex, then a mapping Q : C →D is sunny [] provided Q(x + t(x –Q(x))) =
Q(x) for all x in C and t ≥  whenever x+ t(x–Q(x)) ∈ C. A sunny nonexpansive retraction
is a sunny retraction, which is also nonexpansive. Sunny nonexpansive retractions play
an important role; see, e.g., [, ]. They are characterized as follows []: if E is a smooth
Banach space, thenQ : C →D is a sunny nonexpansive retraction if and only if there holds
the inequality

〈
x –Qx, J(y –Qx)

〉 ≤ , ∀x ∈ C, y ∈D.

Lemma . ([, Theorem .]) Let E be a uniformly smooth Banach space, C be a
nonempty closed convex subset of E, T : C → C be a nonexpansive mapping with F(T) 
= ∅,
and f ∈ �C. Then {xt} defined by

xt = tf (xt) + ( – t)Txt , ∀t ∈ (, ),

converges strongly to a point in F(T). Define Q :�C → F(T) by

Q(f ) := lim
t→+

xt .

Then, Q(f ) solves the variational inequality

〈
(I – f )Q(f ), J

(
Q(f ) – p

)〉 ≤ , ∀p ∈ F(T).

In particular, if f = u ∈ C is a constant, then the map u �→ Q(u) is reduced to the sunny
nonexpansive retraction of Reich type from C onto F(T), i.e.,

〈
Q(u) – u, J

(
Q(u) – p

)〉 ≤ , ∀p ∈ F(T).

Recall that a gauge is a continuous strictly increasing function ϕ : [,∞)→ [,∞) such
that ϕ() =  and ϕ(t)→ ∞ as t → ∞. Associated to gauge ϕ is the duality map Jϕ : E →
E* defined by

Jϕ(x) =
{
x* ∈ E* :

〈
x,x*

〉
= ‖x‖ϕ(‖x‖),∥∥x*∥∥ = ϕ

(‖x‖)}, ∀x ∈ E.

http://www.fixedpointtheoryandapplications.com/content/2012/1/117
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Following Browder [], we say that a Banach space E has a weakly continuous duality
map if there exists gauge ϕ for which the duality map Jϕ is single-valued and weak-to-
weak* sequentially continuous. It is known that lp has a weakly continuous duality map
with gauge ϕ(t) = tp– for all  < p < +∞. Set

	(t) =
∫ t


ϕ(τ )dτ , ∀t ≥ .

Then

Jϕ(x) = ∂	
(‖x‖), ∀x ∈ E,

where ∂ denotes the subdifferential in the sense of convex analysis; see [, ] for more
details.
The first part of the following lemma is an immediate consequence of the subdifferential

inequality, and the proof of the second part can be found in [].

Lemma . Assume that E has a weakly continuous duality map Jϕ with gauge ϕ.
(i) For all x, y ∈ E, there holds the inequality

	
(‖x + y‖) ≤ 	

(‖x‖) + 〈
y, Jϕ(x + y)

〉
.

(ii) Assume a sequence {xn} in E is weakly convergent to a point x. Then there holds the
identity

lim sup
n→∞

	
(‖xn – y‖) = lim sup

n→∞
	

(‖xn – x‖) +	
(‖y – x‖), ∀y ∈ E.

Xu [] showed that, if E is a reflexive Banach space and has a weakly continuous duality
map Jϕ with gauge ϕ, then there is a sunny nonexpansive retraction from C onto F(T).
Further this result is extended to the following general case.

Lemma . ([, Theorem . and its proof]) Let E be a reflexive Banach space and have
a weakly continuous duality map Jϕ with gauge ϕ, let C be a nonempty closed convex subset
of E, let T : C → C be a nonexpansive mapping with F(T) 
= ∅, and let f ∈ �C. Then {xt}
defined by

xt = tf (xt) + ( – t)Txt , ∀t ∈ (, ),

converges strongly to a point in F(T) as t → +. Define Q :�C → F(T) by

Q(f ) := lim
t→+

xt .

Then, Q(f ) solves the variational inequality

〈
(I – f )Q(f ), Jϕ

(
Q(f ) – p

)〉 ≤ , ∀p ∈ F(T).
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In particular, if f = u ∈ C is a constant, then the map u �→ Q(u) is reduced to the sunny
nonexpansive retraction of Reich type from C onto F(T), i.e.,

〈
Q(u) – u, Jϕ

(
Q(u) – p

)〉 ≤ , ∀p ∈ F(T).

