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Abstract. Necessary conditions of optimality are derived for multiobjective

optimal control problems with pathwise state constraints, in which the dy-

namics constrain is modeled as a differential inclusion. The obtained result

extends results of [2] and [29].

1 Introduction

The derivation of necessary conditions for multiojective optimal control problems in which

the dynamic constraint is modeled as a differential inclusion has been an area research

recently. Problems of multiobjective optimal control naturally arise, for example, in

economics (see [6]), in chemical engineering (see [3]) and in multiobjective control design

(see [27]). Let us assume that ≺ is a preference in Rm. We are interested in deriving

necessary conditions for the problem with state constraints

(P) Minimize g(x(a), x(b))

over arcs x ∈ W 1,1([a, b], Rn) which satisfy

ẋ(t) ∈ F (t, x(t)), a.e.,

(x(a), x(b)) ∈ C,

h(t, x(t)) ≤ 0 for all t ∈ [a, b],

where g : Rn×Rn → Rm and h : [a, b]×Rn → R are given functions, F : [a, b]×Rn ⇒ Rn

is a given multifunction, C is a closed set in Rn × Rn and W 1,1([a, b], Rn) is the space of
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absolutely continuous functions x : [a, b]→ Rn with the norm ‖x‖1,1 := |x(a)|+
∫ b

a
|ẋ(t)|dt,

in which | · | denotes the norm in Rn.

An arc x ∈ W 1,1([a, b], Rn) is called a feasible trajectory for (P) if it holds ẋ(t) ∈
F (t, x(t)) a.e.,t ∈ [a, b], (x(a), x(b)) ∈ C and h(t, x(t) ≤ 0 for all t ∈ [a, b]. We say that a

feasible trajectory x is a local solution of (P) if there do not exist any feasible trajectory

x with ‖x− x∗‖1,1 ≤ ε such that g(x(a), x(b)) ≺ g(x(a), x(b)) for some ε > 0.

In the scalar case (m=1), there are several papers dealing with necessary conditions

of the Euler-Lagrange type for (P). The generalized Euler-Lagrange condition was first

established by Mordukhovich [16] for problems governed by nonconvex, compact-valued

and Lipschitzian differential inclusions on the fixed time interval, where the notion W 1,1

local minimizer was studied under the name intermediate local minimizers, which are

different from the classical notions of weak and strong local minimizer in variational and

optimal control problems. This result was extended later by [15] to free-time problems.

Further extensions for unbounded differential inclusions were given by Ioffe [9], Loewen

and Rockafellar [11], Vinter and Zheng [26] for problems with unbounded differential

inclusions on the fixed time interval and then by Vinter and Zheng [24] and Vinter [23]

for free-time problems.

Recently, Zhu [29] had established a result on the Hamiltonian necessary conditions for

a nonsmooth multiojective optimal control problem with endpoint constraints involving

regular preferences. This result was extended by Bellaassali and Jourani [2]. Based on

an analysis of Ioffe’s scheme [9], as it was mentioned, [2] obtained a interesting result on

necessary conditions for multiobjective optimal control problems. However, [2] and [29]

considered only optimal problems, where state constraints are free.

The aim of this paper is to derive necessary conditions for (P) in the presence of state

constraints. In order to obtain the necessary conditions for (P), we will use a variant

of Ioffe’s scheme to reduce the problem to the scalar case. We then apply the Ekeland

principle and necessary conditions of the Bolza problem in the same way as in [2] and [25]

to derive necessary conditions for (P). Our obtained result extends results of [2] and [29]

in the vector case, and some preceding result for the scalar case.

The rest of the paper contains two sections. In Section 2 we present some notions and

auxiliary results involving our problem. Section 3 is devoted to the main theorem where

a detailed proof is provided.

2 Preliminaries and auxiliary results

Throughout this paper R∞ stands for R∪ {+∞} and B stands for the closed unit ball in

Rn.
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Let Γ : Rn ⇒ Rn be a set-valued mapping. The notation

lim sup
x→x

Γ(x) := {x∗ ∈ Rn : ∃xk → x, x∗k → x∗with x∗k ∈ Γ(xk)}

signifies the sequential Painlevé-Kuratowski upper limit of Γ at a point x ∈ Rn. The set

GphΓ := {(x, y) ∈ Rn ×Rn : y ∈ Γ(x)}

is called the graph of Γ.

Take a closed set A ⊂ Rn and point x ∈ A. The set

N̂A(x) := {x∗ ∈ Rn : lim sup

u
A−→x

〈x∗, u− x〉
‖u− x‖

≤ 0}

is called the Fréchet normal cone to A at x. Let x ∈ A, the set

NA(x) := lim sup
x→x

N̂A(x)

is the limiting normal cone to A at x.