Recall that E satisfies Opial’s property [] provided, for each sequence {xn} in E, the
condition xn ⇀ x implies

lim sup
n→∞

‖xn – x‖ < lim sup
n→∞

‖xn – y‖, ∀y ∈ E, y 
= x.

It is known in [] that each lp (≤ p < +∞) enjoys this property, while Lp does not unless
p = . It is known in [] that every separable Banach space can be equivalently renormed
so that it satisfies Opial’s property. We denote by ωw(xn) the weak ω-limit set of {xn}, i.e.,

ωw(xn) =
{
x̄ ∈ E : xni ⇀ x̄ for some subsequence {xni} of {xn}

}
. (.)

Finally, recall that in a Hilbert space H , there holds the following equality

∥∥λx+ ( – λ)y
∥∥ = λ‖x‖ + ( – λ)‖y‖ – λ( – λ)‖x– y‖, ∀x, y ∈ H ,∀λ ∈ [, ]. (.)

See, e.g., Takahashi [].
We will also use the following elementary lemmas in the sequel.

Lemma . ([]) Let {an} and {bn} be the sequences of nonnegative real numbers such
that

∑∞
n= bn <∞ and an+ ≤ an + bn for all n ≥ . Then limn→∞ an exists.

Lemma . (Demiclosedness Principle [, ]) Assume that T is a nonexpansive self-
mapping of a nonempty closed convex subset C of a Hilbert space H. If T has a fixed point,
then I – T is demiclosed. That is, whenever xn ⇀ x in C and (I – T)xn → y in H, it follows
that (I – T)x = y. Here, I is the identity operator of H.

3 Main results
Lemma . ([]) Let C be a nonempty closed convex subset of a strictly convex Banach
space E. Let T,T, . . . be nonexpansivemappings fromC into itself such that

⋂∞
n= F(Tn) 
= ∅

and let λ,λ, . . . be real numbers such that  < λn ≤ b <  for all n ≥ . Then, for every x in
C and k ≥ , the limit limn→∞ Un,kx exists.

Using Lemma ., one can define the mappingW from C into itself as follows.

Wx = lim
n→∞Wnx = lim

n→∞Un,x, ∀x ∈ C. (.)

Such a mapping W is called the W -mapping generated by T,T, . . . and λ,λ, . . . .
Throughout this paper, we always assume that  < λn ≤ b <  for some real constant b
and for all n≥ .

Lemma . ([]) Let C be a nonempty closed convex subset of a strictly convex Banach
space E. Let T,T, . . . be nonexpansive mappings of C into itself such that

⋂∞
n= F(Tn) 
= ∅

http://www.fixedpointtheoryandapplications.com/content/2012/1/117
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and let λ,λ, . . . be real numbers such that  < λn ≤ b <  for any n ≥ . Then, F(W ) =⋂∞
n= F(Tn).

Here comes the main result of this paper.

Theorem . Let C be a nonempty closed convex subset of a reflexive and strictly convex
Banach space E. Assume, in addition, E either is uniformly smooth or has a weakly con-
tinuous duality map Jϕ with gauge ϕ. Let Ti : C → C be a nonexpansive mapping for each
i = , , . . . such that F =

⋂∞
i= F(Ti) 
= ∅, and f ∈ �C with contractive constant α in (, ).

Given sequences {αn}, {βn} and {λn} in [, ], the following conditions are satisfied:
(C) ≤ βn ≤  – α, ∀n≥ n for some n ≥ , and

∑∞
n= βn = +∞;

(C)  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(C) limn→∞( βn+

–(–βn+)αn+ –
βn

–(–βn)αn ) = ;
(C)  < λn ≤ b < , ∀n≥  for some constant b in (, ).

For an arbitrary x ∈ C, let {xn} be generated by

⎧⎨
⎩
yn = αnxn + ( – αn)Wnxn,
xn+ = βnf (xn) + ( – βn)yn, ∀n≥ .

(.)

Then,

xn converges strongly to some point Q(f ) in F

⇐⇒ βn
(
f (xn) – xn

) → .

In this case,
(i) if E is uniformly smooth, then Q(f ) ∈ F solves the variational inequality

〈
(I – f )Q(f ), J

(
Q(f ) – p

)〉 ≤ , f ∈ �C ,p ∈ F ;

(ii) if E has a weakly continuous duality map Jϕ with gauge ϕ, then Q(f ) ∈ F solves the
variational inequality

〈
(I – f )Q(f ), Jϕ

(
Q(f ) – p

)〉 ≤ , f ∈ �C ,p ∈ F .

Proof First, let us show that {xn} is bounded. Indeed, taking an element p in F =
⋂∞

i= F(Ti)
arbitrarily, we obtain that p =Wnp for all n ≥ . It follows from the nonexpansivity ofWn

that

‖yn – p‖ ≤ αn‖xn – p‖ + ( – αn)‖Wnxn – p‖ ≤ ‖xn – p‖.

Observe that

‖xn+ – p‖ =
∥∥βn

(
f (xn) – p

)
+ ( – βn)(yn – p)

∥∥
≤ βn

(∥∥f (xn) – f (p)
∥∥ + ∥∥f (p) – p

∥∥)
+ ( – βn)‖yn – p‖

≤ βn
(
α‖xn – p‖ + ∥∥f (p) – p

∥∥)
+ ( – βn)‖xn – p‖

http://www.fixedpointtheoryandapplications.com/content/2012/1/117
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=
(
 – ( – α)βn

)‖xn – p‖ + βn
∥∥f (p) – p

∥∥
≤ max

{
‖xn – p‖, ‖f (p) – p‖

 – α

}
.

By simple induction, we have

‖xn – p‖ ≤ max

{
‖x – p‖, ‖f (p) – p‖

 – α

}
.

Hence {xn} is bounded, and so are the sequences {yn}, {Wnxn} and {f (xn)}.
Suppose that xn → Q(f ) ∈ F as n → ∞. Then Q(f ) =WnQ(f ) for all n ≥ . From (.) it

follows that

∥∥yn –Q(f )
∥∥ ≤ αn

∥∥xn –Q(f )
∥∥ + ( – αn)

∥∥Wnxn –Q(f )
∥∥

≤ αn
∥∥xn –Q(f )

∥∥ + ( – αn)
∥∥xn –Q(f )

∥∥
=

∥∥xn –Q(f )
∥∥ →  (n→ ∞),

that is, yn →Q(f ). Again from (.) we obtain that

∥∥βn
(
f (xn) – xn

)∥∥ =
∥∥xn+ – xn – ( – βn)(yn – xn)

∥∥
≤ ‖xn+ – xn‖ + ( – βn)‖yn – xn‖ → .

Conversely, suppose that βn(f (xn) – xn)→  (n→ ∞). Put

γn = ( – βn)αn, ∀n≥ .

Then, it follows from (C) and (C) that

αn ≥ γn = ( – βn)αn ≥ (
 – ( – α)

)
αn = ααn, ∀n≥ n,

and hence

 < lim inf
n→∞ γn ≤ lim sup

n→∞
γn < . (.)

Define zn by

xn+ = γnxn + ( – γn)zn. (.)

Observe that

zn+ – zn

=
xn+ – γn+xn+

 – γn+
–
xn+ – γnxn
 – γn

=
βn+f (xn+) + ( – βn+)yn+ – γn+xn+

 – γn+
–

βnf (xn) + ( – βn)yn – γnxn
 – γn
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=
(

βn+f (xn+)
 – γn+

–
βnf (xn)
 – γn

)
–
( – βn)[αnxn + ( – αn)Wnxn] – γnxn

 – γn

+
( – βn+)[αn+xn+ + ( – αn+)Wn+xn+] – γn+xn+

 – γn+

=
(

βn+f (xn+)
 – γn+

–
βnf (xn)
 – γn

)

+
( – βn+)( – αn+)Wn+xn+

 – γn+
–
( – βn)( – αn)Wnxn

 – γn

=
(

βn+f (xn+)
 – γn+

–
βnf (xn)
 – γn

)
+ (Wn+xn+ –Wnxn) –

βn+

 – γn+
Wn+xn+ +

βn

 – γn
Wnxn

=
(

βn+

 – γn+
–

βn

 – γn

)
f (xn+) +

βn

 – γn

(
f (xn+) – f (xn)

)
+ (Wn+xn+ –Wnxn)

–
(

βn+

 – γn+
–

βn

 – γn

)
Wn+xn+ – (Wn+xn+ –Wnxn)

βn

 – γn

=
(

βn+

 – γn+
–

βn

 – γn

)(
f (xn+) –Wn+xn+

)
+

βn

 – γn

(
f (xn+) – f (xn)

)

+
 – γn – βn

 – γn
(Wn+xn+ –Wnxn).