Given a lower semicontinuos function f : Rn → R∞ and a point x ∈ Rn such that

f(x) <∞, the limiting subdifferential of f at x is the set

∂f(x) = {x∗ : (x∗,−1) ∈ Nepif (x, f(x))}.

It is well know that if f is Lipschitz continuous around x with rank K then for any

x∗ ∈ ∂f(x), one has ‖x∗‖ ≤ K. The limiting normal cone and limiting subdifferential

were introduced by Mordukhovich [19]. We refer the reader to Chapter 1 in [13] for

comprehensive comenmentaries. Further properties of limiting normal cone and limiting

subdifferential can be founded in [13] and [4].

We now assume that Γ has closed values and define the function ρΓ : Rn×Rn → R by

ρΓ(x, y) = d(y,Γ(x)) := inf
v∈Γ(x)

‖y − v‖.

The following property of the subdifferential of ρF was first established by [22], will be

needed in the next section.

Lemma 2.1 Assume that GphF is closed and (x, y) ∈ GphΓ. Then one has

NGphΓ(x, y) =
⋃
λ≥0

λ∂ρΓ(x, y).

Moreover, if ρΓ(x, y) > 0 and v ∈ ∂yρΓ(x, y) then there exists a point z ∈ ΠΓ(x)(y) such

that v = y−z
‖y−z‖ . Here ΠΓ(x)(y) is the set of metric projections of y onto Γ(x).
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The proof of Lemma 2.1 can also be found in [9], [13] and [25].

Let C[a, b] be the space of continuous functions on [a, b]. A linear function µ on C[a, b]

is called a positive Radon measure if 〈µ, x〉 ≥ 0 for all x ∈ C[a, b] satisfying x ≥ 0. The

set of all positive Radon measures will be denoted by C⊕[a, b]. It is clear that from the

Radon-Riesz theorem (see [8, Theorem 3.4]) we can identify a positive Radon measure µ

with a Borel measure. Recall that a sequence {µn} of positive Radon measures converges

weakly∗ to µ if
∫ b

a
x(t)dµn →

∫ b

a
x(t)dµ for all x ∈ C[a, b] with x ≥ 0. We have the

following familiar property of positive Radon measures.

Lemma 2.2 Let {µn} be a sequence of positive Radon measures. Assume that there exists

a constant M > 0 such that ‖µn‖ ≤ M for all n. Then there exists a subsequence {µnk}
which converges weakly∗ to a positive Radon measure µ.

The rest of this section is destined for some notion of preferences in Rm.

The concept of a preference first appeared in the value theory of economics. In the

area of multiobjective optimization and optimal control much research has been devoted

to the weak Pareto solution and its generalizations. The preference relation between

vectors x, y ∈ Rm in the sense of weak Pareto is defined by x ≺ y if and only if xi ≤ yi
for i = 1, ..,m and at least one of the inequalities is strict. In other word x ≺ y if and

only if x− y ∈ K := {z ∈ Rm : z ≤ 0} and x 6= y. In this paper we will use more general

preference relations for which necsseary conditions of the weak Pareto solution and its

generalization can be derived and refined from our necessary conditions.

Let ≺ be a preference in Rm and r ∈ Rm. We will call the set L[r] := {s ∈ Rm : s ≺ r}
a level set at r and L [r] is the closure of L[r].

We shall use the following definition (see [13, Dedinition 5.55] and [29]).

Definition 2.3 A preference ≺ is closed provided that

(a) for any r ∈ Rn, r ∈ L [r];

(b) for any r ≺ s, t ∈ L[r] implies that t ≺ s.

We say that ≺ is regular at r (in the sense of [29]) provided that

(c)

lim sup
r,θ→r

NL[r](θ) ⊂ NL[r](r).

It is noted that the regularity notion for preference was introduced by [18] under the

name of normal semicontinuity under which it is studied in Chapter 5 of [13]. In the

above definition, the regularity is somewhat different from that in Definition 5.69 of [13],

where a preference ≺ is regular at (θ, r) ∈ GphL if

lim sup

(r,θ)
GphL−−−→(θ,r)

N̂L[r](θ) = NL[θ](r).

Let us give some examples for Definition 2.3.
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Example 2.4 (single objective problem). When m = 1 the relation r ≺ s becomes r < s.

It is obvious that this relation satisfies conditions (a)−(c). Therefore necessary conditions

for (P) are true generalizations of necessary conditions for single objective optimal control

(see Corollary 3.3).

Example 2.5 (weak Pareto optimal control problem). In a weak Pareto optimal control

problem we define the preference by r ≺ s iff ri ≤ si, i = 1, 2, ...,m, and at least one of

the inequalities is strict. It is easy to check that this ≺ satisfies (a) and (b) at any r ∈ Rn.