It follows that

‖zn+ – zn‖

≤
∣∣∣∣ βn+

 – γn+
–

βn

 – γn

∣∣∣∣∥∥f (xn+) –Wn+xn+
∥∥ + βn

 – γn

∥∥f (xn+) – f (xn)
∥∥

+
 – γn – βn

 – γn
‖Wn+xn+ –Wnxn‖

≤
∣∣∣∣ βn+

 – γn+
–

βn

 – γn

∣∣∣∣(∥∥f (xn+)∥∥ + ‖Wn+xn+‖
)
+

αβn

 – γn
‖xn+ – xn‖

+
 – γn – βn

 – γn

(‖Wn+xn+ –Wn+xn‖ + ‖Wn+xn –Wnxn‖
)

≤
∣∣∣∣ βn+

 – γn+
–

βn

 – γn

∣∣∣∣(∥∥f (xn+)∥∥ + ‖Wn+xn+‖
)
+

αβn

 – γn
‖xn+ – xn‖

+
 – γn – βn

 – γn

(‖xn+ – xn‖ + ‖Wn+xn –Wnxn‖
)

≤ ‖xn+ – xn‖ +
∣∣∣∣ βn+

 – γn+
–

βn

 – γn

∣∣∣∣(‖f (xn+)‖ + ‖Wn+xn+‖
)

+ ‖Wn+xn –Wnxn‖. (.)

Since Ti and Un,i are nonexpansive, from (.) we have

‖Wn+xn –Wnxn‖ = ‖λTUn+,xn – λTUn,xn‖
≤ λ‖Un+,xn –Un,xn‖
= λ‖λTUn+,xn – λTUn,xn‖
≤ λλ‖Un+,xn –Un,xn‖
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≤ · · ·
≤ λλ · · ·λn‖Un+,n+xn –Un,n+xn‖
= λλ · · ·λn+‖Tn+xn – xn‖. (.)

Since {xn} is a bounded sequence and all Tn are nonexpansive with a common fixed point
p, there isM ≥  such that

‖Tn+xn – xn‖ ≤ ‖Tn+xn – Tn+p‖ + ‖p – xn‖ ≤ M, ∀n≥ .

Substituting (.) into (.), we have

‖zn+ – zn‖ – ‖xn+ – xn‖ ≤
∣∣∣∣ βn+

 – γn+
–

βn

 – γn

∣∣∣∣(∥∥f (xn+)∥∥ + ‖Wn+xn+‖
)
+M

n+∏
i=

λi.

From conditions (C), (C) and the boundedness of {f (xn)} and {Wnxn}, it follows that

lim sup
n→∞

(‖zn+ – zn‖ – ‖xn+ – xn‖
) ≤ .

Hence by Lemma . we have

lim
n→∞‖zn – xn‖ = .

It follows from (.) and (.) that

lim
n→∞‖xn+ – xn‖ = lim

n→∞( – γn)‖zn – xn‖ = .

From (.), we have

xn+ – xn = βn
(
f (xn) – xn

)
+ ( – βn)(yn – xn).

This implies that

α‖yn – xn‖ ≤ ( – βn)‖yn – xn‖
=

∥∥xn+ – xn – βn
(
f (xn) – xn

)∥∥
≤ ‖xn+ – xn‖ +

∥∥βn
(
f (xn) – xn

)∥∥.
Since xn+ – xn →  and βn(f (xn) – xn)→ , we get

lim
n→∞‖yn – xn‖ = . (.)

Observe that

yn – xn = ( – αn)(Wnxn – xn). (.)
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It follows from (C), (.) and (.) that

lim
n→∞‖xn –Wnxn‖ = .

Also, note that

‖Wxn – xn‖ ≤ ‖Wxn –Wnxn‖ + ‖Wnxn – xn‖.

From [, Remark .] (see also [, Remark .]), we have

lim
n→∞‖Wxn –Wnxn‖ = .

It follows

lim
n→∞‖Wxn – xn‖ = . (.)

In terms of (.) and Lemma ., W : C → C is a nonexpansive mapping such that
F(W ) = F . In the following, we discuss two cases.
(i) Firstly, suppose that E is uniformly smooth. Let xt be the unique fixed point of the

contraction mapping Tt given by

Ttx = tf (x) + ( – t)Wx, t ∈ (, ).

By Lemma ., we can define

Q(f ) := lim
t→+

xt ,

and Q(f ) ∈ F(W ) = F solves the variational inequality

〈
(I – f )Q(f ), J

(
Q(f ) – p

)〉 ≤ , ∀p ∈ F .

Let us show that

lim sup
n→∞

〈
f (z) – z, J(xn – z)

〉 ≤ , (.)

where z =Q(f ). Note that

xt – xn = t
(
f (xt) – xn

)
+ ( – t)(Wxt – xn).

Applying Lemma . we derive

‖xt – xn‖

≤ ( – t)‖Wxt – xn‖ + t
〈
f (xt) – xn, J(xt – xn)

〉
≤ ( – t)

(‖Wxt –Wxn‖ + ‖Wxn – xn‖
) + t〈f (xt) – xt , J(xt – xn)

〉
+ t‖xt – xn‖

≤ ( – t)‖xt – xn‖ + an(t) + t
〈
f (xt) – xt , J(xt – xn)

〉
+ t‖xt – xn‖,
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where

an(t) = ‖Wxn – xn‖
(
‖xt – xn‖ + ‖Wxn – xn‖

) → 
(
due to (.)

)
.

The last inequality implies

〈
xt – f (xt), J(xt – xn)

〉 ≤ t

‖xt – xn‖ + 

t
an(t).

It follows that

lim sup
n→∞

〈
xt – f (xt), J(xt – xn)

〉 ≤ M t

, (.)

where M >  is a constant such that M ≥ ‖xt – xn‖ for all n ≥  and small enough t
in (, ). Taking the limsup as t → + in (.) and noticing the fact that the two limits
are interchangeable due to the fact that the duality map J is uniformly norm-to-norm
continuous on any bounded subset of E, we obtain (.).
Now, let us show that xn → z as n→ ∞. Indeed, observe

xn+ – z = βn
(
f (xn) – z

)
+ ( – βn)(yn – z)

= βn
(
f (xn) – z

)
+ ( – βn)( – αn)(Wnxn – z) + ( – βn)αn(xn – z).

Then, utilizing Lemma . we get

‖xn+ – z‖

≤ ∥∥( – βn)αn(xn – z) + ( – βn)( – αn)(Wnxn – z)
∥∥ + βn

〈
f (xn) – z, J(xn+ – z)

〉
≤ [

( – βn)αn‖xn – z‖ + ( – βn)( – αn)‖xn – z‖] + βn
〈
f (xn) – f (z), J(xn+ – z)

〉
+ βn

〈
f (z) – z, J(xn+ – z)

〉
≤ ( – βn)‖xn – z‖ + αβn‖xn – z‖‖xn+ – z‖ + βn

〈
f (z) – z, J(xn+ – z)

〉
≤ ( – βn)‖xn – z‖ + αβn

(‖xn – z‖ + ‖xn+ – z‖) + βn
〈
f (z) – z, J(xn+ – z)

〉
.

It follows that, for all n≥ n, we have

‖xn+ – z‖

≤  – ( – α)βn + β
n

 – αβn
‖xn – z‖ + βn

 – αβn

〈
f (z) – z, J(xn+ – z)

〉

≤
(
 –

( – α)βn

 – αβn

)
‖xn – z‖ + βn

 – αβn

〈
f (z) – z, J(xn+ – z)

〉
,

due to (C). For every n≥ n, put

μn =
( – α)βn

 – αβn
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and

νn =


 – α

〈
f (z) – z, J(xn+ – z)

〉
.

Since  <  – αβn ≤ , we have μn ≥ ( – α)βn. Now, we have

‖xn+ – z‖ ≤ ( –μn)‖xn – z‖ +μnνn, ∀n≥ n. (.)

It is readily seen from (C) and (.) that

∞∑
n=

μn = +∞ and lim sup
n→∞

νn ≤ .