Moreover, for any r ∈ Rm, L[r] = r +Rm
− , where Rn

− := {s ∈ Rm : si ≤ 0, i = 1, 2, ...,m}.
It follows that NL[r](θ) ⊂ Rm

+ = NL[r](r) for all r and θ. Hence (c) also satisfied. Thus the

necessary conditions for (P) with respect to ≺, are true for weak Pareto optimal control

problems (see Corollary 3.4).

Example 2.6 The preference determined by the lexicographical order ≺, is defined by

x ≺ y if there exists an integer k ∈ {0, 1, 2, ...,m−1} such that xi = yi for all i = 1, 2, .., k

and xk+1 < yk+1. This preference is not closed.

3 The main result

We now return to problem (P). Fixing a feasible trajectory x∗ ∈ W 1,1, we impose assump-

tions on the components of the problem which involve numbers ε > 0 and β > 0:

(H1) g is Lipschitz continuous on (x∗(a), x∗(b)) + ε(B ×B).

(H2) Graph of F (t, ·) is closed for a.e. t.

(H3) F is integrable sub-Lipschitz, that is, there exists an integrable function k(t) such

that for any N > 0, one has

F (t, x) ∩ (ẋ∗(t) +NB) ⊂ F (t, x′) + (k(t) + βN)|x− x′|B

for all x, x′ with |x− x∗(t)|, |x′ − x∗(t)| ≤ ε and a.e. t ∈ [a, b].

(H4) h is u.s.c. near (t, x∗(t)) for all t and there exists a constant kh such that

|h(t, x)− h(t, x′)| ≤ kh|x− x′|

for all t ∈ [a, b] and x, x′ ∈ x∗(t) + εB.

In what follows H(t, x, p) := sup{〈p, v〉 : v ∈ F (t, x)}. The following theorem is our

main result.

Theorem 3.1 Let x∗ be a W 1,1 local minimizer of (P) with respect to preference ≺ in

Rm. Assume that ≺ is regular at g(x∗(a), x∗(b)) and assumptions (H1)- (H4) are satisfied.

Then there exist an arc p ∈ W 1,1, a non-negative constant λ, a positive Radon measure
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µ, a µ-integrable function γ : [a, b] → Rn and w ∈ NL[g(x∗(a),x∗(b))]
(g(x∗(a), x∗(b)) with

|w| = 1 such that

(i) λ+ ‖p‖∞ + ‖µ‖ = 1,

(ii) ṗ(t) ∈ co{η : (η, q(t)) ∈ NGrphF (t,·)(x∗(t), ẋ∗(t))} a.e., where q(t) := p(t)+
∫

[a,t)
γ(s)µ(ds),

(iii) (p(a),−q(b)) ∈ λ∂〈w, g(x∗(a), x∗(b))〉+NC(x∗(a), x∗(b)),

(iv) 〈q(t), ẋ∗(t)〉 = H(t, x∗(t), q(t)) a.e.,

(v) γ(t) ∈ ∂>x h(t, x∗(t)) µ−a.e. and supp{µ} ⊂ {t : h(t, x∗(t)) = 0}, where

∂>x h(t, x) := co{limi ξi : ∃ti → t, xi → x such that h(ti, xi) > 0 and ξi ∈ ∂xh(ti, xi)}.

An important step in the proof of Theorem 3.1 is to use necessary conditions of a

finite Bolza problem. We restate necessary conditions of the following Bolza problem.

(BP) Minimize J(x) := l(x(a), x(b)) +
∫ b

a
L(t, x(t), ẋ(t))dt

over arcs x ∈ W ([a, b], Rn) which satisfy h(t, x(t)) ≤ 0 for all t.

Here l : Rn × Rn → R∞, L : [a, b] × Rn × Rn → R and h : [a, b] × Rn → R are given

functions.

Recall that an arc x∗ ∈ W 1,1 is said to be a feasible trajectory of (BP) if h(t, x(t)) ≤ 0

for all t. A feasible trajectory x∗ is called a local solution of (BP) if there exists ε > 0

such that J(x∗) ≤ J(x) for all feasible trajectories x satisfying ‖x− x∗‖1,1 ≤ ε.

We fix a feasible trajectory x∗ of (BP) and assume the following assumptions:

(BH1) l is Lipschitz continuous around (x∗(a), x∗(b)).

(BH2) L(·, x, ·) is L×B measurable for each x, where L and B denote the Lebesgue subset

of [a, b] and the Borel subsets of Rn respectively.