Therefore, applying Lemma . to (.), we conclude that xn → z as n → ∞.
(ii) Secondly, suppose that E has a weakly continuous duality map Jϕ with gauge ϕ. Let

xt be the unique fixed point of the contraction mapping Tt given by

Ttx = tf (x) + ( – t)Wx, t ∈ (, ).

By Lemma., we can defineQ(f ) := limt→+ xt , andQ(f ) ∈ F(W ) = F solves the variational
inequality

〈
(I – f )Q(f ), Jϕ

(
Q(f ) – p

)〉 ≤ , ∀p ∈ F . (.)

Let us show that

lim sup
n→∞

〈
f (z) – z, Jϕ(xn – z)

〉 ≤ , (.)

where z =Q(f ). We take a subsequence {xnk } of {xn} such that

lim sup
n→∞

〈
f (z) – z, Jϕ(xn – z)

〉
= lim

k→∞
〈
f (z) – z, Jϕ(xnk – z)

〉
. (.)

Since E is reflexive and {xn} is bounded, we may further assume that xnk ⇀ x̄ for some x̄
in C. Since Jϕ is weakly continuous, utilizing Lemma ., we have

lim sup
k→∞

	
(‖xnk – x‖) = lim sup

k→∞
	

(‖xnk – x̄‖) +	
(‖x – x̄‖), ∀x ∈ E.

Put

�(x) = lim sup
k→∞

	
(‖xnk – x‖), ∀x ∈ E.

It follows that

�(x) = �(x̄) +	
(‖x – x̄‖), ∀x ∈ E.
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From (.), we have

�(Wx̄) = lim sup
k→∞

	
(‖xnk –Wx̄‖) = lim sup

k→∞
	

(‖Wxnk –Wx̄‖)

≤ lim sup
k→∞

	
(‖xnk – x̄‖) = �(x̄). (.)

Furthermore, observe that

�(Wx̄) = �(x̄) +	
(‖Wx̄ – x̄‖). (.)

Combining (.) with (.), we obtain

	
(‖Wx̄ – x̄‖) ≤ .

Hence Wx̄ = x̄ and x̄ ∈ F(W ) = F (by Lemma .). Thus, from (.) and (.), it is easy
to see that

lim sup
n→∞

〈
f (z) – z, Jϕ(xn – z)

〉
=

〈
f (z) – z, Jϕ(x̄ – z)

〉 ≤ .

Therefore, we deduce that (.) holds.
Now, let us show that xn → z as n→ ∞. Indeed, observe that

	
(‖yn – z‖) = 	

(∥∥αn(xn – z) + ( – αn)(Wnxn – z)
∥∥)

≤ 	
(
αn‖xn – z‖ + ( – αn)‖Wnxn – z‖)

≤ 	
(‖xn – z‖).

Therefore, by applying Lemma ., we have

	
(‖xn+ – z‖) = 	

(∥∥βn
(
f (xn) – z

)
+ ( – βn)(yn – z)

∥∥)
= 	

(∥∥βn
(
f (xn) – f (z) + f (z) – z

)
+ ( – βn)(yn – z)

∥∥)
≤ 	

(∥∥( – βn)(yn – z) + βn
(
f (xn) – f (z)

)∥∥)
+ βn

〈
f (z) – z, Jϕ(xn+ – z)

〉
≤ 	

(
( – βn)‖yn – z‖ + βn

∥∥f (xn) – f (z)
∥∥)

+ βn
〈
f (z) – z, Jϕ(xn+ – z)

〉
≤ 	

(
( – βn)‖yn – z‖ + αβn‖xn – z‖) + βn

〈
f (z) – z, Jϕ(xn+ – z)

〉
≤ (

 – ( – α)βn
)
	

(‖xn – z‖) + βn
〈
f (z) – z, Jϕ(xn+ – z)

〉
.

Applying Lemma ., we get

	
(‖xn – z‖) →  (n→ ∞),

which implies that ‖xn – z‖ → (n → ∞), i.e., xn → z(n → ∞). This completes the
proof. �

Corollary . The conclusion in Theorem . still holds, provided the conditions (C)-(C)
are replaced by the following:
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(D) ≤ βn ≤  – α, ∀n≥ n for some integer n ≥ ;
(D) limn→∞(βn – βn+) =  and

∑∞
n= βn = +∞;

(D) limn→∞(αn – αn+) =  and  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(D)  < λn ≤ b < , ∀n≥  for some b in (, ).

Proof Observe that

βn+

 – ( – βn+)αn+
–

βn

 – ( – βn)αn

=
(βn+ – βn) – βn+αn + βnαn+ + βn+βnαn – βnβn+αn+

( – ( – βn+)αn+)( – ( – βn)αn)

=
(βn+ – βn) – βn+(αn – αn+) – αn+(βn+ – βn) + βnβn+(αn – αn+)

( – ( – βn+)αn+)( – ( – βn)αn)

=
(βn+ – βn)( – αn+) – βn+(αn – αn+)( – βn)

( – ( – βn+)αn+)( – ( – βn)αn)
.

Since limn→∞(βn – βn+) =  and limn→∞(αn – αn+) = , it follows that

lim
n→∞

(
βn+

 – ( – βn+)αn+
–

βn

 – ( – βn)αn

)
= .

Consequently, all conditions of Theorem . are satisfied. So, utilizing Theorem ., we
obtain the desired result. �

Corollary . Let C be a nonempty closed convex subset of a reflexive and strictly convex
Banach space E. Assume, in addition, E either is uniformly smooth or has a weakly con-
tinuous duality map Jϕ with gauge ϕ. Let Ti : C → C be a nonexpansive mapping for each
i = , , . . . such that F =

⋂∞
i= F(Ti) 
= ∅, and let f ∈ �C with contractive constant α in (, ).

Given sequences {αn}, {βn} and {λn} in [, ], the following conditions are satisfied:
(E) limn→∞ βn =  and

∑∞
n= βn = +∞;

(E)  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(E)  < λn ≤ b < ,∀n≥  for some b ∈ (, ).

Then. for an arbitrary but fixed x in C, the sequence {xn} defined by (.) converges strongly
to a common fixed point Q(f ) in F. Moreover,

(i) if E is uniformly smooth, then Q(f ) ∈ F solves the variational inequality

〈
(I – f )Q(f ), J

(
Q(f ) – p

)〉 ≤ , f ∈ �C ,p ∈ F ;

(ii) if E has a weakly continuous duality map Jϕ with gauge ϕ, then Q(f ) ∈ F solves the
variational inequality

〈
(I – f )Q(f ), Jϕ

(
Q(f ) – p

)〉 ≤ , f ∈ �C ,p ∈ F .

Proof Repeating the arguments in the proof ofTheorem.,we know that {xn} is bounded,
and so are the sequences {yn}, {Wnxn} and {f (xn)}. Since limn→∞ βn = , it is easy to see
that there hold the following:

(i) βn(f (xn) – xn)→  (n→ ∞);
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(ii) ≤ βn ≤  – α, ∀n≥ n for some integer n ≥ ;
(iii) limn→∞( βn+

–(–βn+)αn+ –
βn

–(–βn)αn ) = .
Therefore, all conditions of Theorem . are satisfied. So, utilizing Theorem ., we obtain
the desired result. �

To end this paper, we give a weak convergence theorem for hybrid viscosity approxi-
mation method (.) involving an infinite family of nonexpansive mappings T,T, . . . in a
Hilbert space H .

Theorem . Let C be a nonempty closed convex subset of a Hilbert space H. Let Ti : C →
C be a nonexpansive mapping for each i = , , . . . such that F =

⋂∞
i= F(Ti) 
= ∅ and f ∈ �C.

Given sequences {αn}, {βn} and {λn} in [, ], the following conditions are satisfied:
(F)

∑∞
n= βn < +∞;

(F)  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(F)  < λn ≤ b < , ∀n≥  for some b ∈ (, ).

Then, for an arbitrary but fixed x in C, the sequence {xn} defined by (.) converges weakly
to a common fixed point of the infinite family of nonexpansive mappings T,T, . . . .