(BH3) For every N there exist ε > 0 and k ∈ L1 such that

|L(t, x, v)− L(t, x′, v′)| ≤ k(t)(|x− x′|+ |v − v′|), L(t, x∗(t), v) ≥ −k(t)

for all x, x′ ∈ x∗(t) + εB and v, v′ ∈ ẋ∗(t) +NB, a.e. t ∈ [a, b].

(BH4) There exist kl > 0 and ε > 0 such that

|l(x, y)− l(x′, y′)| ≤ kl(|x− y|+ |x′ − y′|)

for all x, x′ ∈ x∗(a) + εB and y, y′ ∈ x∗(b) + εB.

(BH5) h is u.s.c. near (t, x∗(t)) for all t and there exist constants kh and ε > 0 such that

|h(t, x)− h(t, x′)| ≤ kh|x− x′|

for all t ∈ [a, b] and x, x′ ∈ x∗(t) + εB.

We have the following result on necessary conditions for (BP).
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Lemma 3.2 ([25, Theorem 3]) Let x∗ be a W 1,1 local minimizer of the Bolza problem,

for which J(x∗) < ∞. Assume that (BH1)-(BH5) are satisfied. Then there exist an arc

p ∈ W 1,1, a non-negative constant λ, a positive Radon measure µ and a µ-integrable

function γ : [a, b]→ Rn such that

(i) λ+ ‖p‖+ ‖µ‖ = 1,

(ii) ṗ(t) ∈ co{η : (η, p(t) +
∫

[a,t)
γ(s)µ(ds)) ∈ λ∂L(t, x∗(t), ẋ∗(t))} a.e.,

(iii) (p(a),−[p(b) +
∫ b

a
γ(s)µ(ds)]) ∈ λ∂l(x∗(a), x∗(b)),

(iv) 〈p(t) +
∫

[a,t)
γ(s)µ(ds)), ẋ∗(t)〉 − λL(t, x∗(t), ẋ∗(t)) ≥ 〈p(t) +

∫
[a,t)

γ(s)µ(ds)), v〉 −
λL(t, x∗(t), v) for all v ∈ Rn, a.e.,

(v) γ(t) ∈ ∂>x h(t, x∗(t)) µ−a.e. and supp{µ} ⊂ {t : h(t, x∗(t)) = 0}. Here

∂>x h(t, x) := co{limi ξi : ∃ti → t, xi → x such that h(ti, xi) > 0 and ξi ∈ ∂xh(ti, xi)}.

Proof of Theorem 3.1. In the proof we use some techniques from [2] and [25].

By reducing the size of ε we can arrange that x∗ is minimizing in the relation to arcs

x satisfying ‖x− x∗‖ ≤ ε and (H1)-(H4) also satisfy for chosen ε. Put

Wε = {x ∈ W 1,1 : h(t, x(t)) ≤ 0, ‖x− x∗‖1,1 ≤ ε},

Sε = {x ∈ Wε : ẋ(t) ∈ F (t, x(t)) a.e., (x(a), x(b)) ∈ C, },

ρF (t, x(t), ẋ(t)) = d(ẋ(t), F (t, x(t)).

It is clear that Wε is a complete metric space with the distance induced by the norm ‖·‖1,1

and Sε is a closed set in Wε.

According to [9], there are two following possible situation:

(a) There exist ε′ ∈ (0, ε) and K > 0 such that for any x ∈ Wε′ one has

d(x, Sε) ≤ K[

∫ b

a

ρF (t, x(t), ẋ(t))dt+ dC(x(a), x(b))] (1)

(b) There exist a sequence of arcs xk such that h(t, xk(t)) ≤ 0 for all t ∈ [a, b] and xk → x∗
in W 1,1, and

d(xk, Sε) > 2k[

∫ b

a

ρF (t, xk(t), ẋk(t))dt+ dC(xk(a), xk(b))]. (2)

Case(a). Since g(x∗(a), x∗(b)) ∈L[g(x∗(a), x∗(b))], there exists a sequence ηn such that

ηn ∈ L[g(x∗(a), x∗(b))], ηn → g(x∗(a), x∗(b)).

Hence for each k, there exists nk such that |ηnk−g(x∗(a), x∗(b))| ≤ 1/k2. Putting θk = ηnk ,

we have |θk − g(x∗(a), x∗(b))| ≤ 1/k2. Put Ωk = L[θk] and define the function
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ϕ(x, θ) =

{
|g(x(a), x(b))− θ| if (x, θ) ∈ Sε′ × Ωk

+∞ otherwise.

Sine Sε′ × Ωk is a closed set in Wε′ × Rm, we see that ϕ is l.s.c. on Wε′ × Ωk. Since

ϕ(x, θ) ≥ 0, one has

ϕ(x∗, θk) ≤ inf
(x,θ)∈Wε′×Ωk

ϕ(x, θ) + 1/k2.

By the Ekeland principle (see, for instance [4]), there exists (xk, ξk) ∈ Wε′ ×Ωk such that

ϕ(xk, ξk) ≤ ϕ(x∗, θk) <
1

k2
, (3)

‖xk − x∗‖1,1 + |ξk − θk| ≤ 1/k, (4)

ϕ(xk, ξk) ≤ ϕ(x, θ) +
1

k
(‖x− xk‖1,1 + |θ − ξk|) ∀(x, θ) ∈ Wε′ × Ωk. (5)

From (5) we have

ϕ(xk, ξk) ≤ ϕ(xk, θ) +
1

k
|θ − ξk| ∀θ ∈ Ωk. (6)

and

ϕ(xk, ξk) ≤ ϕ(x, ξk) +
1

k
‖x− xk‖1,1 ∀x ∈ Wε′ . (7)

From (3) and (4) one has xk ∈ Sε′ and xk → x∗ inW 1,1. We claim that ξk 6= g(xk(a), xk(b)).

Indeed, suppose that ξk = g(xk(a), xk(b)). Since ≺ is closed, the relation ξk ∈L[ξk] and

ξk ≺ g(x∗(a), x∗(b)) imply g(xk(a), xk(b)) ≺ g(x∗(a), x∗(b)). This contradicts the fact that

x∗ is a minimizer.

Put wk = ξk−g(xk(a),xk(b))
|ξk−g(xk(a),xk(b))| . We can assume that wk → w with |w| = 1. From (6) we

obtain 0 ∈ ∂(ϕ(xk, ·) + 1
k
| · −ξk|)(ξk) + NΩk(ξk). This implies that wk ∈ 1

k
B + NΩk(ξk).

Hence w ∈ limk→∞NΩk(ξk) ⊂ NL[g(x∗(a),x∗(b))]
(g(x∗(a), x∗(b)). Taking any x ∈ Wε′ we

obtain from (1) and (7) that

ϕ(xk, ξk) ≤ ϕ(x, ξk) +
1

k
‖x− xk‖1,1 +

∫ b

a

ρF (t, x(t), ẋ(t))dt+ dC(x(a), x(b)).

This is equivalent to

|g(xk(a), xk(b))− ξk| ≤
∫ b

a

(ρF (t, x(t), ẋk(t)) +
1

k
|ẋ(t)− ẋk(t)|)dt+

+ |g(x(a), x(b))− ξk|+
1

k
|x(a)− xk(a)|+ dC(x(a), x(b))

for all x ∈ Wε′ . Hence xk is a solution of the following Bolza problem:

Minimize J(x) := l(x(a), x(b)) +
∫ b

a
L(t, x(t), ẋ(t))dt
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over arcs x ∈ Wε′ ,

where

l(u, v) = |g(u, v)− ξk|+
1

k
|u− xk(a)|+ dC(u, v)

and

L(t, u, v) = ρF (t, u, v) +
1

k
|v − ẋk(t)|.

By lemma 7 in [25], we see that l and L satisfy all conditions of Lemma 3.2. According

to this lemma, there exist an arc pk ∈ W 1,1, a non-negative constant λk, a positive Radon

measure µk and a µk-integrable function γk : [a, b]→ Rn such that

(A) λk + ‖pk‖∞ + ‖µk‖ = 1,

(B) ṗk(t) ∈ co{η : (η, pk(t) +
∫

[a,t)
γ(s)µ(ds)) ∈ λk∂L(t, xk(t), ẋk(t))} a.e.,

(C) (pk(a),−[pk(b) +
∫ b

a
γk(s)µk(ds)]) ∈ λk∂l(xk(a), xk(b)),

(D) 〈pk(t) +
∫

[a,t)
γk(s)µ(ds)), ẋk(t)〉 ≥ 〈pk(t) +

∫
[a,t)

γk(s)µk(ds)), v〉 − λkρF (t, xk(t), v) −
λk
k
|v − ẋk(t)| for all v ∈ Rn, a.e.,

(E) γk(t) ∈ ∂>x h(t, xk(t)) µk−a.e. and supp{µk} ⊂ {t : h(t, xk(t)) = 0}.

By Lemma 2.1 we have

λk∂L(t, xk(t), ẋk(t)) ⊂ λk∂ρF (t, xk(t), ẋk(t)) +
1

k
({0} ×B)

⊂ NGraphF(t,·)(xk(t), ẋk(t)) +
1

k
({0} ×B).

Recalling lemma 7 in [25], it follows from (B) that

|ṗk(t)| ≤ λk[(1 + βε)k(t) + 2β|ẋk(t)− ẋ∗(t)|].