Proof Take an arbitrary p in F =
⋂∞

i= F(Ti) 
= ∅. Repeating the arguments in the proof of
Theorem ., we know that {xn} is bounded, and so are the sequences {yn}, {Wnxn} and
{f (xn)}.
It follows from (.) that

‖xn+ – p‖

≤ ( – βn)‖yn – p‖ + βn
∥∥f (xn) – p

∥∥
≤ ‖yn – p‖ + βn

∥∥f (xn) – p
∥∥

=
∥∥αn(xn – p) + ( – αn)(Wnxn – p)

∥∥ + βn
∥∥f (xn) – p

∥∥
= αn‖xn – p‖ + ( – αn)‖Wnxn – p‖ – αn( – αn)‖xn –Wnxn‖ + βn

∥∥f (xn) – p
∥∥

≤ αn‖xn – p‖ + ( – αn)‖xn – p‖ – αn( – αn)‖xn –Wnxn‖ + βn
∥∥f (xn) – p

∥∥
= ‖xn – p‖ – αn( – αn)‖xn –Wnxn‖ + βn

∥∥f (xn) – p
∥∥

≤ ‖xn – p‖ + βn
∥∥f (xn) – p

∥∥.
(.)

Since
∑∞

n= βn < +∞ and {f (xn)} is bounded, we get ∑∞
n= βn‖f (xn) – p‖ < +∞. Utilizing

Lemma ., we conclude that limn→∞ ‖xn – p‖ exists. Furthermore, it follows from (.)
that for all n≥ , we have

αn( – αn)‖xn –Wnxn‖ ≤ ‖xn – p‖ – ‖xn+ – p‖ + βn
∥∥f (xn) – p

∥∥. (.)

Since βn →  and  < lim infn→∞ αn ≤ lim supn→∞ αn < , it follows from (.) that
limn→∞ ‖xn –Wnxn‖ = . Also, observe that

‖Wxn – xn‖ ≤ ‖Wxn –Wnxn‖ + ‖Wnxn – xn‖.
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From [, Remark .] (see also [, Remark .]), we have

lim
n→∞‖Wxn –Wnxn‖ = .

This implies immediately that

lim
n→∞‖Wxn – xn‖ = .

Now, let us show that ωw(xn) ⊂ F (see (.)). Indeed, let x̄ ∈ ωw(xn). Then there exists
a subsequence {xni} of {xn} such that xni ⇀ x̄. Since (I –W )xn → , by Lemma ., x̄ ∈
F(W ) = F .
Finally, let us show that ωw(xn) is a singleton. Indeed, let {xmj} be another subsequence

of {xn} such that xmj ⇀ x̂. Then x̂ also lies in F . If x̄ 
= x̂, by Opial’s property of H , we reach
the following contradiction:

lim
n→∞‖xn – x̄‖ = lim

i→∞‖xni – x̄‖
< lim

i→∞‖xni – x̂‖ = lim
j→∞‖xmj – x̂‖

< lim
j→∞‖xmj – x̄‖ = lim

n→∞‖xn – x̄‖.

This implies that ωw(xn) is a singleton. Consequently, {xn} converges weakly to an element
of F . �

Remark . As pointed out in [, Remark .], the mild conditions are imposed on the
parameter sequence {λn}, which are different from those in [, , , ]. Theorem . in
[] is a supplement to Remark  of Zhou, Wei and Cho [] in reflexive Banach spaces.
Moreover, it extends Theorem  in [] from the case of a single nonexpansive mapping
to that of an infinite family of nonexpansive mappings, and relaxes the restrictions im-
posed on the parameters in [, Theorem ]. Compared with Theorem . in [] (i.e.,
Theorem .), our Theorems . and . supplement, improve and extend them in the
following aspects:
() The hybrid viscosity approximation method (.) includes their modified Mann’s

iterative process (.) as a special case.
() We relax the restrictions imposed on the parameters in [, Theorem .]; for

instance, there can be no parameter sequence convergent to zero in our
Theorem ..

() In Theorem ., the problem of finding a common fixed point of an infinite family of
nonexpansive mappings is also considered in the framework of uniformly smooth
Banach space.

() In order to show the strong convergence of the hybrid viscosity approximation
method (.), we use the techniques very different from those in the proof of [,
Theorem .]; for instance, we use Theorem . in [] and Theorem . in [].

() Theorem . shows that the hybrid viscosity approximation method (.) converges
strongly to a common fixed point of an infinite family of nonexpansive mappings,
which solves a variational inequality on their common fixed point set.
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() In Theorem ., the conditions imposed on {αn} and {βn} are very different from
those in [, Theorem .].

() In the proof of Theorem ., we use the techniques very different from those in the
proof of [, Theorem .]; for instance, we use Opial’s property of Hilbert space
and Tan and Xu’s lemma in [].
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