But xk → x∗ in W 1,1 (and so ẋk → ẋ∗ in L1) and ‖pk‖ ≤ 1. It follows that pk → p

uniformly and ṗk
L1

−→ ṗ for some p ∈ W 1,1. By Lemma 2.2, we can assume that µk
∗−→ µ

and λk → λ. Since xk → x∗ and by Proposition 9.2.1 in [23], γk(s)µk(ds) → γ(s)µ(ds)

for some µ-integrable γ such that

γ(t) ∈ ∂>x h(t, x∗(t)) µ− a.e., supp{µ} ⊂ {t : h(t, x∗(t)) = 0}.

Note that limk→∞ ‖µk‖ = limk→∞ µk([a, b]) = limk→∞
∫ b

a
dµk =

∫ b

a
dµ = ‖µ‖. Hence from

(A) we obtain λ+ ‖p‖∞ + ‖µ‖ = 1. By letting k →∞, from (B) we get

ṗ(t) ∈ co{η : (η, p(t) +

∫
[a,t)

γ(s)µ(ds)) ∈ NGrphF (t,·)(x∗(t), ẋ∗(t))} a.e. t.

Since

λk∂l(xk(a), xk(b)) ⊂ λk(∂|g(u, v)− ξk|(xk(a), xk(b))) +
λk
k

(B × {0}) +NC(xk(a), xk(b))

⊂ ∂〈wk, g(xk(a), xk(b))〉+
λk
k

(B × {0}) +NC(xk(a), xk(b)),

9



(C) implies

(p(a),−[p(b) +

∫ b

a

γ(s)µ(ds)]) ∈ λ∂〈w, g(x∗(a), x∗(b))〉+NC(x∗(a), x∗(b)).

For k sufficiently large ρF (t, ·, ·) is Lipschitz continuous near (xk(t), ẋk(t)), in view of

lemma 7 in [25]. Taking any v ∈ F (t, x∗(t)), from (D) we have

〈pk(t)+
∫

[a,t)

γk(s)µ(ds)), ẋk(t)〉 ≥ 〈pk(t)+
∫

[a,t)

γk(s)µk(ds)), v〉−λkρF (t, xk(t), v)−λk
k
|v−ẋk(t)|.

Note that we may assume that ẋk(t)→ x∗(t) almost everywhere. By passing to the limit

we get

〈p(t) +

∫
[a,t)

γ(s)µ(ds)), ẋ∗(t)〉 ≥ 〈p(t) +

∫
[a,t)

γ(s)µ(ds)), v〉 ∀v ∈ F (t, x∗(t)) a.e.

Thus we obtain the conclusion of the theorem.

Case (b). Putting J(x) =
∫ b

a
ρF (t, x(t), ẋ(t))dt + dC(x(a), x(b)), we can write (b) in the

form

J(xk) <
1

2k
d(xk, Sε) < inf

x∈Wε

J(x) +
1

2k
ak, (8)

where ak = d(xk, Sε). Note that 0 < ak ≤ ‖xk − x∗‖ → 0. We claim that J is l.s.c. on

Wε. In fact, assume that zk
W 1,1

−−−→ x, then zk → x uniformly and żk
L1

−→ ẋ. Consequently,

in view of Lemma 7 in [25], we have

|J(zk)− J(x)| ≤
∫ b

a

|ρF (t, zk(t), żk(t)− ρF (t, x(t), ẋ(t)|dt+ |dC(zk(a), zk(b))− dC(x(a), x(b))|

≤ ((1 + β)‖k‖L1 + 2β‖żk − ẋ‖L1)‖zk − x‖∞ + ‖żk − ẋ‖L1 + 2‖zk − x‖∞.

The right side converges to 0 as k →∞ and so J is l.s.c.

According to the Ekeland principle, it follows from (8) that for each k there exists

xk ∈ Wε such that

‖xk − xk‖ ≤
ak
2

(9)

and xk is a minimizer of the problem

J(x) +
1

k
‖x− xk‖1,1 → inf. (10)

From (9), it follow that xk /∈ Sε. Hence (xk(a), xk(b)) /∈ C or ẋk(t) /∈ F (t, xk(t)) on a set

of positive measure. Rewrite

J(x)+
1

k
‖x−xk‖1,1 =

∫ b

a

(ρF (t, x(t), ẋ(t))+
1

k
|ẋ(t)−ẋk(t)|)dt+

1

k
|x(a)−xk(a)|+dC(x(a), x(b)).
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Thus xk is a minimizer of the Bolza problem

J̃(x) = l(x(a), x(b)) +
∫ b

a
L(t, x(t), ẋ(t))dt→ inf

over arcs x ∈ Wε,

where L(t, u, v) = ρF (t, u, v)+ 1
k
|v− ẋk(t)|, l(u, v) = dC(u, v)+ 1

k
|u−xk(a)|. Using lemma

7 in [25] again, we see that all assumptions of Lemma 3.2 are satisfied. By this lemma,

there exist λk, pk, µk and γk as in Case (a) such that

(A’) λk + ‖pk‖+ ‖µk‖ = 1,

(B’) ṗk(t) ∈ co{η : (η, qk(t)) ∈ λk∂ρF(t, xk(t), ẋk(t)) + λk

k
({0} × B)} a.e., where qk(t) =

pk(t) +
∫

[a,t)
γ(s)µ(ds).

(C’) (pk(a),−qk(b) ∈ λk∂dC(xk(a), xk(b)) + λk
k

(B × {0},
(D’) 〈qk(t), ẋk(t)〉 − λkρF (t, xk(t), ẋk(t)) ≥ 〈qk(t), v〉 − λkρF (t, xk(t), v)− λk

k
|v − ẋk(t)| for

all v ∈ Rn, a.e.,

(E’) γk(t) ∈ ∂>x h(t, xk(t)) µk−a.e. and supp{µk} ⊂ {t : h(t, xk(t)) = 0}.
By the similar arguments as in the proof of Case (a), we can assume that pk → p

uniformly and ṗk
L1

−→ ṗ for some p ∈ W 1,1,

λk → λ′, µk
∗−→ µ, γk(s)µk(ds)→ γ(s)µ(ds),

where γ is a µ-integrable which satisfies

γ(t) ∈ ∂>x h(t, x∗(t)) and supp{µ} ⊂ {t : h(t, x∗(t)) = 0}.

From (A’) we get λ′ + ‖p‖+ ‖µ‖ = 1. We now claim that ‖p‖+ ‖µ‖ > 0. In fact, assume

that ‖p‖ + ‖µ‖ = 0. If (xk(a), xk(b)) /∈ C then (C’) implies (pk(a) − λk
k
b∗,−qk(b)) ∈

λkdC(xk(a), xk(b)) for some b∗ ∈ B. Hence |pk(a)| + |qk(b)| ≥ λk − λk
k
. Consequently,

|p(a)|+ |q(b)| ≥ 1. This is impossible because p = 0 and µ = 0. If ẋk(t) /∈ F (t, xk(t)) then

(D’) implies

|qk(t)| ≤ |pk(t)|+
∫ t

a

|γk(s)|µk(ds) ≤ |pk(t)|+ kh‖µk‖.

Hence

‖pk‖ ≥ max
[0,1]
|pk(t)| ≥ λk(1− 1/k)− kh‖µk‖.

Since µk → 0, we obtain ‖p‖ ≥ 1. But this is impossible sine p = 0. Our claim is proved.

By Lemma 2.1 and (B’)-(D’) we have

ṗ(t) ∈ co{η : (η, p(t) +

∫
[a,t)

γ(s)µ(ds)) ∈ NGrphF(t,·)(x∗(t), ẋ∗(t))}, for a.e. t ∈ [a, b],

(p(a),−q(b)) ∈ NC(x∗(a), x∗(b))
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and

〈p(t) +

∫
[a,t)

γ(s)µ(ds)), ẋ∗(t)〉 ≥ 〈p(t) +

∫
[a,t)

γ(s)µ(ds)), v〉

for all v ∈ F (t, x∗(t)), a.e., Since ‖p‖+ ‖µ‖ = 1−λ′ > 0 we can scale the multipliers such

that ‖p‖ + ‖µ‖ = 1. Thus we obtain the conclusion of the theorem where λ = 0. The

proof of the theorem is complete. �

The rest of the paper is destined for some corollaries of Theorem 3.1.

When m = 1, (P) becomes a single objective optimal control problem. In this case,

by putting w = 1, we have

Corollary 3.3 ([25, Theorem 4]) Let x∗ be a W 1,1 local minimizer of (P). Assume that

assumptions (H1)- (H4) are satisfied. Then there exist an arc p ∈ W 1,1, a non-negative

constant λ, a positive Radon measure µ and a µ-integrable function γ : [a, b] → Rn such

that

(i) λ+ ‖p‖∞ + ‖µ‖ = 1,

(ii) ṗ(t) ∈ co{η : (η, q(t)) ∈ NGrphF (t,·)(x∗(t), ẋ∗(t))} a.e.,

(iii) (p(a),−q(b)) ∈ λ∂g(x∗(a), x∗(b)) +NC(x∗(a), x∗(b)),

(iv) 〈q(t), ẋ∗(t)〉 = H(t, x∗(t), q(t)), a.e.,

(v) γ(t) ∈ ∂>x h(t, x∗(t)) µ−a.e. and supp{µ} ⊂ {t : h(t, x∗(t)) = 0}.

When (P) is a weak Pareto optimal control problem, from Example 2.5, we have

Corollary 3.4 Assume that x∗ is a weak Pareto solution of (P) and assumptions (H1)-

(H4) are satisfied. Then there exist an arc p ∈ W 1,1, a non-negative constant λ, a positive

Radon measure µ, a µ-integrable function γ : [a, b] → Rn and w ∈ Rm
+ with

∑m
i=1wi = 1

such that

(i) λ+ ‖p‖∞ + ‖µ‖ = 1,

(ii) ṗ(t) ∈ co{η : (η, q(t)) ∈ NGrphF (t,·)(x∗(t), ẋ∗(t))} a.e.,

(iii) (p(a),−q(b)) ∈ λ∂〈w, g(x∗(a), x∗(b))〉+NC(x∗(a), x∗(b)),

(iv) 〈q(t), ẋ∗(t)〉 = 〈H(t, x∗(t), q(t)) a.e.,

(v) γ(t) ∈ ∂>x h(t, x∗(t)) µ−a.e. and supp{µ} ⊂ {t : h(t, x∗(t)) = 0}.

Let us give an illustrative example for Theorem 3.1.

Example 3.5 Consider the weak Pareto optimal control problem

minimize g(x(2)) = (x1(2)− x2(2), x1(2))
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over arcs x = (x1, x2) ∈ W 1,1([0, 2], R2) which satisfy
(ẋ1(t), ẋ2(t)) ∈ F (t, x(t)),

x2(t) ≤ 0 for all t ∈ [0, 2],

(x1(0), x2(0)) = (0,−3),

where

F (t, x) :=

{
[−1, 1]× {1} if t ≤ 1

{t, 1} × {1} if t > 1.

Solution. Evidently, this is problem (P) with

C = {(0,−3)} ×R2 and h(x1, x2) = x2.

For each w = (w1, w2), w1 +w2 = 1 we have 〈w, g(x(2))〉 = x1(2)−w1x2(2). By a simple

computation, we have

H(t, (x1, x2), (q1, q2)) =

{
|q1|+ q2 if t ≤ 1

max{tq1, q1}+ q2 if t > 1.

Assume that x is a solution of the problem. By Corollary 3.4, there exist λ ≥ 0, p, µ, γ

and w = (w1, w2) ∈ R2
+, w1 + w2 = 1 such that assertions (i)− (v) are satisfied. Since

GrphF (t, ·) =

{
R2 × ([−1, 1]× {1}) if t ≤ 1

R2 × ({t, 1} × {1}) if t > 1,

we get

NGrphF (t,·)(x(t), ẋ(t)) =

{
{(0, 0)} ×N[−1,1]×{1}(ẋ(t)) if 0 ≤ t ≤ 1

{(0, 0)} ×N{t,1}×{1}(ẋ(t)) if t > 1.

Hence (ii) implies that ṗ = (0, 0). Consequently, p = (p1, p2), where p1 and p2 are

constants. From (iii) we have

p(2) +

∫ 2

0

γ(s)dµ = (−λ, λw1). (11)

Since h(t, x) = x2, from (v) we get γ(t) = (0, 1). Hence (11) implies

p1 = −λ, p2 + µ[0, 2] = λw1. (12)

Since ẋ2 = 1, x2 = t − 3 and so suppµ ⊂ {t ∈ [0, 2] : t − 3 = 0} = ∅. Consequently,

µ[0, 2] = 0. We now have from (iv) that
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p1ẋ1 =

{
|p1| if 0 ≤ t ≤ 1

max{tp1, p1} if 1 < t ≤ 2.

Since p1 = −λ ≤ 0, one has

p1ẋ1 =

{
−p1 if 0 ≤ t ≤ 1

p1 if 1 < t ≤ 2.

If λ = 0 then (12) implies p1 = 0, p2 = p2 + µ[0, 2] = 0. But (i) implies 1 = λ + |p1| +
|p2|+ µ[0, 2] = |p2| which is absurd. Hence we must have p1 = −λ 6= 0. It follows that

ẋ1 =

{
−1 if 0 ≤ t ≤ 1

1 if 1 < t ≤ 2

and so

x1 =

{
−t if 0 ≤ t ≤ 1

t− 2 if 1 < t ≤ 2.

Thus we showed that if x∗ = (x1∗, x2∗) is a solution of the problem then x2∗ = t− 3 and

x1∗ =

{
−t if 0 ≤ t ≤ 1

t− 2 if 1 < t ≤ 2.
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